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Abstract: In this paper, we compare the performance of three different folding models when they are
applied to three different map folding settings. Precisely, the three folding models include the simple
folding model, the simple folding–unfolding model, and the general folding model. The different
map folding settings are discussed by comparing different folded states, i.e., different overlapping
orders on the set of the squares of 1 × n maps, the squares of m × n maps, and the squares lying
on the boundary of m × n maps. These folding models are abstracts of manual works and robotics.
We clarify the relationship between their reachable final folded states under different settings and
give proof of all the inclusion relationships between every two of these sets. In addition, there are
nine distinct problems with the three folding models applied to three folding settings. We give the
optimal linear time solutions to all the unsolved ones: the valid total overlapping order problems of
1 × n maps, m × n maps, as well as the valid boundary overlapping order problems of m × n maps
with the three different folding models. Our work gives the conclusion of the research field where
the folding models and the overlapping orders of map folding are concerned.

Keywords: folding models; robotics; overlapping order

1. Introduction

Problems in the field of origami are becoming more and more popular because of their
applicability in robotics and computational modeling, especially the origamis whose crease
patterns (comprising all the folding line segments and their intersections) are relatively
simple. Some examples of how they have been applied in robotics manufacturing and
moving paths are proposed in [1–4]. In this paper, we mainly focus on the origamis with
grid patterns as their crease patterns, which are called map folding. We investigate different
variations of map folding problems with three folding models. These models are the
general folding, the simple folding, and the simple folding–unfolding. The general folding is
an abstract of manual works, while the latter two are abstracts of the folding patterns
which robots can manage. By comparing the performance of these folding models in
different folding problems, our conclusion provides an important reference for applying
these folding models to robotics manufacturing and computational modeling.

To introduce the topic of this research, we present the terminologies at first. Precisely,
an m × n map is a rectangle sheet with m rows and n columns composed of m × n congruent
squares. When m equals 1, the map reduces to one dimension and is usually represented
by a line segment with segments in unit length representing squares of the map. The edges
of the squares not located at the boundary of the map are called creases. They together
comprise a grid pattern as the crease pattern of the map. Two squares sharing the same
crease are called a pair of neighbor squares. A complete folding sequence of the map indicates
the sequence of folds that fold the map to the shape of a unit square on the plane. Every
single square becomes a unique layer in the folded state. In any partly or completely
flat-folded state, we say a pair of squares whose surfaces touch each other are adjacent. The
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overlapping orders refer to the orders given onto the set of all the squares of the map (total
orders) or a subset consisting of only the squares aligning on the boundary of the map
(boundary orders, illustrated as the shadowed squares in Figure 1a. If such an input order
corresponds to the order of these squares aligning from bottom to top in a practical folded
state of the map, then it is said to be valid.
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Figure 1. (a) A map is folded into m × n square layers. The overlapping order of the boundary squares in the folded state is
given. (b) An example of simple fold and unfold.

In this paper, the capability of three folding models: the general folding, the (some-layers)
simple folding, and the (some-layers) simple folding–unfolding, are compared in three variations
of the map folding problem, which are referred to as valid overlapping order problems in this
paper: valid total overlapping order problem of 1 × n maps, valid total overlapping order problem
of m × n maps, and valid boundary overlapping order problem of m × n maps. For conciseness,
in the following, these valid overlapping order problems are referred to as 1D VOP, Total
VOP, and Boundary VOP, respectively. Their corresponding decision problems concern the
decisions on the validity of input overlapping orders.

The general folding model uses general folds with only the practical restrictions of the
paper itself, namely, no tearing, stretching, or penetrating (self-intersection). Instead, the
simple folding model uses only simple folds while the simple folding–unfolding model
comprises both simple folds and its reverses operation, simple unfolds. Both simple folds
and unfolds are always applied simultaneously on some top or bottom layers along a single
line (crease line) and satisfying that the next state is also flat, as illustrated in Figure 1b.
Every simple fold and unfold can be indicated by a set of creases lines.

We will show that although the three folding models have the same reachability of the
overlapping order in 1D VOP, their reachable valid overlapping orders in both Total VOP
and Boundary VOP are in strict inclusion relations. A conclusion of our results is given
in Table 1, where A, B, C with different indexes indicate the sets of reachable overlapping
orders. Except for the proved equivalence on the performance between the general folding
model and the simple folding–unfolding model in 1D VOP [5], all the other results are
proposed for the first time. Furthermore, to complete the solutions of all these decision
problems we listed, in this paper, we also give two linear-time solutions to two unsolved
problems: one to the decision problem of Total VOP with the simple folding model, the
other to the decision problem of Boundary VOP with the general folding model.

