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Abstract: The conventional sample range is widely used for the construction of an R-chart. In an
R-chart, the sample range estimates the standard deviation, especially in the case of a small sample
size. It is well known that the performance of the sample range degrades in the case of a large sample
size. In this paper, we investigate the sample subrange as an alternative to the range. This subrange
includes the range as a special case. We recognize that we can improve the performance of estimating
the standard deviation by using the subrange, especially in the case of a large sample size. Note
that the original sample range is biased. Thus, the correction factor is used to make it unbiased.
Likewise, the original subrange is also biased. In this paper, we provide the correction factor for the
subrange. To compare the sample subranges with different trims to the conventional sample range or
the sample standard deviation, we provide the theoretical relative efficiency and its values, which can
be used to select the best trim of the subrange with the sense of maximizing the relative efficiency. For
a practical guideline, we also provide a simple formula for the best trim amount, which is obtained
by the least-squares method. It is worth noting that the breakdown point of the conventional sample
range is always zero, while that of the sample subrange increases proportionally to a trim amount.
As an application of the proposed method, we illustrate how to incorporate it into the construction of
the R-chart.

Keywords: subrange; distribution; unbiasing factors; relative efficiency; breakdown point

1. Introduction

The control chart is a widely used and powerful graphical tool in quality control that
is used to measure, monitor, and control a process over time. Usually, the control charts
are in pairs. For example, an X-chart monitors the average of the manufacturing process
while an R-chart monitors the variation of the process [1]. Generally, there are two phases
for constructing control charts [2]. In Phase-I the goal is to obtain reliable control limits
from the process data. Then, in Phase-II monitor the process by comparing the statistical
properties of the future observation to the control limits, which are achieved in Phase-
I [3,4]. The performance of the control charts constructed in Phase-I will determine the
performance of the results in Phase-II. Thus, the data quality in Phase-I plays an important
role in statistical process control (SPC). However, for X− R charts, the sample mean and
range are susceptible to the outliers, which is also called data contamination. Thus, the
conventional control charts may be invalidated in the case of data contamination. To solve
this problem, we use a robust estimator to construct control charts in Phase-I.

Robust statistics can provide good performance when there is the presence of outliers
and departures from the model assumption. In robust design, when the collected data are
contaminated, the robust estimators are employed to reduce or even avoid the influence of
outliers on the results [5–9]. In statistical process control, Park et al. [10] proposed the use
of robust scale estimators (e.g., median absolute deviation (MAD)) [11] and Shamos [12])
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used an alternative to the standard deviation to construct the control charts in Phase–I
when the data is contaminated. Shaweish and Saeed modified the S-control chart based
on the decile mean standard deviation, which possessed a better performance when the
sample size was small in most realistic applications [13]. When the process data in Phase-I
diverge from normality and outliers are present, the robust S-chart based on robust scale
estimators is more preferable than a traditional S-chart [10,13]. The reweighted robust
standard deviation estimator is adopted to modify the S-chart by Mutlu and Alakent [14].
To improve robustness and be more efficient, in the case of the presence of outliers in the
data set, the trimmed mean of mean, standard deviation, and range are adopted to construct
the control charts [15–17]. Shaweish et al. [18] and Riaz and Saghir [19] pointed out that
the control chart based on the robust scale estimator provides good performance not only
without outliers, but also within outliers in the data set. Cumulative sum (CUSUM) control
charts for special causes are also under the assumption of normal distribution. Given
this, many attentions are paid to the robust CUSUM chart when the ideal assumption is
violated [20–22]. Considering the multivariate non-normality problems, the distribution-
free method [23] and Bayesian seemingly unrelated regression model [24] can give us
some inspirations.

The trimmed mean (also called truncated mean) is the mean of the part after removing
the x% largest and smallest observations [25]. For example, to reduce and mitigate the
influence of bias in subjective judgements, the highest and lowest scores are discarded
and the middle three are summed for a five-judge panel [26,27] for many Olympics games
(e.g., diving and gymnastics etc.).

However, there is seldom research about the R-chart under data contamination in
the literature. This motivates us to develop a robust method for control charts when the
data is contaminated. In this paper, we propose a robust scale estimator subrange as an
alternative to the sample range—as an estimator of the standard deviation to improve the
control chart in the case of data contamination. The calculation of subrange is very similar
to the trimmed mean. However, the subrange is not unbiased.

As we know, order statistics are widely used in nonparametric inferences and robust
procedures. Order statistics theories can also be used to compute simple statistics such as
median, the empirical cumulative distribution function (cdf), and the sample range [28–30].
The range of a sample dispersion tells us how far apart the largest and smallest values
are. The traditional sample range is the distance between the largest and the smallest
observation values from a sample. However, estimating the standard deviation by means
of the sample range is not unbiased. Thus, it is necessary to use the unbiasing factor d2 for
the original sample range to estimate the standard deviation properly, which is a function
of the sample size [31]. The method is widely seen in quality control literature [32,33].

Based on the joint pdf, the distribution of the sample range has been extensively
studied [34–36]. However, in the earlier literature, many papers focus on the sample range.
If there is an outlier in a sample, obviously the sample range will be easily influenced
by even a single outlier. Given this, we can say that the sample range clearly has a zero-
breakdown point, which is a popular measure for the robustness property of a statistical
estimator. The breakdown point of a statistical estimator is the fraction of data that can be
given arbitrary values without making the estimator arbitrarily bad [10,36]. The sample
range is almost as efficient as the sample standard deviation for a small sample under
the normal distribution, which is generally assumed in many engineering applications.
Howefer, Patnaik [37] pointed out that when the sample size is larger than 20, even a small
departure from normality in the tail of the parental distribution has a considerable effect on
the distribution of the sample range. In order to make a good performance of the sample
range for a large sample, Cadwell [38] proposed a method of dividing the sample into a
few subgroups and used the average of the range of these subgroups.

