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Abstract: During the years of bridge exploitation, many degradation processes and external influ-
ences attack its structure. Therefore, bridge reliability and durability is decreasing in time. On the
other hand, the traffic load remains almost the same or even higher than in the past. However, bridges
should not to become the limiting component of communication capacity and traffic reliability. Re-
garding to reliability, bridges should be assessed from the viewpoint of the Ultimate Limit States
(ULS) and Serviceability Limit States (SLS). Within the ULS, cross-sections and members are verified
for various types of stressing and their combinations, and also for fatigue at the same time. The
cross-sectional verification, e.g., for bending stresses and fatigue, is done independently according to
corresponding criteria of the ULS determined for strength verification a fatigue assessment separately.
The presented article deals with the steel railway plate girder bridge with bottom member deck,
in which there is an effort to prove the effect of the crack in tension bottom flange due to fatigue
stressing on the change of bending resistance over time. The analytical calculation was derived and
at the same time, the probabilistic approach of the influence of the fatigue crack size on the change of
the cross-sectional resistance and reliability over time was used.

Keywords: steel bridge; fatigue; crack growth; reliability approach; steel members; crack propagation
effects

1. Introduction

Many various factors influence the bridge members during the lifetime, which can
affect the change of member reliability in the time. Apart from e.g., change of loads or
intensity of loads in time, which can induce a loss or growth of the reliability depending
on the increase or decrease of loads, the degradation of materials significantly influences
the cross-sectional reliability [1]. Therefore, it is possible to say that this factor explicitly
causes the reduction of reliability of steel bridge members [2,3].

The most known ways of degradation of a steel member are corrosion of steel and
fatigue processes [4–10]. Verifying structure in terms of fatigue is an inseparable part of
the new structural design or part of verifying the existing bridge structures [11–15]. An
increase of crack due to fatigue damage changes the member cross-sectional characteristics,
as decreasing in cross-sectional area, a second moment of area and section modulus. It
causes lower flexural or shear stiffness, decrease of resistance, an increase of deformations,
therefore, modification of member’s reliability in the time [16–18].

Bridges are heavily stressed by traffic. In the case of steel bridges, this load causes
significant fatigue stresses [19–21], which can result in fatigue cracks in the tensile areas
over time [22,23]. However, it is not yet known how fatigue cracks can affect e.g., cross-
sectional bending resistance of the element within the time, because the verifications of
the cross-sectional resistance and fatigue strength are independent assessments. From
the viewpoint of ULS, the cross-sectional or member resistance, respectively, is verified
according to individual criteria defined by corresponding ULS given in standards. Standard
fatigue assessment of steel bridge member according to [24] is based on the comparison of
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the damage equivalent stress range ∆σE2 to the fatigue strength given in [25] in accordance
with the corresponding bridge structural detail. Damage equivalent stress range should be
calculated using the reference stress range ∆σp and the damage equivalence factor λ, which
determination is given in [24] for railway and road bridges separately. The verification is
done for determined bridge lifetime, so that this assessment does not reflect the change of
structural member resistance in time due to crack growth.

The fatigue cracks on tension flange of steel structure have been an issue since the
beginning of steel bridge design activities. The objective has been to use such preventive
activities that would eliminate gradual growth and propagation of cracks resulting in
considerable deterioration of reliability of the bridge. Though more and more advanced
modifications and control methods have been introduced, the cracks still appear. The
standard [25] makes it possible to use a damage tolerance method as an alternative under
certain conditions. Methods proposed include the observation of a “critical” crack [26].
That term, however, has not been defined for real welded structural elements. It is hardly
possible in practice to use a small test sample for direct application [27,28].

In connection with the fatigue damage of components, the design method is very
important. If the ULS for fatigue are applied when designing elements in terms of design
effects of the traffic load, the verification is done for the real traffic load throughout the de-
signed service life. The acceptable size of the fatigue crack should be such so that the bridge
superstructure might, at the end of its service life, still provide the required level of reliabil-
ity. The tension flanges are the most stressed elements of the superstructure. Therefore, the
standardized level of reliability for fatigue is determined for the tension elements.