Table 1. The results of three folding models in three overlapping order problems.

Problems Simple Folding Simple Folding–Unfolding General Folding

1D VOP A = A = A
Total VOP B1 ( B2 ( B3

Boundary VOP C1 ( C2 ( C3

Existing studies have neither investigated the relationship between different folding
models nor considered these folding models under different problem settings. However, to
both practical applications and theoretical studies, it is necessary to clarify the performances
of these folding models, their distinct advantage and disadvantage when putting them
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into different settings, especially when applying them to robotic uses, such as the example
given in [6]. To make up for the deficiency of existing studies, in this paper, we combine
the three different folding models with three different problem settings. Our conclusion
provides a comprehensive, all-sided, and detailed analysis of the folding models.

2. Preliminaries and Terminology

Map folding concerns the flat folding of special grid patterns. More precisely, the
original map folding problem proposed by Jack Edmonds in 1997 asks the computational
complexity when deciding the flat-foldability of a regular grid pattern of size m × n with a
Mountain-Valley assignment (MV assignment). An MV assignment is a constraint description
over the folding direction of every crease as either a mountain (“M”, denoted by the
red solid-line segments) or a valley (“V”, denoted by a blue dashed-line segment). As
a problem actually not as trivial as it intuitively seems, it remains unsolved for almost
40 years until today. A simple pattern which is locally flat-foldable at every vertex (which
means, every small neighborhood of its vertices is foldable) but not globally flat-foldable is
illustrated in Figure 2a to exemplify this point.
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For general patterns, the existence of a flat-folded state and the existence of general
folding progress leading to the state is proven to be equivalent [7]. Thus, the flat-foldability,
i.e., whether a given crease pattern (with or without a Mountain-Valley assignment) can be
flat-folded or not, can be decided through a check on the existence of a valid overlapping
of all the faces, which is proven to be NP-hard generally [8]. Although the flat-foldability
is globally intractable, locally, the flat-foldability around every single vertex in a small
neighborhood involving no other vertex can be decided in linear time by checking some
restrictions [9]. Two well-known restrictions for both MV-assigned or unassigned cases
were presented as the Kawasaki-Justin Theorem, and the Maekawa-Justin Theorem [10–12].

Arkin et al. first proposed the simple folding model to simplify the map folding
problem [13]. Three kinds of simple-folding models, one-layer simple folding, all-layers simple
folding, and some-layers simple folding, are considered in their study. Among them, the
some-layers simple folding model is the most general model, and we follow it in this
paper. As introduced above, every simple fold transforms some top or bottom layers along a
single line to achieve a state also flat. One-layer simple folding model and all-layers simple
folding models specify the number of folded layers to one and the number of all the layers,
respectively. In their research, they used two kinds of special simple folds, crimps, and
end-folds, as the basic operations. In a 1D map, as illustrated in Figure 2b, an end-fold is a
fold at either the first or the last crease point. The interval between the last crease (which
becomes a point since the map is illustrated as a line segment) and its corresponding end
of the map is no longer than its neighbor interval. A crimp is a fold along a pair of adjacent
crease points labeled “MV” or “VM”. The length of the interval between the two crease
points is a local minimum.

They have probed several kinds of maps, including one-dimensional maps with every
unit generalized to arbitrary length, regular maps as grid patterns of size m × n, and
some extended patterns only keeping the orthogonality of the creases. Considering the
relationship with this research, we introduce their main results for the first two kinds of
maps. They proposed linear-time algorithms to decide the flat-foldability of input MV-
assigned 1D maps using one-layer simple folds and some-layer simple folds, as well as a
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polynomial-time algorithm for the same problem with all-layers simple folds. All of the
results mentioned above were introduced in [13]. Later, Akitaya et al. presented some
NP-hard results of these simple folding models for orthogonal patterns, with fixed unit
lengths, either with or without MV-assignments [14].