Since the sample subrange depends on the trim amount, there may be several sub-
ranges to consider under different trims. Therefore, natural questions arise: which of the
subranges is preferred? Then, by what criteria, shall we make the choice? Serfling [39] and
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Lehmann [40] proposed that the smaller the variance in its sampling distribution, the more
“efficient” is that estimator. The relative efficiency (RE) value is considered in order to
decide how to choose the optimal trim amount of the subrange by comparing the variance
of the sample. Firstly, we give the distribution of the sample subrange and provide the
unbiasing factors, which depend on the sample size and the number of trims to make the
estimator unbiased. Next, we provide a criterion that is based on the RE value to choose the
optimal trims in the sample. Lastly, we consider the breakdown point of the subrange. As
we know, the inter-quartile range (IQR) is widely used to estimate the standard deviation
when the sample has an outlier or extreme values. The proposed subrange includes the
IQR as a special case. As well, the subrange is robust to outliers. The contribution of this
article is as follows.

We give the distribution of the sample subrange and provide the unbiasing factor
for the subrange of a sample through a Monte Carlo simulation. We assume the data are
a normal distribution in order to calculate the unbiasing factor and the distribution for
the subrange because the commonly used control charts are under the independent and
normality assumption [1,12,41,42].

The RE values are calculated by using two different kinds of baseline estimators,
from which we discover that the results coincide with choosing the best performance of
subranges. Some interesting points are found through comparing the breakdown points of
a range and a subrange, by which we conclude that the subrange has a positive breakdown
point of k/n, and the asymptotic breakdown point of the subrange can be increased to
around 1/2 in theory.

In previous studies, researchers paid little attention to the sample range due to its
limitations, such as its narrow application and susceptibility to outliers. In this paper, we
improve the range by extending its application and improving its breakdown point. Then
we use the subrange to construct a control chart for monitoring the changes in the progress
when the data are contaminated. Through the Monte Carlo simulation, we investigate the
properties of the subrange. We offer unbiasing factors and the relative efficiency values for
the sample size of 50 or less, firstly.

In this paper, the sample subrange is proposed as an alternative to the sample range
as an estimate of the standard deviation. A correction factor for the subrange is provided
in order to get unbiasedness. An application of the proposed method is illustrated by
incorporating it into the construction of the R-chart. In Section 2, calculations are carried out
for a random sample from a standard normal distribution, and then from a non-standard
normal distribution. In Section 3, the central limit theorem is used to construct control
charts by adopting the subrange. Some discussions about the relative efficiency value and
the breakdown point of the subrange are provided in Section 4. Additionally, concluding
remarks are given in Section 4.

2. The Distribution of the Subrange

Let X1, X2, · · ·Xn be a random sample with continuous cdf F(x) and pdf f (x). Let
X(1), X(2), · · ·X(n) be the order statistics of a random sample. Then the joint pdf of X(i) and
X(j) for 1 ≤ i < j ≤ n is given by

f(i,j)(u, v) =
n!

(i− 1)!(j− i− 1)!(n− j)!
f (u) f (v)[F(u)]i−1[F(v)− F(u)]j−i−1[1− F(v)]n−j, (1)

for −∞ < u < v < ∞. For more details on the above result, refer to Casella and Berger [28],
and Hogg et al. [30].

We consider the symmetrically trimmed subrange. That is, we exclude the k smallest
and k largest values. Thus, the symmetrically trimmed subrange is defined as R[k] =
X(n−k) −X(k+1) where k = 0, 1, 2, · · · , bn/2c − 1 and n ≥ 2. Here bxc is the largest integer
less than or equal to x. Note that R[k] becomes the regular range with k = 0.

We assume that a random sample is from a normal distribution with mean µ and
standard deviation σ. It is well known that the range is not unbiased to estimate σ. By
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dividing R by the unbiasing factor d2, we can easily make this R unbiased. The values of
d2 are provided in the quality control literature—for more details refer to Shewhart [32]
and Oakland [33].

In this paper, we will provide the unbiasing factor which makes R[k] unbiased for
σ. We denote this factor by d2(n, k). It should be noted that the factor d2 depends on the
sample size n and the number of trims k in the sample.

For notational convenience, we denote the joint pdf of X(k+1) and X(n−k) by f (u, v)
Then we have

fk(u, v) =
n!

(k!)2(n− 2k− 2)!
f (u) f (v)[F(u)]k[1− F(v)]k[F(v)− F(u)]n−2k−2.

Let Z1, Z2, · · · Zn be a random sample from a standard normal distribution with pdf
φ(z) and cdf Φ(z). For notational convenience, we denote W1 = Z(k+1) and W2 = Z(n−k).
Using (1), we have the joint pdf of W1 and W2.

fk(w1, w2) =
n!

(k!)2(n− 2k− 2)!
φ(w1)φ(w2)[Φ(w1)]

k[1−Φ(w2)]
k[Φ(w2)−Φ(w1)]

n−2k−2.

The goal is to derive the distribution of the subrange, W2 −W1 = Z(n−k) − Z(k+1)
where the Zi are from the standard normal distribution, N(0, 1). Next, we consider the
new random variables given by Y1 = W1 and Y2 = W2 −W1. Notice that the random
variable Y2 is the subrange. The inverse transformations are easily obtained by w1 = y1
and w1 = y2 + y1. Then, using the bivariate transformations, the joint pdf of Y1 and Y2,
denoted by gk(y1, y2) is given by

gk(y1, y2) =
n!

(k!)2(n− 2k− 2)!
φ(y1)φ(y1 + y2)Φ(y1)

k[1−Φ(y1 + y2)]
k[Φ(y1 + y2)−Φ(y1)]

n−2k−2|J|,

where −∞ < y1 < ∞, y2 > 0 and J is the determinant of the Jacobian matrix given by

J = det

[
∂w1
∂y1

∂w1
∂y2

∂w2
∂y1

∂w2
∂y2

]
= det

[
1 0
1 1

]
= 1

For more details, see Casella and Berger [28]. Then the pdf Y2 = R[k] = Z(n−k) −
Z(k+1) is just the marginal pdf of Y2, which is given by

g[k](y2) =
∫ ∞

−∞

n!

