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Abstract: In semiconductor manufacturing, fault detection is an important method for monitoring
equipment condition and examining the potential causes of a fault. Vacuum leakage is considered
one of the major faults that can occur in semiconductor processing. An unnecessary O2 and N2

mixture, a major component of the atmosphere, creates unexpected process results and hence drops
in yield. Vacuum leak detection systems that are currently available in the vacuum industry are based
on helium mass spectrometers. They are used for detecting the vacuum leakage at the sole isolation
condition where the chamber is fully pumped but cannot be used for in situ detection while the
process is ongoing in the chamber. In this article, a chamber vacuum leak detection method named
Index Regression and Correction (IRC) is presented, utilizing common data which were gathered
during normal chamber operation. This method was developed by analyzing a simple list of data,
such as pressure, the temperature of the chamber body, and the position of the auto pressure control
(APC), to detect any leakages in the vacuum chamber. The proposed method was experimentally
verified and the results showed a high accuracy of up to 97% when a vacuum leak was initiated
in the chamber. The proposed method is expected to improve the process yield of the chamber by
detecting even small vacuum leakages at very early stages of the process.

Keywords: vacuum leak detection; index regression; vacuum chamber; semiconductor equipment

1. Introduction

Over the past few decades, the worldwide semiconductor industry has maintained an
average growth of 15% per year. This steady growth is the result of a continuous reduction
in the cost per function of 25–30% per year [1–3].

Semiconductor manufacturing involves a highly complex and lengthy wafer fabrica-
tion process, with 300–500 process steps and a large number of interrelated variables [4–6].
To obtain substantial benefits, the semiconductor industry focuses on features related to
manufacturing technology that are required in order to maintain the high reliability and
effectiveness of the manufacturing process, such as reducing gate length, increasing wafer
size and improving yield [7–9]. However, manufacturing technology has already reached
its limit. Thus, it has been recognized that factory productivity should also be improved in
order to maintain growth while reducing the production cost [10,11]. In semiconductor
manufacturing, some process steps need to be performed continuously, without any in-
terruption in the process flow, such as etching, ashing, deposition, and lithography. The
sequence of continuous steps is called a ”run” and is performed on individual manufactur-
ing equipment. Even though a fault may occur during any step of the run, it can only be
detected after the entire run has been completed by performing wafer metrology [12–14].

As a result, data-driven fault detection has become a significant topic in the semicon-
ductor industry and is expected to provide an efficient method for predictive maintenance
that allows companies to save time and money [15–20]. Vacuum leakage is considered to
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be one of the major drawbacks in semiconductor processing and its final yield. An unnec-
essary O2 and N2 mixture, a major component of the atmosphere, creates unanticipated
process outcomes and, consequently, drops in yield [21–23].

In this article, a new chamber vacuum leak detection method named index regression
and correction is presented, utilizing common data gathered during normal chamber
operation. This method was developed by analyzing a simple list of data, such as pressure,
the temperature of the chamber body, and the position of the APC, to detect any changes
in the sustained vacuum of the vacuum chamber system.

The remainder of this paper is organized as follows. Section 2 introduces a review
of related work in real-word leak detection methods and data-driven methods. Section 3
presents the experimental setting and data acquisition from a real semiconductor facility.
Section 4 presents the vacuum leak modeling by applying the ideal gas equation. Section 5
presents proof of the Section 4 modeling with experimental results. Section 6 introduces
the proposed new leak detection method named IRC. Section 7 presents the experimental
results using the actual process data, comparing our proposed method with the Auto
Regressive Integrated Moving Average (ARIMA) model. Lastly, Section 8 concludes the
paper by listing its contributions and discussing future research directions.

2. Related Work

Leak detection equipment has been developed over the past few decades following
the ever-increasing demands of the industry. The current real-world vacuum leak detection
method in the semiconductor industry is based on mass spectrometers. In theory, every
kind of mass spectrometer can be used for leak detection. In many situations, it is more
practical to use mass spectrometers that are devoted to leak detection by using helium
tracer gas [24,25], which require the chamber to be in an isolated state with full pumping
and make it unsuitable for in situ vacuum leak detection during the ongoing process [26].
Moreover, the cost of the He vacuum leak detector and He gas is too high, which makes
the whole detection system not cost effective. Therefore, it is important and necessary to
create a leak detection system that does not require high cost measurement tools, such as a
helium leak detector.