The some-layers simple folding model was further extended by Uehara into the
some-layers simple folding–unfolding model. This model permits both the some-layers simple
folds and its reverse operation, which is actually some-layers simple unfold (referred to
as simple folds and simple unfolds in the following) [5]. As mentioned before, it was
proven that in a 1 × n map with fixed unit lengths, the valid folded states of the simple
folding–unfolding model are exactly the same with the valid folded states of general-folding
model, and there must exist at least one simple folding–unfolding sequence to reach an
arbitrary valid folded state, which contains no more than 2 × n (un)folds. According to
the method in [5], it can be further clarified that not only the final flat-folded state but also
every reachable partly flat-folded state by general folds can definitely be reached by the
simple folding–unfolding model.

To make it clear, both the simple folding–unfolding model and the simple folding
model of an m × n map satisfy Conditions (1) and (2): (1) Index the layers from top to
bottom, then each operation is applied to some top or bottom layers with consecutive
indexes and is along a single line; (2) The state before or after an operation is always flat
and in the shape of a rectangle.

The difference between them is that every crease in the simple folding model can
be only folded once and then never unfolded, whereas creases can be either folded or
unfolded multiple times in the simple folding–unfolding model. It is evident that a folding
following the simple folding model also follows the simple folding–unfolding model, and
a folding following the simple folding–unfolding model also follows the general folding
model. Namely, the inclusion relation of reachable final flat-folded states in Table 1 is
evident. What we aim to prove is the “proper” part in the proper subset relation. The
above viewpoint is about the range of final flat-folded states a folding model can reach in
different problem contexts. Oppositely, we can also discuss whether a given overlapping
order represents a real or unreal folded state of a folding model in a certain problem. That
is to say, such a problem concerns the validity of given overlapping orders (VOP). In [15], VOP
considering the total order of m × n squares in an m × n map with the general folding
model is proven to be linear-time solvable. However, such a result does not give enough
hint on the computational complexity of the map folding problem because a flat-foldable
map may have exponential flat-folded states.

In [16,17], two linear-time algorithms are proposed to decide: (1) the validity of
overlapping orders given on all the squares of an m × n map (Total VOP) using the
simple folding–unfolding model; (2) the validity of boundary overlapping orders of an
m × n map (Boundary VOP) using the simple folding model, respectively. In this paper,
we will provide the solutions to all the combinations of problem settings and types of
models that remained untouched or unsolved. In other words, this work can be seen as a
perfection of the evaluation of all these three models in different variations of map folding.
Moreover, we will discuss the reachable final flat-folded states sets (the configuration space)
of different models in different problems. Despite the same performance of all the models
in 1 × n maps (1D VOP), the equality relation over their reachable flat-folded states sets
turns into strict inclusion relation as the map becomes two dimensional (i.e., Total VOP).
Besides, even if we restrict the overlapping orders to only the boundary squares, the strict
inclusion relation still keeps (i.e., Boundary VOP).

3. Outline

In Section 4, we will discuss the performance of the three folding models in 1D VOP.
Uehara has already proven that every reachable flat-folded state of a 1 × n map with the
general folding model is also reachable for the simple folding–unfolding model [5]. This
paper gives proof that the remaining one, the simple folding model, performs the same. In
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Section 5, we will propose a linear-time solution for making the decision on the validity
of total overlapping orders (Total VOP) using the simple folding model. Because of the
inclusion relation between the set of boundary squares and the set of all the squares, the
strict inclusion relation of the reachable total overlapping orders would become clear once
we proved the strict inclusion relation of the reachable boundary overlapping orders. This
proof will be given in Section 6. We will also present the way to decide the validity of
boundary overlapping orders (Boundary VOP) which uses the general folding model. In
Section 7, we provide a discussion on these folding models, their possible applications,
their possible extensions, as well as their limitations. We also introduce some references
about the applications of these folding models involving both simulation studies and real
examples. Finally, in Section 8, we conclude our results and the future work.

4. Simple Folding Model in 1D VOP

It has been proven in [5] that both the final flat-folded state and every partly flat-folded
state of the general folding model can be reached through a sequence of simple folds and
unfolds. In this section, we will prove that although there exist partly flat-folded states of
the general folding model unreachable for the simple folding model, their sets of reachable
final flat-folded states are always the same.