(k!)2(n− 2k− 2)!
φ(y1)φ(y1 + y2)Φ(y1)

k[1−Φ(y1 + y2)]
k[Φ(y1 + y2)−Φ(y1)]

n−2k−2dy1 (2)

where k = 0, 1, 2, · · · , bn/2c − 1 and n ≥ 2 again.

2.1. The Unbiasing Factors for the Subrange

Using the pdf of the range in (2), we can obtain the l-th moment of the range by
calculating the expectation as follows:

E
(

Yl
2

)
=
∫ ∞

0
yl

2g[k](y2)dy2

We denote
d2(n, k) = E(Y2). (3)

Let Xi be a sample from the normal distribution N
(
µ, σ2). Since σ is a scale parameter,

we have Xi = σZi + µ, where Zi is a sample from the standard normal distribution N(0, 1).
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Then we have E
(

R[k]

)
= E

(
X(n−k) − X(k+1)

)
= d2(n, k)σ. Thus, we can obtain the

unbiased scale estimator of σ using the subrange which is given by

_
σ [k] =

R[k]

d2(n, k)
. (4)

Note that the unbiasing factor, d2 in the quality control literature is obtained by
d2 = d2(n, 0), so that

_
σ 0 = R/d2. Next, we denote

d3(n, k) = SD(Y2) =
√

E
(
Y2

2
)
− E(Y2)

2. (5)

Then, we have SD
(

R[k]

)
= d3(n, k)σ. Also, the unbiasing factor d3 in the quality

control literature is also given by d3 = d3(n, 0).
In Tables A1 and A2, we provide the values of d2(n, k) and d3(n, k), respectively. For

brevity, we provide the values for n = 2, 3, · · · 50 and k = 0, 1, · · · , 9 in the tables. The
R language program is provided in the online supplement. Subrange. Available online:
https://github.com/jin-yuyu/subrange.git (accessed on 1 December 2021).

2.2. The Relative Efficiency of the Subrange

We proposed the R-chart based on the subrange. Given this, a natural question is
which subrange should be selected? This is essentially the same as how to choose k. We
suggest the choice of k based on the RE value. In the statistics literature, the RE is defined as

RE
(

_
θ 2

∣∣∣∣_θ 1

)
=

Var
(
_
θ 1

)
Var
(
_
θ 2

) × 100%, (6)

where
_
θ is often a reference or baseline estimator. For more details, see Serfling [39] and

Lehmann [40]. We consider the RE of the unbiased scale estimator
_
σ [k] using

_
σ [0] as a

baseline estimator, which is given by

RE
(
_
σ [k]

∣∣∣_σ [0]

)
=

Var
(
_
σ [0]

)
Var
(
_
σ [k]

) × 100% =
(

d3(n, 0)2/d2(n, 0)2
)

/
(

d3(n, k)2/d2(n, k)2
)
× 100%. (7)

We calculated the values of RE
(
_
σ [k]

∣∣∣_σ [0]

)
in Table A3 for n = 2, 3, · · · 50 and

k = 0, 1, · · · , 9. It is easily seen that the choice of k = 0 gives the best performance for
n = 2, 3, · · · , 17, and the choice of k = 1 does for n = 18, 19, · · · , 31 etc. In Table 1,
we also summarize the best choice of k which provides the maximum RE value. We also
obtain the simple regression line using the least-squares method. The fitted line equation is
given by

k = 0.65806 + 0.06926 · n.

Table 1. The number of trimmings, k∗, with the best relative efficiency.

2 ≤ n ≤ 17 18 ≤ n ≤ 31 32 ≤ n ≤ 45 46 ≤ n ≤ 60 61 ≤ n ≤ 74

k∗ = 0 k∗ = 1 k∗ = 2 k∗ = 3 k∗ = 4

75 ≤ n ≤ 88 89 ≤ n ≤ 103 104 ≤ n ≤ 118 119 ≤ n ≤ 132 133 ≤ n ≤ 146

k∗ = 5 k∗ = 6 k∗ = 7 k∗ = 8 k∗ = 9

147 ≤ n ≤ 162 163 ≤ n ≤ 175 176 ≤ n ≤ 188 189 ≤ n ≤ 203 204 ≤ n ≤ 217

k∗ = 10 k∗ = 11 k∗ = 12 k∗ = 13 k∗ = 14

https://github.com/jin-yuyu/subrange.git
https://github.com/jin-yuyu/subrange.git
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Thus, when the sample size n is very large, the value of k can be approximately
selected using the above-fitted value. For example, when n = 500, we have k ≈ 34.

Using the unbiased estimator Sn/c4(n) of σ as a baseline, we also calculated the RE of
the unbiased scale estimator

_
σ [k] again. Here, c4(n) is given by

c4(n) =

√
2

n− 1
·

Γ
( n

2
)

Γ
(

n
2 −

1
2

) .

It should be noted that E
[
S2

n
]
= σ2 and E[Sn] = c4(n)σ. Thus, we have Var(Sn/c4(n))

=
{

1/c4(n)
2 − 1

}
σ2 and

RE
(

_
σ [k]

∣∣∣ Sn

c4(n)

)
=

Var
(

Sn
c4(n)

)
Var
(
_
σ [k]

) × 100% =
1/c4(n)

2 − 1

d3(n, k)2/d2(n, k)2 × 100%.

