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Abstract: Monitoring people’s blood pressure can effectively prevent blood pressure-related dis-
eases. Therefore, providing a convenient and comfortable approach can effectively help patients
in monitoring blood pressure. In this study, an attention mechanism-based convolutional long
short-term memory (LSTM) neural network is proposed to easily estimate blood pressure. To easily
and comfortably estimate blood pressure, electrocardiogram (ECG) and photoplethysmography
(PPG) signals are acquired. To precisely represent the characteristics of ECG and PPG signals, the
signals in the time and frequency domain are selected as the inputs of the proposed NN structure.
To automatically extract the features, the convolutional neural networks (CNNs) are adopted as the
first part of neural networks. To identify the meaningful features, the attention mechanism is used in
the second part of neural networks. To model the characteristic of time series, the long short-term
memory (LSTM) is adopted in the third part of neural networks. To integrate the information of
previous neural networks, the fully connected networks are used to estimate blood pressure. The
experimental results show that the proposed approach outperforms CNN and CNN-LSTM and
complies with the Association for the Advancement of Medical Instrumentation standard.

Keywords: blood pressure estimation; electrocardiogram; attention mechanism; CNN-LSTM

1. Introduction

People’s life rhythm has rapidly changed and it has caused an unreasonable dietary
structure as well as irregular work and rest. Therefore, blood pressure (BP)-related dis-
eases, such as cardiovascular diseases, hypertension, etc., have become more and more
common [1]. BP is one of the important physiological parameters for preventing BP-related
diseases. In the early stage of these diseases, there are no obvious symptoms outside the
body and motoring BP can effectively prevent these diseases. Therefore, developing a BP
estimation is significant for routine healthcare.

Cuff-based BP monitoring devices are commonly used to estimate BP, but these devices
are inconvenient and uncomfortable for patients. To overcome some of these problems,
many researchers developed cuffless BP estimations, which are based on pulse transit
time (PTT), photoplethysmography (PPG), or electrocardiogram (ECG) [2–5]. Generally,
PTT refers to the time it takes a pulse wave to travel between two arterial sites and can
be calculated by using ECG and PPG [2]. However, the PTT-based approaches used
fixed relationships between BP and PTT, which will be easily affected by vascular tone or
physiological status. Thus, the PTT-based approaches have low accuracy and robustness.
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Some studies have shown that ECG and PPG signals can be used to effectively estimate
BP and increase the accuracy of the estimation [6–11]. Chen et al. applied a support vector
machine and random forest regression model to estimate the BP [7]. Proença et al. adopted
a nonlinear equation to express the relationship between pulse arrival time (PAT) and
BP [8]. Whong and Poon used linear regression to find the relationship between BP, PAT,
and heart rate [9]. For these approaches, only simple machine learning methods were
adopted to estimate BP. Therefore, novel machine learning methods have been successfully
used in many applications and can effectively increase the accuracy of BP estimation.

Recently, deep learning had been successfully applied in many applications, and then
much research had been proposed to accurately estimate BP [10–15]. Wu et al. used a
backpropagation neural network and radial basis function to estimate the BP. However,
the backpropagation neural network has weak generalization ability [10]. Wu applied
deep learning and human physiological characteristics to estimate BP, which can obtain
better results compared with backpropagation neural networks [11]. However, it has high
computational complexity and is not suitable for real-time applications. Baek et al. pro-
posed a convolutional neural network (CNN)-based BP estimation model, which processes
sequential ECG and PPG signals for estimating BP [12]. However, the CNN-based BP
estimation model did not use the time-serious information of ECG and PPG signals. There-
fore, Argha used long short-term memory (LSTM) to improve the performance of the BP
estimation [13]. Nowadays, CNN-LSTM has been developed to combine the advantages of
CNN and LSTM. CNN-LSTM can estimate BP by using ECG and PPG signals [14,15], but
these methods are still not convenient enough. To improve the performance of CNN-LSTM,
an attention mechanism had been proposed and applied to many applications [16,17].
Therefore, integrating the attention mechanism with CNN-LSTM can efficiently increase
the accuracy of BP estimation.

In this study, an attention mechanism-based CNN-LSTM is proposed to predict BP
by using ECG and PPG signals. To precisely represent the characteristics of ECG and PPG
signals, time and frequency domain ECG and PPG signals are selected as the inputs of
neural networks. To correctly extract the features of ECG and PPG signals, the CNNs are
adopted to process the time and frequency domain signals. To identify the meaningful
features, the attention mechanism is applied. To model the characteristics of time series,
the LSTM layers are used. Finally, the fully connected networks are used to integrate the
information of previous neural networks and to estimate BP.