With the simple folding model, once two layers are folded to touch each other, they
would not be separated apart again. This is the difference between the simple folding model
and the simple folding–unfolding model on the reachable (partly) folded states. Because of
this property, not all the partly flat-folded states of the simple folding–unfolding model
can be reached by the simple folding model. An example is given in Figure 3. The red
part in Figure 3b is the main reason for the unreachability. The details will be given in the
following explanation. However, in the final folded state, all the layers would be aligned
over a 1 × 1 area (represented by a line segment with 1 in length). In the following, we will
show that the folds applied on such red parts can be applied earlier to avoid the simple
unfolds. In other words, for any final folded state, we can always find a corresponding
simple folding sequence, where every step causes some layers to touch each other.
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to the states (a,b). (a) is reachable by the simple folding model while (b) is not.

We use the same simple folding operation, crimps, and end-folds as [13] to indicate
our folding process but neglect the creases remaining unfolded at every step. The two
partly folded states after folding a crimp and after folding an end-fold are described in
Figure 2b. The size of the map before the fold is assumed to be 1 × n with its left end
located on x = 0. We denote the coordinates of points A to G as xA to xG, which are all
integers. Then, we have xB − xA > xC − xB < xD − xC for the crimp and n − xG ≤ xG − xF
for the end-fold. The two states are respectively described by the following formulas,
where o(x) indicates the squares folded to the coordinate x, si (0 ≤ i ≤ n) indicates the
squares whose lower-left vertex is located at point i before any fold, and tuples indicate the
order of the squares from bottom to top.

For the crimp, we have:

o(x) =


sx, x < 2xB − xC(

sx, s2xB−x−1, sx+2xC−2xB

)
, 2xB − xC ≤ x < xB

sx+2xC−xB , xB ≤ x < 2xB + n − 2xC

(1)
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and for the end-fold, we have

o(x) =
{

sx, x < 2xG − n(
sx, s2xG−x−1

)
, 2xG − n ≤ x < xG

(2)

The MV assignment of the map is uniquely determined by the input overlapping
order, as described in [15]. The assignment can be computed in time linear to n. To make
the latter computing easier, we first utilize their approach to determine the MV assignment.

Step 1. Compute the MV assignment of the map. Then, repeat the following three
steps until either the map is shrunk to size 1 × 1 or the input order is determined to
be unreachable. In the former case, the complete simple folding sequence could also
be obtained.

Step 2. Find out the neighbor segments which are adjacent in the overlapping order.
Decide the crease between them to be the first crease to fold. If no such neighbor segment
exists, the input overlapping order is unreachable.

Step 3. According to the creases decided in Step 2, decide the crimps and end-folds
on the 1D map by referring to Formulas (1) and (2). If no feasible crimp or end-fold exists,
the input order is unreachable.

Step 4. Reduce the map to a new (smaller) map by applying the folding operations.
Go back to Step 2 until the map is reduced to size 1 × 1.

This process can be performed in linear time of the 1D map since it can be finished
by a standard graph traverse algorithm, e.g., a breadth-first search or a depth-first search
algorithm. Thus, we have the following theorem.

Theorem 1. The simple folding model and the simple folding–unfolding model have the same
reachable final flat-folded states.

Proof of Theorem 1. Theorem 1 can be concluded by mathematical induction. To prove
Theorem 1, it is sufficient to prove that for every folded state without penetration. We can
unfold the map to its initial state using only simple unfolds but no simple folds (a crease
unfolded would not be folded again). (1) The conclusion is clear for a 1 × 1 map. (2) We
assume that for a 1 × k map, the conclusion holds. Since a 1 × (k + 1) map can be obtained
by gluing a square at the end of the 1 × k map, we have the cases as illustrated in Figure 4.
(a) indicates the case where the (k + 1)-th square is adjacent to the k-th square. In this case,
we only have to consider the k-th square and the (k + 1)-th square as a whole. The unfolding
process can be finished by unfolding all the other creases for the original 1 × k map and
finally unfolding the crease between the k-th square and the (k + 1)-th square. (b) indicates
the case that the k-th square and the (k + 1)-th square are not adjacent and the end of the
(k + 1)-th square is visible from outside (which is on the opposite of (c). In (c), the end of
the (k + 1)-th square is invisible), this time the unfolding can be performed by considering
the (k + 1)-th square together with the layers below it, first unfold the part p2 and then
unfold p1 as the supposed unfolding of the original 1 × n map. (c) indicates the case that
the k-th square and the (k + 1)-th square are not adjacent and the end of the (k + 1)-th
square is invisible from outside. This time, first unfold p3, then unfold the outside (in this
figure, the bottom) layer of p2 as end-fold. After these unfolds, p2 and p3 becomes a whole
part below the (k + 1)-th square. Unfold this whole part as a single layer, then unfold the
(k + 1)-th square, and finally, unfold the remaining unfolded part of p2 and p1 according
to the unfolding process of the original 1 × n map. In all the illustrations, p1, p2, and p3
can be arbitrarily complicated; the other end of the map can also be extended to comprise
all the possible cases. However, the unfolding process always follows the above manner.
Correspondingly, we proved that for any 1 × (k + 1) map, its reachable folded states of the
general folding are the same as its reachable folded states of the simple folding. Theorem 1
is proven. �
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5. Simple Folding Model in Total VOP