We also calculated the values of RE
(
_
σ [k]

∣∣∣ Sn
c4(n)

)
in Table A3 for n = 2, 3, · · · 50 and

k = 0, 1, · · · , 9. It should be noted that RE
(
_
σ [k]

∣∣∣ Sn
c4(n)

)
= 100% when n = 2. We

investigated this specific case in more detail as follows. When n = 2, k should be zero.
Thus, in this case, it is immediately from (2) that the pdf of Y2 = R[0] = Z2 − Z1 is
given by

g[0] =
∫ ∞
−∞ 2φ(y1)φ(y1 + y2)dy1 = 2

∫ ∞
−∞

1√
2π

exp
(
− y2

1
2

)
1√
2π

exp
(
− (y1+y2)

2

2

)
dy1 = 1√

π
exp

(
− y2

2
4

)∫ ∞
−∞ g∗(y1)dy1.

where g∗(y1) = 1√
2π·1/

√
2

exp
(
− 1

2 ·
(y1+y2/2)2

1/2

)
.

Science g∗(y1) is the pdf of the normal distribution with N
(
−y2/2, 1/

√
2
)

, we have

g[0] =
1√
π

exp

(
−

y2
2

4

)
.

which results in

d2(2, 0) =
∫ ∞

0
y2g[0]dy2 =

∫ ∞

0

1√
π

y2 exp

(
−

y2
2

4

)
dy2 =

1√
π

[
−2 exp

(
−

y2
2

4

)]∞

0

=
2√
π

.

Then we have
_
σ [0] =

R[0]

d2(2, 0)
=

√
π

2

(
X(2) − X(1)

)
. (8)

On the other hand, we have

c4(2) =
√

2
Γ(2)

Γ(1/2)
=

√
2√
π

Since S2
2 = 1

2−1

2
∑

i = 1

(
Xi − X2

)2

= (X1 − X2)
2/2, we have

S2

c4(2)
=
|X1 − X2|/

√
2√

2/
√

π
=

√
π

2
|X1 − X2| =

√
π

2

(
X(2) − X(1)

)
(9)

It is immediate from (8) and (9) that

_
σ [0] =

S2

c4(2)
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Thus, as aforementioned, we have RE
(
_
σ [k]

∣∣∣ Sn
c4(n)

)
= 100% when n = 2 (also k = 0

in this case, as mentioned earlier).

2.3. The Breakdown Points

Another way of choosing k is considering the finite-sample breakdown point, denoted
by εn. This is the maximum proportion of arbitrarily extreme observations where an
estimator results in a reasonable value. For more detail see [6,10]. This finite-sample
breakdown point is generally a function of sample size n. The proposed estimator, based
on the subrange, has additional merit because of a positive breakdown point. It is clear
that

_
σ [k] has a positive breakdown point of k/n for k > 0,σ̂[0] has a zero one. Thus, we can

choose k based on the value k/n.
It should be noted that the maximum attainable value of the asymptotic breakdown

point is given as follows. Since the maximum value of k is bn/2c − 1, the maximum
finite-sample breakdown point available is given by

εn =
bn/2c − 1

n
.

Since bn/2c can be expressed by bn/2c = n/2− δ with 0 ≤ δ < 1, we have

εn =
1
2
− δ + 1

n
.

Thus, taking the limit of εn as n→ ∞ , we have the asymptotic breakdown point

ε = lim
n→∞

εn =
1
2

,

which is the maximum attainable asymptotic breakdown point.
It is likely that the RE value tends to decrease as the finite-sample breakdown point

increases. Thus, when we choose k, we need to consider the RE value and the finite-sample
breakdown point as well.

3. The Construction of Control Charts

In this section, we provide the method for incorporating the proposed methods into
constructing the control charts. We use the proposed subrange as an alternative of the
range and standard deviation when there are outliers in the data of Phase I. We provided
the X-chart first, and then the R-chart.

For the case of the X-chart, it is immediately from the central limit theorem that
we have

X− E
(
X
)

SE
(
X
) ∼ N(0, 1),

where X-is the sample mean from a sample of size n, and SE(·) is the standard deviation
from a sample of size n. Solving the below for X(

X− E
(
X
))

/SE
(
X
)
= ±3,

we can construct the CL± 3 · SE control limits.

E
(
X
)
± 3 · SE

(
X
)
= µ± 3σ√

n
.
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Then we have UCL = µ + 3σ√
n , CL = µ, and LCL = µ− 3σ√

n . Since µ and σ are
unknown in practice, we need to estimate them. Suppose that there are m samples of size
n. The most widely used estimator of µ is X where

X =
X1 + X2 + · · ·+ Xm

m
.

The scale σ can be estimated by using the subrange. Let R[k],i be the subrange with
k trims from the ith sample. Then, as shown in (4), R[k],i/d2(n, k) is an unbiased scale
estimator of σ. Thus, it is quite reasonable to use R[k]/d2(n, k) for the scale estimator, where

R[k] =
R[k],1 + R[k],2 + · · ·+ R[k],m

m
.

With the estimators of µ and σ, we have the following control limits:

UCL = X +
3R[k]

d2(n,k)
√

n

CL = X

LCL = X− 3R[k]
d2(n,k)

√
n .

It should be noted that when k = 0, we have R[k] = R and d2(n, k) = d2. The above
control limits then become

UCL = X + 3R
d2
√

n

CL = X
LCL = X− 3R

d2
√

n .

which is the traditional X-chart provided in the quality control literature.
For the case of the R-chart, we briefly reviewed the conventional R-chart and proposed

a new R[l]-chart. Solving the below

R− E(R)
SE(R)

= ±3

for R, we can construct the CL± 3 · SE control limits given by

E(R)± 3 · SE(R) = d2σ± 3d3σ.