To overcome this problem, data-driven anomaly detection has been extensively stud-
ied. Wise and Gallagher proposed a partial least squares (PLS) method [27]. PLS is a
regression model between predictors and responses in a reduced feature space using
orthogonal latent vectors. PLS studies orthogonal latent vectors that best explain the
covariance between responses and predictors. The latent vectors serve as new predictors
and regress the responses on these new predictors. In fault detection, the tool state features
are predictors and the wafer class is the response. Ison et al. [28] proposed a decision tree
classification model to detect faults in dry etch equipment. The model was built from the
five sensor signal data. Goodlin et al. [29] proposed to build a specific control chart for
detecting specific types of faults. They collected tool state data directly from the etcher.
These data consisted of 19 variables. Spitzlsperger et al. [30] proposed a technique based
on the statistical method. They adapted the multivariate control chart method to maintain
changes in the mean and standard deviation coefficients by remodeling the technique.

3. Experimental Details and Data Acquisition

Figure 1 shows the schematic description for the process module of 300 mm dry asher
(SUPRA, PSK). The process module consisted of the plasma sources, a chamber, and a
vacuum exhauster. The PSK dry ashing tool contained two plasma sources in one chamber
called the peanut chamber, which shared a supply of gas and a vacuum exhaust line for
these two sources. Thus, each wafer was processed under the same conditions. The plasma
source used was ferrite core inductively coupled plasma (FCIP R3, MKS). The chamber
body was made of aluminum. The maximum temperature set point for the aluminum
heater chucks was 350 ◦C. The chamber pressure was monitored using a capacitance gauge
(MKS). The chamber pressure was controlled using a butterfly-type automatic pressure
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control valve (MKS), the open ratio range of which lies between 0 (closed) and 100,000
(fully open) steps.
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Figure 1. Schematic of the process chamber module.

The chamber body temperature was monitored using a screw-type thermal sensor
(Figure 2, PSK). In order to minimize the influence of outside air, PSK developed a screw
type TC (thermocouple) sensor which uses K-type thermocouples. The temperature mea-
surement point was about 1.5 cm from the chamber body surface. Its temperature measur-
ing range was from−200 ◦C to 1372 ◦C. The test error was±1 ◦C in−100–1372 ◦C, without
considering the error of the thermocouple. In order to produce a controlled artificial vac-
uum leak, a micro vacuum leak control valve was installed on the gas inlet (vacuum leak
valve series 590, MKS). The control vacuum leak rate was from 10 mT/m to 1000 mT/m.
During the process, the plasma source power was fixed at 4400 W and the pressure to
1.4 Torr. The total gas (O2, N2) flow was 14,000 sccm. The chuck temperature was set to
250 ◦C.

All generated sensor data were recorded by the central controller. The APC position
value range was from 0 to 100,000 and the sampling time was 100 ms. The chamber body
temperature data were recorded to one decimal place and the sampling time interval was
set to 1 s. The minimum sampling time of the temperature sensor controller was 1 s. High
performance controllers were not applied because it would take more than 10 s for the
chamber temperature to change by 0.1 ◦C.
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Data Set Description

The data set was obtained from a real semiconductor ashing process. The process
consisted of seven steps, including pumping, gas flow, pressure stabilization, plasma
ignition, ashing, over-ashing, and the vent of the chamber. Table 1 presents the process
values for the experiment condition.

Table 1. Process values.

Condition Value

O2–N2 total gas flow rate (sccm) 14,000
Source power (W) 4400
Pressure (mTorr) 1500

Chuck Temperature (◦C) 250
Main process time (s) 20

The state variable identification (SVID) data collected from the process chamber were
as follows: gas1 monitor, gas2 monitor, source power1, source power2, pressure, APC
position, chuck Temp.1, chuck Temp.2, and chamber body temp. In this study, only the APC
position and chamber body temperature were used. The reason for this will be covered
in Sections 4 and 5. Two data sets were collected; the first data set included 472 normal
and 48 leaks and the second data set included 795 normal and 44 leaks. These two data
sets were used to study the temperature and APC position relationship in Section 5 and to
evaluate the performance of the proposed method in Section 7.