It has been introduced in Section 1 that for an m × n map, no matter if a single
operation follows the simple folding model or the simple folding–unfolding model, the
state before and after the operation would always be flat and in the shape of a rectangle.
There already exists a method to decide the validity of given total overlapping orders with
the simple folding–unfolding model. When the model changes to the simple folding model,
it can be solved with a similar method, which maintains most of the existing one while with
a little adjustment [16]. The adjustment is, when considering the order of the parallel crease
lines supposed to be folded continuously, instead of using the folding–unfolding process
introduced in [5], we repeat the reduction by finding the adjacent relation of neighbor
squares to decide the next fold at each step. The conclusion is given as Theorem 2.

Theorem 2. The validity of the input total overlapping order with the simple folding model can be
decided in O(mn) time.

Proof of Theorem 2. We first introduce the flow of the method, and then give the details on
the adjustment. (1) Compute the MV assignment; (2) Decide the time points to change the
folding direction to either horizontal or vertical. During each phase between two nearby
time points, the map would be folded from a rectangular shape to a smaller rectangular
shape with the length of one side fixed; (3) Viewing each partly flat-folded state as a new
reduced map, a simple fold on a crease line should influence the overlapping order of all
the neighbor pairs incident to this crease line in accordance. Traverse the input order to
check for the unity and decide the folded state at every time point in (2); (4) Check the
validity of the folded state at every time point. If all these computations are managed
with all folded states tested as valid ones until the map is reduced to the size of 1 × 1,
the input is valid. To apply the above process to the simple-folding model, we have to
adjust (4) to check if the folded state at every time point is reachable by only simple folds.
Since all the neighbor squares on the two sides of a single crease line (creases on a single
line segment) are influenced by the folding of this crease line simultaneously, and their
accordance is already checked in (3). We can view any partly flat-folded state as a 1D map.
The check then becomes: given an input overlapping order of the segments separated by
crease points, does it correspond to a valid folded-state of the simple-folding model? In this
problem, all the lengths of the segments are integers. Using the same method as introduced
in Section 4, the process will either tell that no available fold exists (invalid) or give the
sequence of the simple folds leading to an input folded-state. Since every pair of neighbor
squares would be handled only once according to this process, the check of (4) costs linear
time in total. Following the above process, the validity of every partly flat-folded state
can be checked, and the process totally costs O(mn) time, which is the same as the simple



Appl. Sci. 2021, 11, 11856 8 of 12

folding–unfolding model. Because the other parts of the method remain the same, the total
solution of the Total VOP with the simple folding model costs O(mn) time. Theorem 2
is proven. �

We give the computation for a 1 × 20 map illustrated in Figure 3 as an example. The
map is in length 20, and it comprises five segments l1 to l5 in order. Two input overlapping
orders (l3, l4, l5, l1, l2) and (l3, l4, l1, l5, l2) correspond to the two states (a) and (b) in Figure 3,
respectively. From the discussion before, their MV assignments are unique. For (a), {l3, l4},
{l4, l5} and {l1, l2} are the neighbor pairs adjacent in the overlapping order. Therefore, the
corresponding creases c1, c3, and c4 are firstly folded. The map is then reduced to the state
illustrated in Figure 5a. On the opposite, for the states in Figure 3b, by the fact that l3, l4
forms a neighbor pair adjacent in the overlapping order while l5 and l4 are not adjacent, c3
is firstly folded while c4 is not. Naturally, l5 and l2 should touch each other. However, the
adjacent square pairs represent a state, as shown in Figure 5b, which is not valid.
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6. Performances of Three Folding Models in Boundary VOP
6.1. General Folding Model in Boundary VOP