2. Blood Pressure Estimation Methods

The proposed attention mechanism-based CNN-LSTM is shown in Figure 1. First, the
preprocessing is used to remove the motion artifacts of ECG and PPT signals, and then
signals are transformed into the frequency domain. Second, the corresponding features of
EEC and PPG signals in the time domain and frequency domain are extracted by using
convolutional neural networks. Third, the attention networks (ANs) are applied to estimate
the importance of features. Fourth, the LSTM networks are adopted to model the variations
of time series. Finally, the fully connected networks are used to integrate the information
of previous neural networks and to predict the BP. The proposed approaches are detailed
in the following paragraphs.

2.1. Signal Preprocessing

The obtained ECG and PPG signals (denoted as Se and Sp) have zero values or
meaningless values and these signal segments are removed. The main component of the
PPG signals is between 0.5 and 11 Hz, and the main component of the ECG signals is 30 Hz
or lower [18,19]. Therefore, a low-pass filter with a cutoff frequency of 35 Hz is applied to
the PPG signals. A high-pass filter with a cutoff frequency of 0.5 Hz and a low-pass filter
with a cutoff frequency of 35 Hz are sequentially applied to the ECG signals.
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The ECG and PPG signals are segmented into sequences of ECG and PPG segments
denoted as Se =
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Hamming window is applied to reduce leakage, and then the fast Fourier transform is
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i . Therefore, the corresponding frequency input

sequence for ECG and PPG signals can be found and denoted as Fe =
{

f e
1 , f e

2 , · · · , f e
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}
and Fp =

{
f p
1 , f p

2 , · · · , f p
Ls

}
. Finally, the inputs of convolutional neural networks are

Xs = Se ⊕ SP and X f = Fe ⊕ FP for input vectors in the time domain and frequency
domain, respectively.

2.2. Convolutional Neural Networks

In this work, a convolutional network contains a convolutional layer, a rectified linear
unit, and a pooling layer. For the convolutional layer, convolution kernels are used to
convolve the inputs of the previous layer and it can be defined as

ai = f

(
N

∑
n=1

wnxn + b

)
(1)

where xn, wn, and b are the outputs of the previous layer, the weight of the convolutional
kernel, and the bias value, respectively. f (•) is the rectified linear unit, which is a non-linear
activation function. The rectified linear unit is used to activate only certain neurons. Thus,
the neurons can be activated if the output of the linear transform is greater than or equal to 0.

Finally, a max-pooling layer is adopted to perform downsampling operations. The
max-pooling layer can effectively reduce the parameters of networks for reducing complex-
ity and keeping important features.

2.3. Attention Neural Networks

After the convolutional neural networks, a self-attention mechanism (as shown in
Figure 2) is used to focus on the relevant part of features [20]. The input of the self-attention
layer is the previously convoluted results ai. The ai is multiplied by three weights matrix
wq, wk, and wv that are trained in the training process, and then the query vector Qi, the
key vector Ki, and the value vector Vi can be obtained as follows.
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Qi = wqai (2)

Ki = wkai (3)

Vi = wvai (4)

When the Qi, Ki, and Vi are obtained, the self-attention operation Attention(•), which
is modeled as dot-production attention, is used to find the weighted self-attention outputs
SAi. Attention(•) is defined as

SAi = Attention(Qi, Ki, Vi)

= so f tmax
(

QiKT
i√

d

)
•Vi

(5)

where softmax(•), T, and d are the softmax function, the transpose operation, and the scaling
factor, respectively.
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2.4. LSTM Neural Networks

After the meaningful features are extracted, the LSTM is adopted to model the charac-
teristics of the time series of features. The structure of the LSTM unit is shown in Figure 3.
The inputs of the first LSTM layer and the other LSTM layers are the output of attention
layer SAi and the outputs of previous LSTM units, respectively. In time slot t, the input
and the output of the LSTM unit are yt and ht, respectively. For an LSTM unit, it composes
an input gate gi, a forget gate gf, an output gate go, a mapping function mt, and a memory
cell ct.
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Mathematically, each vector in these components of the LSTM unit can be computed
as follows.