The paper is focused on the influence of crack formation and propagation due to
fatigue on the change of steel member’s reliability from the viewpoint of the Ultimate Limit
States (ULS) in time. Because the work is focused on member where a measurable crack
has already appeared and has propagated (grew), the linear elastic fracture mechanics
(LEFM) was considered.

2. Fatigue Crack Formation and Propagation

According to [29,30], the cracks are divided into cracks propagating from the edge,
from the corner, embedded cracks and cracks propagating from the surface in terms of
engineering structures. The cracks usually develop in members subjected to bending or
tension. Concerning the eventual broad scope of this problem, the work in the paper is
limited and focused just on cracks propagating from the surface (see. Figure 1). According
to Figure 1, the maximum crack depth “a” may theoretically be equal to the flange thickness
“t” and the crack width 2.c may be equal to the flange width b, but the limiting conditions
used are given later in paragraph 6 (Equation (29)). Cracks from the surface most often
occur when the flange is e.g., joined in several parts by welds or has any defect.

Figure 1. Crack propagated from surface.
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3. Crack Propagation from Surface

State of stresses (tightness) surrounding crack tip is formulated by the stress-intensity
factor (SIF) [31,32], whose value is depending on the way of stressing, size and shape of
a crack and on geometry of a member. In the case of a surface crack, the model of crack
propagation is more complicated than in the case of crack propagating from the edge or
the embedded crack. SIF is given by Equation, which follows from superposition of tensile
and bending stressing

KI =
√
π·a·(σm·F(a)m·M(a)m + σb·F(a)b·M(a)b) (1)

where:

KI is the stress-intensity factor (SIF),
σm is the tensile (membrane) stress,
σb is the bending stress,
F(a)m is the boundary-correction factor of stress intensity for tension stress,
F(a)b is the boundary-correction factor of stress intensity for bending stress,
M(a)m is the curve-fitting function taking into account the nonlinear stress peak due to the
tension effects,
M(a)b is the curve-fitting function taking into account the nonlinear stress peak due to the
bending effects.

Type of crack (real shape) is substituted (e.g., according to [33]) by the semi elliptical
surface crack (Figure 2) with depth of crack “a” (length of semi-axis) and half of crack
width in plate surface “c” (length of the second semi-axis). “Tcr” means center of crack
gravity and “ecr” means distance of center of crack gravity from surface (eccentricity).

Figure 2. Shape and dimensions of a crack propagating from surface.

The change of crack cross-sectional area, depending on number of cycles N, is given
by Equation

Atr(N) =
1
2
·π·a(N)·c(N) [m2]. (2)

Distance of the crack center of gravity from the surface is equal to

etr(N) =
4·a(N)

3·π [m], (3)

and second moment of area is described by equation

Iy,tr(N) =

(
π

8
− 8

9·π

)
·a(N)3·c(N) [m4]. (4)

In the case of the crack propagating from surface, it is not enough to investigate the
change of just one crack dimension during crack form changing and its increasing, what is
in the case of crack propagating from the edge or from the middle. It is necessary to take
into account the change of both dimensions “a” and “c” in both semi-axes directions. The
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stress-intensity factor KI for semi-elliptical surface crack propagating from the surface in a
slab member subjected to tension and bending has the basic form [34,35]

KI = F(a)·
√

π·a
Φ
·(σm + H·σb), (5)

where:

F(a) = F(a/t, a/c, 2c/b) is the boundary-correction factor for surface crack in a plate,
a, b, c, t, θ are the geometrical parameters of a member and a crack (Figures 1 and 2),
a is the crack depth,
c is the half of the crack width,
b is the width of the cracked plate,
t is the thickness of the cracked plate,
θ is the parametric angle of ellipse,
H is the function expressing change of F(a) in the case of bending stressing,
Φ is the shape factor for an elliptic crack, where

Φ =

π/2∫
0

[(a
c

)2
· sin2 θ+ cos2 θ

]0.5

dθ. (6)

One of the most used empirical Equation for Φ was derived in [36] and it depends on
ratio between the crack depth “a” and half of crack width “c”

Φ = 1 + 1.464·
(a

c

)1.65
, for

a
c
≤ 1, (7)