Then we have UCL = d2σ + 3d3σ, CL = d2σ and LCL = d2σ− 3d3σ.
Analogous to the above construction, we can calculate the R[l]-chart with the limits

given by
E
(

R[l]

)
± 3SE ·

(
R[l]

)
= d2(n, l)σ± 3d3(n, l)σ

In practice, the scale σ is unknown. Thus, we need to estimate σ using R[k]/d2(n, k),
as above. We then have

UCL = d2(n, l)
R[k]

d2(n,k) + 3d3(n, l)
R[k]

d2(n,k)

CL = d2(n, l)
R[k]

d2(n,k)

LCL = d2(n, l)
R[k]

d2(n,k) − 3d3(n, l)
R[k]

d2(n,k) .
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When l = 0 and k = 0, we have the following limits which are essentially the same
as the conventional R-chart

UCL = R[0] + 3d3(n, 0)
R[0]

d2(n,0)
CL = R[0]

LCL = R[0] − 3d3(n, 0)
R[0]

d2(n,0)

Also, if we select k = l, we can simplify the above R[l]-chart

UCL = R[l] + 3d3(n, l)
R[l]

d2(n,l)
CL = R[l]

LCL = R[l] − 3d3(n, l)
R[l]

d2(n,l)

Then a natural question is how to choose k for the R[l]-chart? The following proposition
provides how to select k for the best performance

Proposition 1. Let X1, X2, · · ·Xn be a random sample from the normal distribution with scale σ,
we then have

Var
(

R[k]/d2(n, k)
)
≥ Var

(
R[k∗ ]/d2(n, k∗)

)
,

where k∗ is the choice of k, RE
(

σ̂[k]

∣∣∣σ̂[0]) in (7), for k = 0, 1, · · · , bn/2c − 1.

Proof of Proposition 1. It is immediately from (5) that we can obtain Var
(

R[k]/d2(n, k)
)

= d3(n, k)2σ2 and Var
(

R[k∗ ]/d2(n, k∗)
)

= d3(n, k∗)2σ2.

Using the above, Var
(

R[k]/d2(n, k)
)

/Var
(

R[k∗ ]/d2(n, k∗)
)

can be formulated as

d3(n, 0)2/d2(n, 0)2

d3(n, k∗)2/d2(n, k∗)2 /
d3(n, 0)2/d2(n, 0)2

d3(n, k)2/d2(n, k)2 .

It is easily seen from (7) that k∗ provides the maximum RE value so that we have

Var
(

R[k]/d2(n, k)
)

/Var
(

R[k∗ ]/d2(n, k∗)
)

= RE
(
_
σ [k∗ ]

∣∣∣_σ [0]

)
/RE

(
_
σ [k]

∣∣∣_σ [0]

)
≥ 1.

Thus, we get Var
(

R[k]/d2(n, k)
)
≥ Var

(
R[k∗ ]/d2(n, k∗)

)
, which completes the proof. �

4. Discussion

As mentioned above, the choice of the trim k∗ is based on the relative efficiency under
different sample sizes. From Table 1, we can see that when the sample size is 18 ≤ n ≤ 31,
the trim k∗ = 1 is the best choice. This means that the subrange is robust in the case
of an outlier in the data, under the trim k∗ when its set to be 1. Given this, the subrange
performs better than the traditional range. However, we also can see that when the sample
size is 18 ≤ n ≤ 31, the largest breakdown point is 1/18 ≈ 5.6%. This breakdown point
of the subrange is much smaller than the MAD is. The proposed subrange is very useful
for constructing a control chart when the data are contaminated in Phase-I. Although the
breakdown point of the subrange is not satisfactory, it is robust under data contamination.

5. Conclusions

In this paper, we proposed a method of estimating the scale estimator using the
subrange. Using this, we can construct the X and R charts, which are widely used in the
manufacturing process. By using the proposed control charts based on the subrange, we
can gain statistical efficiency along with a robustness property.
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We also provided the method of choosing the trim amount of the subrange, in the
sense of gaining more efficiency compared to the conventional range. For the R program
used in the paper, one can refer to the URL. Subrange. Available online: https://github.
com/jin-yuyu/subrange.git (accessed on 1 December 2021). The simulation results are
shown in the Appendix A. Tables A1 and A2 give the unbiasing factors for the sample size
of 50 or less. Tables A3 and A4 give the information on relative efficiency values for the
sample size of 50 or less—in terms of the relative efficiency values.

Note that the subrange has a positive breakdown point, while the breakdown point of
the conventional range is always zero. The proposed subrange in this paper is robust. It
can also be used when the sample size is larger (I.e., greater than 25).

However, for the X chart, the centerline is the sample mean, which is also the sen-
sitivity to outliers. For future research, we suggest using a robust location estimator
(e.g., median and Hodges-Lehmann [43]) to construct the X-chart. As discussed in the
last section, selecting suitable or proper criteria to improve the breakdown may be an
interesting topic.
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Appendix A

Table A1. Unbiasing factor, d2(n, k).

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

2 1.1284
3 1.6926
4 2.0588 0.5940
5 2.3259 0.9900
6 2.5344 1.2835 0.4031
7 2.7044 1.5147 0.7054
8 2.8472 1.7044 0.9456 0.305
9 2.9700 1.8646 1.1439 0.5491

10 3.0775 2.0027 1.3121 0.7515 0.2453
11 3.1729 2.1238 1.4577 0.924 0.4498
12 3.2585 2.2315 1.5857 1.0737 0.6245 0.2052
13 3.3360 2.3282 1.6997 1.2057 0.7767 0.3810
14 3.4068 2.4158 1.8023 1.3235 0.9111 0.5346 0.1763
15 3.4718 2.4959 1.8954 1.4298 1.0314 0.6706 0.3306
16 3.532 2.5695 1.9805 1.5263 1.1400 0.7924 0.4675 0.1546
17 3.5879 2.6376 2.0589 1.6148 1.2389 0.9027 0.5904 0.2920
18 3.6401 2.7008 2.1315 1.6963 1.3296 1.0032 0.7017 0.4155 0.1376
19 3.6890 2.7599 2.1989 1.7717 1.4132 1.0954 0.8033 0.5275 0.2614
20 3.7349 2.8152 2.2619 1.8420 1.4908 1.1806 0.8967 0.6299 0.3739 0.1240
21 3.7783 2.8672 2.3209 1.9076 1.5630 1.2596 0.983 0.7241 0.4768 0.2367
22 3.8194 2.9163 2.3765 1.9692 1.6305 1.3333 1.0631 0.8112 0.5716 0.3399
23 3.8583 2.9627 2.4289 2.0271 1.6939 1.4023 1.1379 0.8922 0.6593 0.4351

https://github.com/jin-yuyu/subrange.git
https://github.com/jin-yuyu/subrange.git
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Table A1. Cont.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