The conditions of the general folding model are no stretching, no tearing, and no
penetration. The first two are naturally respected as the map being folded to the shape of a
single square. Thus, for any given order, no matter a total order or a partial order on the
set of all the squares, we only have to check the no penetration condition. There is a basic
fact that a pair of horizontal neighbor squares would never penetrate with a pair of vertical
neighbor squares, as the three possible overlap states illustrated in Figure 6a.
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Hence, we can consider two horizontal boundary sides and two vertical boundary
sides separately. Because of the similarity, here, we only exemplify the computation on
two horizontal boundary sides. The following narration follows the notations with the
help of the coordinate system given in Figure 6b. si,j (0 ≤ i < m, 0 ≤ j < n) refers to the
square whose lower-left vertex is located at (i, j) before any fold. We further assume that the
upfront side of s0,0 is fixed. In the final folded state, on the bottom row, the creases between
s2i−1,0 and s2i,0 would align on the y-axis, the creases between s2i,0 and s2i+1,0 would align
on the line x = 1. On the top row, when m is odd (even), the creases between s2i−1, m−1 and
s2i, m−1 would align on the y-axis (x = 1), the creases between s2i, m−1 and s2i+1, m−1 would
align on the line x = 1 (y-axis).

For every two neighbor square pairs {si−1, p, si, p} and {sj−1, q, sj, q} whose creases align
on the same line segment when completely folded, whether they penetrate each other or
not, should be checked. Any penetrating state can be described as a permutation of (si−1, p,
sj−1, q, si, p, sj, q). A similar property holds for the two vertical boundary sides. Checking
the existence of such orders on four boundary sides totally costs O(m + n) time applying
the stack structure introduced in [15].

Conversely, based on the assignment, there exists a relation < on the set of boundary
squares, defined as: sc,d < sa,b if sc, d is below sa,b in the final state. It is clear that < is a strict
partial order because it satisfies:

(irreflexivity) there is no sa,b < sa,b;
(asymmetry) if sa,b < sc,d, then there is no sc,d < sa,b;
(transitivity) if sa,b < sc,d and sc,d < se,f , then sa,b < se,f .

The strict partial order < corresponds to a directed acyclic graph whose nodes are the
boundary squares and edges are from sc,d to sa,b when sc,d < sa,b. Whether the input order
follows a directed acyclic graph or not can be checked by a traverse. To conclude, we have
Theorem 3. The proof is omitted because it follows the above analysis. The entire check
takes O(m + n) time.

Theorem 3. An input boundary overlapping order is valid if and only if it satisfies the partial
order < and includes no penetration. The decision on the validity can be given in O(m + n) time.

6.2. Strict Inclusion Relations among Three Folding Models

As aforementioned, the strict inclusion relation among the folding models in Total
VOP follows their strict inclusion relation in Boundary VOP. It is clear that every reachable
flat-folded state of the simple folding model is definitely reachable for the simple folding–
unfolding model, and every reachable state of the latter one is also reachable for the general
folding model. Then, to prove the strict inclusion relation in Boundary VOP, we only
have to prove that there do exist reachable boundary overlapping orders of the general
folding model that cannot be reached by the simple folding–unfolding model, as well as
reachable boundary overlapping order of the simple folding–unfolding model that cannot
be accessed by a simple folding model. In the following, we provide concrete instances that
respectively belong to the difference sets of their reachable boundary overlapping orders.

For the difference between the general folding model and the simple folding–unfolding
model, an instance is given in Figure 7a. The total overlapping order on the left side was
first proposed in [7] as an instance that needs complex general folds (not simple folds).
Its corresponding boundary overlapping order is given in Figure 7a on the right side. In
this instance, since only the center square labeled five in the left figure is not a boundary
square, the boundary overlapping order decides the entire MV assignment. Clearly, there
exists no crease line entirely assigned to valleys or mountains in this figure, which means
that a first simple fold could not be applied. Thus, this instance corresponds to a reachable
boundary overlapping order of the general folding model that cannot be reached by the
simple folding–unfolding model.
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However, even in an MV-assignment, including crease lines entirely assigned the
same, there still exist boundary overlapping orders reachable by the general folding model
but unreachable by the simple folding–unfolding model. Such a boundary overlapping
order of the smallest map (of size 2 × 3) is given on the left side of Figure 7b, where the
boundary overlapping order is also the total overlapping order. For the maps with larger m
and n, the result still holds. An instance is given on the right side of Figure 7b. The above
instances naturally bring this question: what kind of boundary overlapping order reachable
by the general folding model can also be reached by the simple folding–unfolding model?
We give the answer in Theorem 4.