Φ = 1 + 1.464·
( c

a

)1.65
, for

a
c
> 1. (8)

In general, it is possible to write the boundary-correction factor F(a) in the following
form

F(a) = M·S =

[
M1 + M2·

(a
t

)2
+ M3·

(a
t

)4
]
·S, (9)

where Mi are the curve-fitting functions,

M1 = 1.13− 0.09·
(a

c

)
, (10)

M2 = −0.54 +
0.89

0.2 +
( a

c
) , (11)

M3 = 0.5− 1
0.65 +

( a
c
) + 14·

(
1− a

c

)24
, (12)

S = g·fφ·fw, (13)

where:

g is the fine-tuning curve-fitting function,
fφ is the angular function derived from embedded elliptical crack solution,
fw is the finite-width correction,

and it is valid for a
c ≤ 1

g = 1 +
[

0.1 + 0.35·
(a

t

)2
]
·(1− sin θ)2, (14)

fφ =

[(a
c

)2
· sin2 θ+ cos2 θ

]1/4
, (15)
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fw =

[
sec
(
π·c
b
·
√

a
t

)]1/2

, fw = 1 is valid for the large crack width. (16)

If the focus is on biaxially symmetric welded steel I-beams and one assumes that
there is a crack in the tension bottom flange (positive moment), then we can neglect the
gradient of bending stress through flange thickness. In that case, it could be considered
that the flange is subjected only to axial tensile force, from which it is stressed only by
tensile (membrane) stress σm = σ. Then, it is possible to simplify Equation (5) into form

K = F(a)·
√

π·a
Φ
·σ. (17)

However, this assumption should be only applied to thin flanges. In the case of
thick flanges according to literature [35], the influence of the normal stress gradient on
the thickness of the flanges is positively affected. In the case of longitudinal girders, the
thickness of flanges varies from10 mm to 25 mm as maximum, whereas minimum height
of longitudinal girder is 500 mm. The thickness of cross-girder flanges varies from 20 mm
to 30 mm, whereas the cross-girders heights are minimum of 700 mm.

4. Fatigue Crack Propagation

In general, the rate of fatigue crack growth is given as the derivation of crack depth
“a” with respect to number of loading cycles “N”. It means that it is ratio da/dN. For
simplification, the constant range of the nominal stress ∆σ is considered. Then, for a given
crack depth and constant stress range ∆σ one can plot the values log da/dN in terms of
log ∆K, where ∆K is the SIF (stress-intensity factor) range

∆K = Kmax −Kmin = F(a)·∆σ·
√

π·a
Φ

. (18)

Dependence of log (da/dN) on log ∆K is approximately linear and is expressed by
the Paris-Erdogan law

da
dN

= C·(∆K)m, (19)

where:

da/dN is the change in the length of the fatigue crack per load cycles,
∆K is the interval (range) of the stress intensity factor (SIF),
C, m are the material constants,
N is the number of loading cycles.

The material constants C and m are empirical constants, which are functions of the
material properties and microstructure and are obtained experimentally and also usually
depend on environment, fatigue frequency, temperature and mean stress or load ratio,
loading mode, stress state, where m is the slope of the curve showing the rate of crack
propagation according to the Paris-Erdogan equation in the mean linear region (on a
logarithmic scale). The upper limit for C = 6.89·10−12 MPa−3·m−1/2 (in the case of the use
of millimeters 2.18·10−13 MPa−3·mm−1/2) is used and m = 3 for structural steels in the case
of tensile cracks.

Paris–Erdogan’ law is a crack growth equation that gives the rate of growth of a fatigue
crack. The stress intensity factor K characterizes the load around a crack tip and the rate
of crack growth is experimentally shown to be a function of the range of stress intensity
∆K seen in a loading cycle. The stress intensity factor, K, is used in fracture mechanics to
predict the stress state (“stress intensity”) near the tip of a crack or notch caused by a remote
load or residual stresses [37]. P. C. Paris introduced the idea that the rate of crack growth
may depend on the stress intensity factor [38] in a year 1961. Then in their 1963 paper [39],
Paris and Erdogan indirectly suggested the equation with the aside remark “The authors
are hesitant but cannot resist the temptation to draw the straight line slope 1:4 through the
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data” after reviewing data on a log-log plot of crack growth versus stress intensity range.
The Paris equation was then presented with the fixed exponent of 4.