24 3.8953 3.0068 2.4785 2.0818 1.7536 1.4671 1.2080 0.9678 0.7409 0.5233
25 3.9306 3.0486 2.5255 2.1336 1.8100 1.5281 1.2738 1.0387 0.8172 0.6054
26 3.9643 3.0885 2.5702 2.1827 1.8634 1.5858 1.3359 1.1053 0.8887 0.6821
27 3.9965 3.1265 2.6128 2.2294 1.9141 1.6404 1.3945 1.1682 0.9560 0.7541
28 4.0274 3.1629 2.6535 2.2739 1.9623 1.6923 1.4502 1.2277 1.0195 0.8219
29 4.0570 3.1978 2.6924 2.3164 2.0083 1.7417 1.5030 1.2841 1.0796 0.8860
30 4.0855 3.2312 2.7296 2.3571 2.0522 1.7888 1.5533 1.3377 1.1367 0.9466
31 4.1129 3.2633 2.7654 2.3961 2.0942 1.8338 1.6013 1.3888 1.1909 1.0041
32 4.1393 3.2942 2.7997 2.4334 2.1344 1.8768 1.6472 1.4375 1.2426 1.0589
33 4.1648 3.324 2.8327 2.4694 2.173 1.9181 1.6911 1.4841 1.2919 1.1110
34 4.1894 3.3527 2.8646 2.5039 2.2102 1.9577 1.7332 1.5287 1.3391 1.1609
35 4.2132 3.3805 2.8952 2.5372 2.2459 1.9958 1.7736 1.5715 1.3843 1.2085
36 4.2362 3.4072 2.9249 2.5693 2.2803 2.0325 1.8125 1.6126 1.4276 1.2542
37 4.2586 3.4332 2.9535 2.6003 2.3135 2.0678 1.8499 1.6521 1.4693 1.2980
38 4.2802 3.4583 2.9812 2.6303 2.3456 2.1019 1.8860 1.6902 1.5094 1.3402
39 4.3012 3.4826 3.008 2.6593 2.3766 2.1348 1.9208 1.7269 1.548 1.3807
40 4.3216 3.5062 3.0340 2.6874 2.4066 2.1666 1.9544 1.7623 1.5852 1.4198
41 4.3414 3.5292 3.0593 2.7146 2.4356 2.1974 1.9870 1.7965 1.6211 1.4574
42 4.3606 3.5514 3.0838 2.7410 2.4638 2.2273 2.0184 1.8296 1.6558 1.4938
43 4.3794 3.5731 3.1075 2.7666 2.4911 2.2562 2.0489 1.8616 1.6894 1.5290
44 4.3976 3.5941 3.1307 2.7915 2.5176 2.2843 2.0785 1.8927 1.7219 1.5630
45 4.4154 3.6147 3.1532 2.8157 2.5434 2.3115 2.1072 1.9228 1.7535 1.5959
46 4.4328 3.6346 3.1751 2.8392 2.5684 2.3380 2.1350 1.9520 1.7840 1.6278
47 4.4497 3.6541 3.1964 2.8622 2.5928 2.3637 2.1621 1.9804 1.8137 1.6588
48 4.4662 3.6731 3.2172 2.8845 2.6165 2.3888 2.1884 2.0079 1.8425 1.6888
49 4.4824 3.6916 3.2375 2.9062 2.6397 2.4132 2.2140 2.0347 1.8705 1.7180
50 4.4981 3.7097 3.2573 2.9275 2.6622 2.4369 2.2390 2.0608 1.8977 1.7464

Table A2. Unbiasing factor, d3(n, k).

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

2 0.8525
3 0.8884
4 0.8798 0.4990
5 0.8641 0.5685
6 0.848 0.5894 0.3548
7 0.8332 0.5946 0.4245
8 0.8198 0.5936 0.4538 0.2757
9 0.8078 0.5899 0.4672 0.3403

10 0.7971 0.5851 0.4732 0.3715 0.2256
11 0.7873 0.5798 0.4753 0.3884 0.2844
12 0.7785 0.5745 0.4753 0.3979 0.3153 0.191
13 0.7704 0.5692 0.4740 0.4032 0.3335 0.2445
14 0.7630 0.5642 0.4720 0.4060 0.3449 0.2743 0.1656
15 0.7562 0.5593 0.4695 0.4071 0.3520 0.2929 0.2146
16 0.7499 0.5546 0.4669 0.4073 0.3565 0.3050 0.2429 0.1462
17 0.7441 0.5502 0.4641 0.4067 0.3593 0.3133 0.2613 0.1912
18 0.7386 0.5460 0.4613 0.4057 0.3609 0.3189 0.2738 0.2181 0.1309
19 0.7335 0.5420 0.4585 0.4044 0.3617 0.3228 0.2827 0.2360 0.1724
20 0.7287 0.5383 0.4557 0.4029 0.3619 0.3254 0.2890 0.2487 0.1979 0.1185
21 0.7242 0.5346 0.4530 0.4013 0.3617 0.3271 0.2936 0.2578 0.2153 0.1571
22 0.7199 0.5312 0.4503 0.3995 0.3611 0.3282 0.2969 0.2646 0.2278 0.1812
23 0.7159 0.5280 0.4478 0.3978 0.3603 0.3287 0.2993 0.2696 0.2371 0.1980
24 0.7121 0.5248 0.4453 0.3960 0.3594 0.3289 0.3010 0.2735 0.2441 0.2103
25 0.7084 0.5219 0.4428 0.3942 0.3583 0.3288 0.3022 0.2764 0.2495 0.2196
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Table A2. Cont.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