Theorem 4. A valid boundary overlapping order of the general folding model is also valid for the
simple folding–unfolding model if and only if every flat-folded state can be separated to rectangles
with respect to the order.

Proof of Theorem 4. Considering a valid folding sequence by the simple folding–unfolding
model from the last step, the reverse sequence can be described as each time applying all
the unfolds and folds along the same direction until no more unfolds along this direction
can be applied, then changing the direction and repeating the unfolds and folds. During
the process, every fold or unfold is applied on a rectangle shape, and the rectangle would
be divided into smaller rectangles by the crease lines. Thus, it is clear that every flat-folded
state of the simple folding–unfolding model can be separated into rectangles. Conversely, as
long as at each partly folded-state after the direction change can be separated to rectangles
before the next time of direction change, the map can be viewed as a 1 × n map where
the overlapping of the rectangles can be viewed as the overlapping of line segments.
Referencing the result that every partly folded state of a 1 × n map is also reachable by a
simple folding–unfolding model, the reverse sequence can be achieved. This ensures that
if every flat-folded state can be separated into rectangles, the overlapping by the general
folding model must also be valid for the simple folding–unfolding model. �

Next, we give the instance that is valid for the simple folding–unfolding model but
is unacceptable for the simple folding model. A map was first folded along the vertical
crease lines to a state on the left side of Figure 8a, which, as mentioned before, is achievable
by a combination of simple folds and unfolds model but not achievable by only simple
folds. In such a folded state, any horizontal crease lines would lock the touching layers,
and thus keep them from separating apart again. For easiness, we fold the map along the
middle such that two horizontal boundary sides are aligned on the same line segment.
As mentioned in Section 1, for the simple-folding model, any subsequent folds will not
separate the layers already touched each other. Thus, the two horizontal boundary sides
can be viewed as glued together in this partly folded state. The figure on the right side of
Figure 8a gives the top view of the folded state. Because a simple folding model can never
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reach a state where these touching squares touch each other, the corresponding boundary
order is unreachable by the simple folding model.
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Based on the above idea, we give the most straightforward instance reachable for the
simple folding–unfolding model while unreachable for the simple folding model on the
left side of Figure 8b, which can be viewed as an instance for both Boundary VOP and
Total VOP. The length of each line segment is concreted in the figure on the right side of
Figure 8b.

7. Discussion

The three folding models: the simple folding model, the simple folding–unfolding
model, and the general folding model, have been discussed from the viewpoint of their
performances when applying them to different folding problems in the above sections. We
compared their capabilities and investigated the relationships between them in different
folding problems. Although our analyzing methodology is rather theoretic, these folding
models do have practical uses and often show capacities in accord with our analysis in
this paper. For example, ref [6] gives the application of a robot built based on the simple
folding model in 1 × n maps. Some other simulation studies and analyses on practically
manufactured models or robots can be found in [1,3,4,18,19].

The importance of our research is that because we place all the folding models together
and then analyzed their capabilities theoretically under different contexts, we can provide
a complete, comprehensive, and all-sided result of all the commonly used folding models.
However, since this research is rather theoretical than practical, the practical features of these
models still remain to be figured out. For the purpose of clarifying their practical performances,
this research can be extended using neutrosophic statistics as a future direction [20,21].

8. Conclusions and Future Work

In this work, we listed three folding models and compared their capabilities in different
map folding problems. Their available valid overlapping orders in 1 × n maps are the
same, while their respective sets of valid overlapping total orders and boundary orders
in m × n maps are in strict inclusion relations. For completeness, we also showed that,
in m × n maps, deciding the validity of total overlapping orders with the simple folding
model and deciding the validity of boundary overlapping orders with the general folding
model could be solved in time linear to the size of the input. Our research makes up for
the deficiency of existing results, as no research has ever compared these different folding
models or investigated their essential inner associations. In conclusion, our result provides
a comprehensive, all-sided, and detailed analysis of these folding models theoretically.
Some practical studies on the possible applications of these models are desired to be
inspired by this work.

The decision problems concerning other subsets of the squares with the three folding
models can be considered as interesting future work. In addition, these models can have
extensions in more generalized maps. Although the NP-hardness of the decision on the
flat-foldability of given orthogonal crease pattern with simple folds is proven [14], the
complexity of deciding the validity of given overlapping orders with different folding
models remains unknown.
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