5. Effect of Crack on Steel Member’s Reliability

In the engineering probability method, the reliability margin g(R,E) = G is given
by Equation

g(R, E) = G = R− E, (20)

where:

R is the random variable resistance of a structural member,
E is the random variable load effects of the same element.

It is assumed that the member resistance R is normally distributed random variable
N(mR, sR

2) and that the load effects E are also normally distributed N(mE, sE
2), where is

valid that R and E are mutually independent. The normally distributed random variables
R and E are given by the mean values (mR, mE) and the standard deviations (sR

2, sE
2).

The member’s reliability is given either by the failure probability Pf or by reliability
index β. If one considers the change of member resistance R(N) in time t due to fatigue
damage (crack formation and development depending on cycles number N), then the
reliability of the member is also changing in time, it follows that the failure probability
Pf(N) and reliability index β(N) are also varying in time t.

As was mentioned, the paper is focused on the welded steel biaxially symmetric
I-beam subjected to bending. In this case, the member’s resistance R(t) for compact and
semi compact cross-sections is given by the equation

R(N) = M(N)pl,y = fy·W(N)pl,y, [kNm] for cross-sections of class 1 and 2, (21)

R(N) = M(N)el,y = fy·W(N)el,y,dol, [kNm] for cross-sections of class 3, (22)

where:

fy is the random variable yield strength of structural steel [MPa],
W(N)pl,y is the time dependent random variable plastic section modulus [m3],
W(N)el,y is the time dependent random variable elastic section modulus [m3].

That theoretical approach does not consider the cross-sections of class 4. In the case of
compact cross-section 1 and 2, the time dependent plastic section modulus W(N)pl,y taking
into account the cross-section loss due to crack development is represented by the relation

W(N)pl,y = bf·tf·
(

d− e∗I (N) + tf
2

)
+ tw

2 ·
[
(d− e∗I (N))2 + (e∗I (N))2

]
+

+[bf·tf − 0.5·π·a(N)·c(N)]·
[

e∗I (N) +
bf·t2

f−π·a(N)·c(N)·
(

tf−
4·a(N)

3·π

)
2·bf·tf−π·a(N)·c(N)

]
(23)

where

e∗I (N) =
d
2
+

π·a(N)·c(N)

4·tw
, (shows the change of cross-sectional centre of gravity). (24)

Meaning of each cross-sectional characteristics is shown in Figure 3.
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Figure 3. Cross-sectional characteristics of biaxially symmetric I-beam.

Similarly, the time dependent elastic section modulus W(N)el,y of the cross-sections of
class 3 taking into account the cross-section loss of the flange due to crack development is
given by Equation

W(N)el,y,hor =
I(N)y

d + tf − e∗I (N)
, for the upper fibres of cross-section, (25)

W(N)el,y,dol =
I(N)y

tf + e∗I (N)
, for the bottom fibres of cross-section, (26)

where the second moment of area is calculated according to

I(N)y = 1
6 ·bf·t3

f + bf·tf·
[(

tf
2 + d− e∗I (N)

)2
+
(

tf
2 + e∗I (N)

)2
]
+ 1

12 ·tw·d3+

+tw·d·
(

e∗I (N)− d
2

)2
− π

8 ·a3(N)·c(N)− π
2 ·a(N)·c(N)·

(
e∗I (N) + tf −

4·a(N)
3·π

)2
,

(27)

where in this case

e∗I (N) =
bf·tf·(d + 2·tf) + d·tw·

(
d
2 + tf

)
− 2

3 ·a2(N)·c(N)

2·bf·tf + d·tw − π
2 ·a(N)·c(N)

− tf. (28)

Since the dependence of crack depth “a” and half of crack width “c” growth on cycles
number N (a(N), c(N)) is not known yet, they are considered in equations as independent
on cycles number N with denotations “a(N) = a” and “c(N) = c”.

6. Independent Crack Growth in Directions “a” and “c”

In the first case, one focuses on the independent growth of a crack in the direction
of the two half-axles (depth and width). In that case, the dimensions “a” and “c” are
independently chosen from each other. From that follows, that the chosen cracks have
different shapes (different ellipse) and the different areas.