26 0.7050 0.5190 0.4405 0.3924 0.3572 0.3285 0.3029 0.2785 0.2537 0.2267
27 0.7017 0.5163 0.4382 0.3906 0.3560 0.3280 0.3033 0.2801 0.2569 0.2323
28 0.6986 0.5136 0.4360 0.3889 0.3548 0.3274 0.3035 0.2813 0.2595 0.2368
29 0.6956 0.5111 0.4339 0.3872 0.3535 0.3267 0.3035 0.2822 0.2615 0.2403
30 0.6927 0.5087 0.4319 0.3855 0.3523 0.3259 0.3033 0.2827 0.2630 0.2431
31 0.6899 0.5064 0.4299 0.3838 0.3510 0.3250 0.3030 0.2830 0.2641 0.2453
32 0.6873 0.5042 0.4280 0.3822 0.3497 0.3242 0.3025 0.2832 0.2650 0.2471
33 0.6847 0.5020 0.4261 0.3806 0.3484 0.3232 0.3020 0.2832 0.2656 0.2485
34 0.6822 0.4999 0.4243 0.3791 0.3472 0.3223 0.3015 0.2831 0.2661 0.2497
35 0.6799 0.4979 0.4226 0.3776 0.3460 0.3214 0.3009 0.2829 0.2663 0.2505
36 0.6776 0.4960 0.4209 0.3761 0.3447 0.3204 0.3002 0.2826 0.2665 0.2512
37 0.6754 0.4941 0.4192 0.3747 0.3435 0.3194 0.2995 0.2822 0.2665 0.2517
38 0.6733 0.4923 0.4176 0.3733 0.3423 0.3185 0.2988 0.2818 0.2664 0.2521
39 0.6712 0.4905 0.4161 0.3720 0.3412 0.3175 0.2981 0.2813 0.2663 0.2523
40 0.6692 0.4888 0.4146 0.3706 0.3400 0.3166 0.2974 0.2808 0.2661 0.2524
41 0.6673 0.4872 0.4131 0.3694 0.3389 0.3156 0.2966 0.2803 0.2658 0.2524
42 0.6654 0.4856 0.4117 0.3681 0.3378 0.3147 0.2959 0.2798 0.2655 0.2524
43 0.6636 0.4840 0.4103 0.3669 0.3367 0.3137 0.2951 0.2792 0.2652 0.2523
44 0.6618 0.4825 0.4090 0.3657 0.3356 0.3128 0.2943 0.2786 0.2648 0.2522
45 0.6601 0.4810 0.4077 0.3645 0.3346 0.3119 0.2936 0.2780 0.2644 0.2520
46 0.6584 0.4796 0.4064 0.3633 0.3336 0.3110 0.2928 0.2774 0.2639 0.2517
47 0.6568 0.4782 0.4051 0.3622 0.3326 0.3101 0.2921 0.2768 0.2635 0.2514
48 0.6552 0.4768 0.4039 0.3611 0.3316 0.3093 0.2913 0.2761 0.2630 0.2511
49 0.6536 0.4755 0.4027 0.3600 0.3306 0.3084 0.2906 0.2756 0.2625 0.2508
50 0.6521 0.4742 0.4016 0.3590 0.3297 0.3076 0.2898 0.2750 0.2620 0.2505

Table A3. Relative efficiency, RE
(
_
σ [k]

∣∣∣_σ [0]

)
× 100%.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

2 100
3 100
4 100 25.9
5 100 41.9
6 100 53.1 14.5
7 100 61.6 26.2
8 100 68.4 36.0 10.1
9 100 73.9 44.3 19.3

10 100 78.6 51.6 27.5 7.9
11 100 82.6 57.9 34.9 15.4
12 100 86.1 63.5 41.6 22.4 6.6
13 100 89.2 68.6 47.7 28.9 13.0
14 100 92.0 73.2 53.3 35.0 19.1 5.7
15 100 94.5 77.3 58.5 40.7 24.9 11.3
16 100 96.7 81.1 63.3 46.1 30.4 16.7 5.0
17 100 98.8 84.6 67.8 51.1 35.7 22.0 10.0
18 100 100.7 87.9 72.0 55.9 40.7 27.0 14.9 4.5
19 100 102.5 90.9 75.9 60.3 45.5 31.9 19.7 9.1
20 100 104.1 93.8 79.6 64.6 50.1 36.6 24.4 13.6 4.2
21 100 105.7 96.4 83.0 68.6 54.5 41.2 29.0 18.0 8.3
22 100 107.1 98.9 86.3 72.4 58.7 45.5 33.4 22.4 12.5
23 100 108.4 101.3 89.4 76.1 62.7 49.8 37.7 26.6 16.6
24 100 109.7 103.5 92.4 79.6 66.5 53.8 41.9 30.8 20.7
25 100 110.9 105.7 95.2 82.9 70.2 57.7 45.9 34.8 24.7
26 100 112.0 107.7 97.9 86.1 73.7 61.5 49.8 38.8 28.6
27 100 113.1 109.6 100.4 89.1 77.1 65.2 53.6 42.7 32.5
28 100 114.1 111.4 102.9 92.0 80.4 68.7 57.3 46.4 36.3
29 100 115.0 113.2 105.2 94.8 83.6 72.1 60.9 50.1 40.0
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Table A3. Cont.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