4. Modeling of Process Chamber Vacuum Leakage

The presented in situ vacuum leak detection method follows ideal gas Equation (1)
characteristics.

PV = nRT (1)

Each variable in the equation can be related to the chamber parameters, where: P is
the chamber pressure; V is the chamber volume; n is the amount of substance of gas; R is
the ideal or universal gas constant; and T is the temperature of the gas. The volume (V)
and the gas constant (R) are regarded as constants, and the pressure (P), gas amount (n),
and temperature (T) are considered as variables.

P ∞ nT (2)

Note that P is proportional to n and T (2). In summary, an increase in gas input and
chamber temperature causes a rise in pressure inside the process chamber. Based on this
relationship, the following hypotheses were drawn:

Hypothesis 1 (H1). When the chamber body temperature increases, the APC position value
increases;
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Hypothesis 2 (H2). When a vacuum leak occurs, the APC position value increases;

Hypothesis 3 (H3). When a vacuum leak occurs, the chamber body temperature does not change.

In detail, the APC changes its position value by reacting to the current pressure of the
chamber to maintain a certain target value. When the chamber pressure rises, due to an
increase in chamber body temperature or due to an increase in outside air caused by the
chamber vacuum leak, the APC position increases (becomes more open). On the contrary,
when the chamber pressure decreases, due to a decrease in chamber body temperature
or eliminated chamber vacuum leaks, the APC position decreases (becomes more closed).
In addition, the outside air caused by the vacuum leak is considerably smaller than the
volume of the chamber and amount of supply gas, meaning that the temperature of the
chamber body will be maintained without any changes. The assumption was confirmed
through a relationship test between the temperature and APC position.

5. Test of Relationship between Temperature and APC Position

In this section, a simple test with two parameters (APC position and body temperature)
empirically proves the proposed conception to be valid. In the equipment idle status, a
total of 520 process runs were performed using same values. In those, 472 normal process
runs were conducted and 48 faults (vacuum leak valve open) were reproduced. The test
results are shown in Figure 3.
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Figure 3. Test results of relationship between chamber body temperature and APC position.

The blue circles indicate the APC position as single point values of the stable state
before plasma ignition begins, so the obtained values in that section were not affected by
other factors of the plasma process. The orange circles indicate the APC position as single
point values of the disturbed state where the vacuum leak valve was opened. The red
circles belong to the chamber body temperature that was acquired in parallel to the APC
position values. The chamber body temperature was keep maintained at 60 ◦C in the idle
state of equipment where the heater chuck temp was 250 ◦C. As the process continued, the
thermal energy generated from the plasma raised the chamber body temperature. The gas
supplied to the chamber received thermal energy from the chamber body and the pressure
increased. The test results below prove the assumption to be true.

Proof of Hypothesis 1 (H1). The APC position opens (APC position value increases) more
to reduce the elevated pressure. For normal overall data, the correlation coefficient between
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the APC position and the chamber body temperature is 9.7 with a p-value of 2.37 × 10−23.
These results indicate that there is a strong positive correlation. �

Proof of Hypothesis 2 (H2). When the body temperature is saturated, the APC position
value is also saturated. When the vacuum leak valve opened at the end of the test (vacuum
leak rate: 300 mT/m), the APC position value was increased. The t-test result for the APC
position normal and leak data is −13.0, with a p-value of 4.0 × 10−22, at the end of the data
(the number of normal data is 44 and leak data is 44). These results indicate that there is a
significant mean difference between normal runs and leak runs. �

Proof of Hypothesis 3 (H3). There is no change in the chamber body temperature at the
same time as when vacuum leak valve is opened. At the end of the data (leak area, number
of data is 44), the correlation coefficient between the APC position and chamber body
temperature is 0.13 with a p-value of 8.34 × 10−5. These results indicate that there is no
correlation. �

The relationship between the chamber body temperature and changes in the APC
position during a vacuum leak occurrence was confirmed. Based on this relationship, a
sequential check list was developed for vacuum leak detection as shown in Figure 4.
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6. Index Regression and Correction

The sensor values of the semiconductor equipment have more deviations, even if the
same process is performed under the influence of temperature, humidity, and degradation.
Without solving this problem, the prediction accuracy cannot be improved. This section
describes how to create an APC temperature index table and correct the error in order to
achieve accurate results.