6.1. Analytical Calculation

To determine the influence of the size and shape of fatigue crack on the cross-sectional
resistance, the parametric study was performed [40,41]. The welded steel beam I 400,
representing, for example, longitudinal girder of steel plate girder bridge with a bottom
members’ deck (Figure 4) and I 800, representing cross girder of the same bridge, were
considered in the study. The input strength and geometric characteristics are shown in
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Table 1. The length of the bridge is 30.0 m. The lengths of the longitudinal girders of plate
girder railway bridges vary about (1.6–2.5) m. In the case of railway bridge cross-girders,
their lengths are 5.5–6.5 m depending on the bridge arrangement.

Figure 4. Model of typical steel plate girder bridge with bottom member members’ deck on railway
line Žilina-Martin with girders I 400 and I 800 used in parametric study.

Table 1. Cross-section characteristics of welded steel beams I 400 and I 800.

Input Characteristics I 400 I 800

Yield strength—fy [MPa] 235.0/1.0 = 235.0 235.0/1.0 = 235.0

Flange width—bf [mm] 100.0 250.0

Flange thickness—tf [mm] 10.0 25.0

Web height—d [mm] 380.0 750.0

Web thickness—tw [mm] 8.0 10.0

Since this is a cross-section of class 1 (I 400) and class 2 (I 800), the Equations (21)
and (23) were used for cross-sectional resistance calculation. The results of crack growth
influence on plastic section modulus Wpl,y decreasing are shown in Figure 5, and on plastic
bending resistance Mpl,y are shown in Figure 6.

Crack size was chosen from a minimum value (zero value) up to the size defined by
the limit values

2·c ≤ 0.8·bf, and a ≤ 0.8·tf. (29)

For I 400, the limit values are 2·c ≤ 0.8·0.100 = 0.080 m and a ≤ 0.8·0.010 = 0.008 m,
for I 800 the limit values are 2·c ≤ 0.8·0.250 = 0.200 m and a ≤ 0.8·0.025 = 0.020 m.

From the results obtained, it can be seen that the fatigue crack growth can largely
reduce the moment load-carrying capacity. If the maximum possible crack from surface
limited by conditions (29) would appear, it would lead to the cross-sectional area loss of
9.97% (I 400), 15.71% for I 800, while the plastic resistance moment would be reduced up to
33.77% (I 400), 55.15% (I 800) respectively.
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Figure 5. Influence of crack size on plastic section modulus Wpl,y.

6.2. Probabilistic Approach

The probabilistic approach was used for finding the impact of fatigue crack on failure
probability variation and on corresponding reliability index [42]. In that case, all strength
and geometrical characteristics were considered as random variables with normal distribu-
tion N(m,s2) and they are shown in Table 2 [43,44]. The steel of quality S235 was assumed.
Statistical characteristics of yield strength were taken from [45]. Likewise, all geometric
characteristics (thickness and width) of plates were taken from [45]. Standard deviations,
reflecting tolerances of flange widths, take into account the deviations allowed by stan-
dard [46]. Dimensions of crack semi-axes (c,a) were again chosen and were considered
as constants, not as random variables. Numerical application of resistance calculation
R = Mpl,y was realised using the simulation method Monte-Carlo.
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Figure 6. Influence of crack size on plastic resistance moment Mpl,y.

Table 2. Statistical characteristics of welded steel beams I 400 and I 800.

Input Characteristics
I 400-Welded I 800-Welded Probability

Distributionm s v m s v

Yield strength—fy [MPa] 269.20 28.00 0.104 281.00 27.80 0.099 Normal

Flange width—bf [mm] 100.00 2.00 0.020 250.00 2.00 0.008 Normal

Flange thickness—tf [mm] 10.210 0.37 0.036 25.525 0.925 0.036 Normal

Web height—d [mm] 380.00 2.00 0.005 750.00 2.00 0.003 Normal

Web thickness—tw [mm] 8.168 0.296 0.036 10.210 0.37 0.036 Normal

Obtained results of mean value mR and standard deviation sR variation are shown in
Figures 7 and 8. As expected, the results show detectable decrease of the mean value mR
and standard deviation sR. This is the proof that influence of fatigue crack development
and propagation may have unavoidable influence on member resistance. In this case, the
mean value of resistance mR was decreased by a maximum 15.33% (I 400) and 19.54%
(I 800) and the standard deviation sR was decreased by a maximum 12.73% (I 400) and
18.73% (I 800).
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Figure 7. Influence of crack size on resistance mean value mR.