30 100 116.0 114.8 107.5 97.6 86.6 75.4 64.4 53.7 43.6
31 100 116.8 116.4 109.6 100.2 89.6 78.6 67.7 57.2 47.1
32 100 117.7 118.0 111.7 102.7 92.4 81.7 71.0 60.6 50.6
33 100 118.5 119.4 113.7 105.1 95.2 84.7 74.2 63.9 54.0
34 100 119.3 120.9 115.7 107.5 97.8 87.6 77.3 67.2 57.3
35 100 120.0 122.2 117.6 109.7 100.4 90.5 80.4 70.3 60.6
36 100 120.7 123.6 119.4 111.9 103.0 93.3 83.3 73.4 63.8
37 100 121.4 124.8 121.1 114.1 105.4 95.9 86.2 76.5 66.9
38 100 122.1 126.1 122.8 116.2 107.8 98.6 89.0 79.4 69.9
39 100 122.7 127.3 124.5 118.2 110.1 101.1 91.7 82.3 72.9
40 100 123.4 128.4 126.1 120.1 112.3 103.6 94.4 85.1 75.9
41 100 124.0 129.5 127.6 122.0 114.5 106.0 97.0 87.9 78.7
42 100 124.6 130.6 129.1 123.9 116.6 108.4 99.6 90.6 81.5
43 100 125.1 131.7 130.6 125.7 118.7 110.7 102.1 93.2 84.3
44 100 125.7 132.7 132.0 127.4 120.7 112.9 104.5 95.8 87.0
45 100 126.2 133.7 133.4 129.1 122.7 115.1 106.9 98.3 89.7
46 100 126.7 134.7 134.7 130.8 124.7 117.3 109.2 100.8 92.3
47 100 127.2 135.6 136.0 132.4 126.5 119.4 111.5 103.2 94.8
48 100 127.7 136.5 137.3 134.0 128.4 121.4 113.8 105.6 97.3
49 100 128.2 137.4 138.6 135.5 130.2 123.5 115.9 108.0 99.8
50 100 128.6 138.3 139.8 137.1 131.9 125.4 118.1 110.3 102.2

Table 4. Relative efficiency, RE
(
_
σ [k]

∣∣∣Sn/c4(n)
)
× 100%.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

2 100.00
3 99.19
4 97.52 25.24
5 95.48 39.97
6 93.30 49.55 13.48
7 91.12 56.14 23.88
8 89.00 60.84 32.05 9.03
9 86.95 64.27 38.56 16.75

10 84.99 66.80 43.83 23.33 6.74
11 83.13 68.67 48.14 28.97 12.80
12 81.36 70.07 51.69 33.82 18.21 5.36
13 79.68 71.09 54.65 38.00 23.04 10.32
14 78.09 71.83 57.12 41.64 27.34 14.88 4.44
15 76.57 72.35 59.20 44.80 31.19 19.05 8.62
16 75.13 72.69 60.95 47.57 34.63 22.86 12.54 3.78
17 73.76 72.89 62.44 50.00 37.71 26.34 16.19 7.40
18 72.46 72.98 63.70 52.14 40.48 29.52 19.58 10.83 3.30
19 71.21 72.98 64.76 54.03 42.97 32.42 22.73 14.06 6.47
20 70.02 72.91 65.67 55.70 45.23 35.09 25.65 17.10 9.51 2.92
21 68.88 72.78 66.43 57.19 47.26 37.53 28.36 19.96 12.41 5.75
22 67.79 72.59 67.08 58.51 49.11 39.76 30.88 22.64 15.16 8.48
23 66.75 72.37 67.62 59.68 50.78 41.82 33.21 25.16 17.77 11.09
24 65.75 72.11 68.07 60.73 52.31 43.72 35.38 27.52 20.24 13.60
25 64.78 71.82 68.45 61.66 53.69 45.46 37.40 29.73 22.57 15.99
26 63.86 71.52 68.76 62.49 54.96 47.07 39.28 31.81 24.78 18.28
27 62.97 71.19 69.00 63.24 56.11 48.56 41.03 33.76 26.87 20.45
28 62.11 70.86 69.20 63.90 57.17 49.94 42.66 35.59 28.85 22.52
29 61.29 70.51 69.35 64.49 58.13 51.21 44.19 37.31 30.72 24.49
30 60.49 70.15 69.46 65.01 59.01 52.39 45.61 38.93 32.49 26.36
31 59.72 69.78 69.53 65.48 59.82 53.49 46.94 40.45 34.16 28.15
32 58.97 69.41 69.57 65.90 60.56 54.50 48.19 41.89 35.74 29.85
33 58.25 69.03 69.58 66.26 61.24 55.44 49.36 43.24 37.24 31.46
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Table A4. Cont.

n k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

34 57.56 68.65 69.57 66.59 61.86 56.32 50.45 44.51 38.66 33.00
35 56.88 68.27 69.53 66.87 62.43 57.13 51.48 45.71 40.01 34.46
36 56.23 67.89 69.48 67.12 62.95 57.89 52.44 46.85 41.29 35.86
37 55.60 67.51 69.41 67.34 63.43 58.60 53.34 47.92 42.50 37.19
38 54.98 67.13 69.32 67.53 63.86 59.26 54.19 48.93 43.66 38.46
39 54.38 66.76 69.21 67.69 64.26 59.87 54.99 49.89 44.75 39.67
40 53.80 66.38 69.10 67.82 64.63 60.44 55.74 50.80 45.79 40.82
41 53.24 66.00 68.97 67.94 64.96 60.97 56.44 51.66 46.78 41.92
42 52.69 65.63 68.83 68.03 65.27 61.46 57.11 52.47 47.72 42.97
43 52.16 65.26 68.69 68.10 65.54 61.93 57.73 53.24 48.61 43.97
44 51.64 64.89 68.53 68.16 65.80 62.35 58.32 53.96 49.47 44.93
45 51.14 64.53 68.37 68.20 66.03 62.75 58.87 54.66 50.28 45.85
46 50.64 64.17 68.20 68.22 66.23 63.13 59.39 55.31 51.05 46.72
47 50.16 63.81 68.02 68.24 66.42 63.48 59.89 55.93 51.79 47.56
48 49.69 63.46 67.84 68.23 66.59 63.80 60.35 56.55 52.49 48.36
49 49.24 63.11 67.66 68.22 66.74 64.10 60.79 57.08 53.16 49.13
50 48.79 62.76 67.47 68.20 66.87 64.38 61.20 57.61 53.80 49.86
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