6.1. APC Temperature Index Table

The APC temperature index table was developed so that it can predict the APC posi-
tion Y from chamber body temperature T. From the previous test results, the relationship
between the two quantities is inferred as:

Ŷ = α0 + α1Ti, i = 1, . . . , 472 (3)

where α0 and α1 are estimated by the least square method:

α0 = Ŷ− α1T (4)

α1 =
∑i=1(yi − y)

(
Ti − T

)
∑i=1

(
Ti − T

)2 (5)

The calculated coefficient α1 between the chamber body temperature and APC value
was 11.76 and the intercept α0 was 30,000.68. The temperature and APC data are plotted
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on the T-Y axis, respectively, as shown in Figure 5. If there is more than one APC value
accumulated from the same chamber body temperature, then the average value is used as
the index value, which is indicated by red circles in Figure 5 and in Table 2. However, it is
inevitable that the use of averages as the index values implies that the prediction deviates
further from the actual APC position value. In order to improve this error, the error update
method of the Kalman filter is implemented.
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Table 2. A part of the APC–chamber body temperature table (33 of 472).

Temperature
[◦C]

APC
Position

Temperature
[◦C]

APC
Position

Temperature
[◦C]

APC
Position

67.8 30,726 74.5 30,880 81.9 30,964
68.4 30,786 75.3 30,887 82.5 30,965
68.8 30,798 76 30,910 83 30,965
69.3 30,804 76.7 30,916 83.5 30,977
69.9 30,824 77.4 30,920 84.1 30,989
70.5 30,836 78.1 30,929 84.6 30,995
71.1 30,848 78.8 30,950 85 31,000
71.8 30,867 79.4 30,940 85.5 31,010
72.5 30,870 80.1 30,945 85.9 31,005
73.2 30,877 80.7 30,960 86.4 31,010
73.9 30,880 81.3 30,955 86.8 31,025
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6.2. Correction: Error Update
6.2.1. Kalman Filter

The filter is named after Rudolf E. Kalman (19 May 1930–2 July 2016). In 1960, Kalman
published his famous paper describing a recursive solution to the discrete data linear
filtering problem. The Kalman filter has been widely applied in fault detection [31–38].
Chinniah et al. [39] showed that the bulk modulus and the viscous damping coefficient
of a hydrostatic actuation system could be correctly estimated, in sequence, using EKF.
Liniger et al. [40] showed the feasibility and advantage of applying an EKF-based algorithm
that describes the development and application of a model-based scheme for detecting the
early signs of coil failure in solenoid valves over other existing techniques. Additionally, the
Kalman filter provides a prediction of the future system state, based on the past estimations.
The Kalman filter algorithm consists of two stages: prediction and update. Note that the
terms “prediction” and “update” are often called “propagation” and “correction” [41–43].
The predicted state estimate is evolved from the updated previous state estimate. These
two terms form a loop with each other and make predictions by reflecting on previous
prediction errors. The update term has an error value between the measured value and the
predicted value. Therefore, it is unnecessary to hold the entire past data, which guarantees
faster operation and makes it suitable for real-time time series prediction.

A prediction method was developed to reduce errors by applying the prediction–
update loop idea of the Kalman filter.

6.2.2. Correction

Predictions and updates can be expressed as equations, as follows:

Ŷ′ = β · Ŷ + (1− β)E, (6)

E = γŶ′t−1 + (1− γ)Mt−1. (7)

where Ŷ′ is a re-estimated value for the APC position; Ŷ is obtained from (3); E is a
correction of the previous prediction; M is a measured value of the APC position; α is the
least square estimate in (4) and (5); and β and γ are the hyper parameters of a gain that
is set between 0 and 1, respectively. When the updated term is compensated for in the
next prediction, the error of the table can be reduced by the following arguments based
on equipment characteristics. If the equipment is in its normal state, the surrounding
process APC value has a similar value to the current process APC value. The chamber body
temperature is gradually changed. Therefore, the error between the present measurement
and the table error is reflected in the next prediction, allowing the error contained in the
table to be reduced.