The consequential obtained values of parameters are

I 400: mR = 186.515 kNm, I 800: mR = 1792.906 kNm,

sR = 20.176 kNm, sR = 186.036 kNm

The load effects E were considered as random variables normally distributed with the
following parameters

I 400: mE = 94.411 kNm, I 800: mE = 943.651 kNm,

sE = 15.132 kNm, sE = 139.527 kNm.

From parameters follows that members were designed with reliability index β = 3.652
for design lifetime Td = 100 years. The results of crack growth influence on failure proba-
bility Pf and reliability index β are shown in Figures 9 and 10.

Decrease of the mean value mR causes decrease of the member’s—decrease of reliabil-
ity index β and corresponding increase of failure probability Pf. Decrease of the standard
deviation, in general, has favourable influence on members’ reliability (the failure probabil-
ity Pf is lower in time). Since the results show a decrease of the reliability, it follows that the
reliability is mainly influenced by the decrease of the mean value mR. The decrease of the
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standard deviation sR only reduces reliability uncertainty, so, it reduces the consequential
reliability decline.

The reliability index decreases from the value β = 3.652 to values β = 2.754 (I 400)
and β = 2.200 (I 800) for the maximum crack given by limitations (29). This represents a
significant reliability decline that for the administrator of the bridge may not be acceptable.
If crack would no longer grow, the remaining lifetime of member in ultimate limit state
is lower than 3 years according to works [1,47]. In the case of further crack growth, the
remaining lifetime would be significantly reduced and it means that the member would
become unreliable.

Figure 8. Influence of crack size on resistance standard deviation sR.
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Figure 9. Influence of crack size on failure reliability Pf.
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Figure 10. Influence of crack size on reliability index β.

7. Dependence of Crack Growth in Directions “a” and “c”

In fact, the crack growth in one direction depends on the crack growth in the other.
Although this dependency was considered in several works such as [48–50], it has not yet
been precisely defined.

Approach described in [51] was used for obtaining this dependency. For simplification,
the crack growth is analysed at points (directions) “a” and “c” (in direction of main semi-
axes). Crack propagation speed at those points is described by the stress-intensity factor
(∆K) and by the Paris-Erdogan law, which can be expressed as

da
dN

= C·(∆Ka)
m, (30)

dc
dN

= C·(∆Kc)
m, respectively, (31)

where:

∆Ka is the stress-intensity factor in direction “a”,
∆Kc is the stress-intensity factor in direction “c”,
C, m are the material constants.
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Relation between the crack depth increment ∆a and the crack width increment ∆c is
obtained by combination of Equations (30) and (31)

∆a =

(
∆Ka

∆Kc

)m
·∆c. (32)

The stress-intensity factor ∆K is in general given by Equation (17). Forms of SIF at
points “a” and “c” are obtained from adjustment into increment form

∆Ka = Fa·
√

π·a
Φ
·∆σ, (33)

∆Kc = Fc·
√

π·a
Φ
·∆σ. (34)

The boundary-correction factor in general form, F = F(a), is given by relation (9). Since
the terms M1, M2, M3 and thus the whole expression M in Equation (9) depend only on the
ratios a/c and a/t, and do not depend on angle θ, then the value of the parameter M is the
same at points “a” and “c” (independent on direction). Similarly, the parameter fw, given
by the Equation (16) for the calculation of the parameter S, is independent on the angle θ

(on direction). However, the parameters g (14) and fφ (15) depend, apart from ratios a/c
and a/t also on angle θ, it means that they depend on the position. Then, the calibration
functions for the points “a” and “c” follows from Equations

Fa = M·Sa, at point a, (35)

Fc = M·Sc, at point c. (36)