6.3. Evaluation Metrics

Fault detection is a binary classification problem, in which we predict whether the
process could be a leak or normal. Therefore, accuracy, precision, recall and F1 score were
used to measure the performance of the proposed IRC method. The computation methods
of these metrics are given in Table 3.

Table 3. Classification matrix for predicting leak or normal cases.

Predicted Class

A
ct

ua
l

C
la

ss

Class = 1 (Leak) Class = −1 (Normal)
Class = 1 True Positive (TP) False Negative (FN)

Class = −1 False Positive (FP) Ture Negative (TN)

The accuracy is used to evaluate the correctly predicted samples among the whole
data set. The recall or sensitivity is the ratio of correctly predicted samples to the true
positive samples. The precision is the proportion of correctly predicted samples out of the
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predicted positive samples. The F1 score can be utilized as an overall metric by integrating
the recall and precision. The accuracy is a ratio of correctly predicted observations to
the total observations, which is the most intuitive performance measure. However, the
accuracy is not a proper metric due to the severe class imbalance problem in this domain
where all faulty processes can be misclassified as a very high accuracy. Thus, we reported
precision, recall, and F1 score in addition to the accuracy. The accuracy, precision, recall,
and F1 score are calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 score =
2× Precision× Recall

Precision + Recall
(11)

7. Results
7.1. Effect of Correction

Figure 6 shows the plots for the measured data (actual data) and predicted values.
Figure 6a is the result graph without using the update, whereas Figure 6b is the result after
using the update. The former demonstrates a larger prediction error compared with the
latter case where the update is employed. The bottom plot shows that the predicted values
are closer to the measurement data. The results demonstrate that the update is effective in
reducing the error.

7.2. Accuracy

The performance test for finding the effectiveness of the vacuum leak detection method
proposed in this paper was conducted as follows. In total, 500 consecutive training runs
were followed by test runs with and without vacuum leaks (295 and 44 runs, respectively).
For performance comparison, the performance index was obtained using the IRC, IRC (no
update), and ARIMA. The ARIMA model is one of the widely used statistical methods
for predicting time series data. ARIMA, short for ”Auto Regressive Integrated Moving
Average”, is actually a class of models that ”explain” a given time series based on its own
past values—that is, its own lags and the lagged forecast errors—meaning that an equation
can be used to forecast future values [44]. The ARIMA model was adopted for performance
comparison because the methods proposed in this study had similar considerations for
past data and forecast errors. The best condition result for each parameter was extracted
and used from the final results sequence. The best gain of the IRC method was β = 0.5
and γ = 0.6. For the IRC that did not use the update, the gains were set to β = 1 and γ = 1.
The ARIMA model used best order (1,1,0). The test results are shown in Table 4. The F1
score is the harmonic mean of the precision and recall, where it reaches its best value at
1 (perfect precision and recall) and worst value at 0. Therefore, the F1 score is close to 1
when both the recall and precision are high. The accuracy of the IRC model was 0.97 and
the F1 score was 0.92. In the performance comparison experiment, the IRC method had the
best performance. In the case of the IRC model without using the update, 100% of vacuum
leaks were detected but the vacuum leak was misdiagnosed as leaks 29 times as opposed
to 4 times, and the equipment had to be checked 25 more times than when the update
was used. On the other hand, the proposed model misdiagnosed three out of all vacuum
leaks as normal. The ARIMA model test results showed that the vacuum leak detection
was excellent, but there were 108 type 1 errors, which judged normal as a vacuum leak,
showing a low accuracy of 66%. The root cause of the large error count in the ARIMA
model can be attributed to the non-periodicity of the data gathered in the facility.
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Table 4. Results of the scores for each method.

IRC IRC
(No Correction) ARIMA

Accuracy 0.97 0.91 0.66
Recall 0.93 1.00 0.84

Precision 0.91 0.60 0.25
F1 score 0.92 0.75 0.39

8. Conclusions

To classify the vacuum leak, the IRC method using an APC–temp table and error
update was proposed. As a result of the accuracy comparison evaluation, the excellent
performance was confirmed with an accuracy of 0.97 and an F1 score of 0.92. The IRC
method was effective in classifying abnormalities by predicting the time series data of the
semiconductor facility sensors. For future research, it is necessary to further discover key
parameters and improve accuracy through multivariate analysis.
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