Substituting Equations (33)–(36) into Equation (32), the adjusted Equation can be
obtained for calculation of increment ∆a as

∆a =

(
Sa

Sc

)m
·∆c. (37)

Adjusting and substituting Equations (14)–(16) into Equation (13), one obtains the
following Equation for calculation Sa, where it is valid for a

c ≤ 1, θ = 0 (at point “a”)

Sa = ga·fa·fw =

 1

cos
(
π·c
b ·
( a

c
)0.5
)
0.5

, (38)

and for calculation Sc, one obtains Equation, where it is valid for a
c ≤ 1, θ = π

2 (at point “c”)

Sc = gc·fa·fw =

[
1.1 + 0.35·

(a
t

)2
]
·
(a

c

)0.5
·

 1

cos
(

π·c
b ·
( a

c
)0.5
)
0.5

. (39)

Substituting (38) and (39) into (37) and adjusting, the Equation for calculation of the
crack depth increment ∆a in terms of crack width increment ∆c can be obtained as follows

∆a =

 1[
1.1 + 0.35·

( a
t
)2
]
·
( a

c
)0.5

m

·∆c. (40)

There to proceed by iterative way for the calculation of the crack growth in both
directions one must choose the initial crack size with initial dimensions “a” and “c”,
then the increment ∆c is selected and using Equation (40), the corresponding increase of
increment ∆a can be calculated. New crack dimensions “a” and “c” are obtained so that the
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increments ∆c and ∆a are added to previous dimensions. Again, choosing increment ∆c
(same as before) and calculating a new corresponding increase ∆a, new crack dimensions
can be calculated. Calculation of crack growth will be finished if none of the restrictions (29)
is violated. An example of crack dimension calculation for flange thickness tf = t = 10 mm
is shown in Table 3 and the results are shown in Figure 11.

Table 3. Crack growth.

∆c
[mm]

∆a
[mm]

c
[mm]

a
[mm]

Crack Cross-Sectional Area
Atr [mm2]

0.00001 ≈ 0 0.00001 ≈ 0 ≈0

0.1 0.075 0.1 0.075 0.01178

0.1 0.116 0.2 0.191 0.06000

0.1 0.080 0.3 0.271 0.12771

0.1 0.087 0.4 0.358 0.22494

0.1 0.089 0.5 0.447 0.35107

Figure 11. Influence of crack width “c” on crack depth “a”.

The initial ratio a/c (initial crack dimensions) is important for crack growth calculation
in both directions. Basically, it is the minimum detectable crack. Since the minimum value
of the measurable crack is not precisely defined (usually it is estimated) and similarly the
ratio a/c is not known, the approach was intended for values close to zero (exact zero
cannot be considered because of the ratio a/c). The work [29] is also concerned with
this problem.

The results show that the increment ∆a is gradually increasing unevenly at constant
increment ∆c.

It is possible to obtain the crack growth in both directions using the described approach.
The curve was drawn through the obtained values based on finding the dependence of crack
growth in direction “c” on crack growth in direction “a”. The second degree polynomial
curve turned out to be the most preferred form

c = k1·a2 + k2·a + k3, (41)

where ki are coefficients.
It has been proven that the values of the coefficient ki depend not only on the thickness

tf, but also on selected increment ∆c. Therefore, the sensitivity analysis was performed,
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which improved values of the coefficient ki. Table 4 shows the ki values depending on the
selected increment ∆c, wherein the thickness of the flange was assumed tf = t = 10 mm.

Table 4. Dependence between “c” and “a” for thickness of flange tf = 10 mm depending on incre-
ment ∆c.

Selected Increment ∆c [mm] Dependence between “c” and “a”

∆c = 0.5 mm c = 0.03093·a2 + 1.01255·a + 0.06696

∆c = 0.1 mm c = 0.03030·a2 + 1.01960·a + 0.06844

∆c = 0.05 mm c = 0.03024·a2 + 1.02015·a + 0.06903

∆c = 0.01 mm c = 0.03025·a2 + 1.02027·a + 0.06972

∆c = 0.005 mm c = 0.03027·a2 + 1.02017·a + 0.06993

∆c = 0.001 mm c = 0.03027·a2 + 1.02022·a + 0.06995

It is assumed that the increment reduction is meaningless and the values of coefficients
ki are not significantly changed. Therefore, the dependency for ∆c = 0.001 mm is considered
to be sufficiently accurate.

Similarly, the parametric study was used for investigation of the coefficients ki, which
are valid to other flange thickness tf. Dependencies are shown in Table 5.

Table 5. Relationships between “c” and “a” depending on various flange thickness tf.

Flange Thickness t = tf [mm] Dependence between “c” and “a”

tf = 10 mm c = 0.03027·a2 + 1.02022·a + 0.06995

tf = 13 mm c = 0.0232·a2 + 1.0270·a + 0.0883

tf = 20 mm c = 0.0151·a2 + 1.0202·a + 0.1381

tf = 30 mm c = 0.0101·a2 + 1.0203·a + 0.2076

If the dependency is established of “c” not only on “a”, but also on flange thickness
t = tf in the approach, the universal dependency of the crack growth in direction “c” on
direction “a” and on flange thickness t, is obtained in the form

c =
0.3027

t
·a2 + 1.0202·a + 0.00699·t. (42)

Again, the parametric study with same steel welded I-beams I 400 and I 800, which
were considered before, was performed. The characteristics are given in Table 2.

The achieved results of change of the mean value mR and the standard deviation sR
are shown in Figures 12 and 13. As expected, the results again show a decrease of the
mean value and the standard deviation, but in this case, the mean value mR of resistance
decreased more realistically for about 3.84% (I 400) (4.92% for I 800) and in the case of
standard deviation sR for about 2.93% (I 400) (5.45% for I 800). The given course of curves
proves that it is a random stochastic process and the results were obtained by numerical
simulation, which is the reason for the variance of values.

If the approach and Equations were projected into failure probability Pf and reliability
index β (Figures 14 and 15), it was possible to see that the decrease of the reliability is not
so significant. Initially, in the case of smaller crack sizes (“a”, “c”), random character of
parameters has greater impact on the monitored variables as the crack growth (similarly to
the mean value and standard deviation of resistance). Influence of the crack size became
greater after ratio a/t = (0.2~0.3) was reached.
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Figure 12. Dependence of resistance mean value mR on crack depth “a”.
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Figure 15. Dependence of reliability index β on crack depth “a”.

Reliability index β of the member at the maximum dimension of the considered
crack a = 0.8·t takes the values β = 3.443 (I 400) and β = 3.400 (I 800). It means that
its remaining lifetime at ultimate limit state according to paper [47] is approximately
20–30 years depending on the age of member. Again, the course of the curves proves that
this is a random stochastic process and the results were obtained by numerical simulation,
which causes the variance of values.

8. Conclusions

The paper is focused on the influence of fatigue damage (fatigue cracks) of the steel
welded I-girders on change of moment resistance and reliability in time. Methods such
as analytical calculation and probabilistic calculation (numerical simulations) were used.
The crack due to fatigue in tension flange of welded I-girder changes the cross-sectional
characteristics as cross-sectional area, second moment of area and plastic or elastic section
modulus. The analytical calculation and also probabilistic approach showed the following
conclusions:

- In the case of independent crack growth in directions “a” and “c”, the fatigue crack
can cause unavoidable decline of moment resistance (deterministic and stochastic)
from the viewpoint of the Ultimate Limit States, what is going to decrease the member
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reliability from β = 3.652 to β = 2.754 (I400) and to β = 2.200 (I800) within bridge
lifetime of 100 years.

- The derivation of the model of dependent crack growth in both directions represents
a major contribution of this work. Using this approach, it is possible to directly
determine the bending resistance and fatigue stressing from the viewpoint of the
Ultimate Limit States.

- In the case of dependent crack growth, the reliability index β of the member at the
maximum dimension of the considered crack a = 0.8·t takes the values of β = 3.443
(I 400) and β = 3.400 (I 800) respecting strength criteria of the Ultimate Limit States.

- The results of the study showed more favourable and real (lower changes) intercon-
nection between fatigue stressing and bending resistance. However, it still tends to
decrease reliability of the member and to shorten the remaining lifetime.
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