Y = yt ⊕ ht−1 (6)

gi
t = σ

(
Wi·Y + bi

)
(7)

g f
t = σ

(
W f ·Y + b f

)
(8)

go
t = σ(Wo·Y + bo) (9)

mt = tanh(Wm·Y + bm) (10)

ct = g f
t � ct−1 + gi

t �mt (11)

ht = go
t � tanh(ct) (12)

σ(•) and � are the sigmoid function and elementwise multiplication. Wi, Wf, Wo,
and Wm are the weighted matrices, and bi, bf, bo, and bm are bias vectors of LSTM. These
parameters are learned during training. Three gates have their weights and then each
LSTM unit works like a state machine. Therefore, the LSTM neural network can deal with
sequence problems.

2.5. Fully Connected Neural Networks

Each neuron in the fully connected layer is connected to all neurons of the previous
layer, and it follows the basic method of feedforward artificial neural network. In this
study, a conventional multi-layer perceptron neural network is utilized.

3. Experimental Results

In this study, ECG and PPG signals collected in PhysioNet’s Multi-parameter Intel-
ligent Monitoring for Intensive Care (MIMIC) database [21] were used to evaluate the
proposed approaches. There are 45 patients (27 males and 18 females, the average age is
66.8 years) and patients have one of 13 diseases, including angina, bleeding, brain injury,
cardiogenic shock, congestive heart failure/pulmonary edema, cord compression, myocar-
dial infarction, postoperative coronary artery bypass graft, renal failure, postoperative
valve, respiratory failure, trauma, and sepsis. The signals were obtained through invasive
methods, and for each patient, around 11,000 segments were randomly extracted. When
the high-level motion artifacts were not removed by using the proposed preprocess, these
segments, which contain motion artifacts, were manually removed.

An input signal of neural networks should contain at least two periods of ECG signals.
According to the possible heart rate range, the duration of the input ECG signals is more
than 4 s. Thus, the length of se

i and sp
i is 1024. Lf and Lk are 512 and 256, respectively.

Moreover, the length of the hamming window and the size of FFT are 512. Therefore,
the size of inputs to neural networks for the time and frequency domain are 512 and 256,
respectively. N-fold cross-validation (N = 10) was used to evaluate the proposed approaches
by subject cross-validation and the results are detailed in the following subsections.

3.1. Experimental Setup

In this study, the results of BP were estimated by using root mean square error (RMSE)
and mean absolute percentage error (MAPE). Moreover, the somewhat less stringent
Association for the Advancement of Medical Instrumentation (AAMI) standard [22], which
recommends a mean error of less than 5 mmHg and a standard deviation of error of not
more than 8 mmHg.

The model was trained in a fully supervised manner, and the weights and biases of
each layer were initialized by randomly selected values. The cross-entropy is selected as
the loss function, which was used to estimate the error between the true value and the
predicted value. Adam, which is a stochastic optimization algorithm, was selected as the
optimizer. The detailed parameters of the proposed neural network are shown in Table 1.



Appl. Sci. 2021, 11, 12019 6 of 9

Table 1. List of selected parameters of the proposed approach.

Type of Neurons Parameters Selected Value

Convolutional layer 1 and 2
Number of kernel size 64
Number of filter size 10

Number of pooling size 2

Convolutional layer 3
Number of kernel size 32
Number of filter size 10

Number of pooling size 2

LSTM layer 1 and 2 Number of hidden units 64

Fully connected layer 1,2, and 3 Number of hidden units 64, 32, 16

3.2. Results of Feature Evaluation and Selection

Using single biomedical signals such as ECG or PPG to estimate the BP including
systolic blood pressure (SBP) and diastolic blood pressure (DBP) can increase the value
of smart devices [3,23]. Therefore, the effects of ECG and PPG signals are examined and
then three types of inputs were designed as I(ECG), I(PPG), and I(ECG, PPG). I(•) is
used to represent the selected signals and the experimental results are shown in Table 2.
Using both ECG and PPG signals, the proposed system can achieve the best performance.
However, the performance of using a single ECG or PPG still achieves acceptable results.
For practical applications, the complexity of the proposed approach can be reduced without
severely losing accuracy. Thus, the proposed structure of the neural network is suitable for
practical applications.

Table 2. Experimental results obtained by using different combinations of input signals.

RMSE MAPE

SBP DBP SBP DBP

I(ECG) 4.87 2.62 2.51 1.40
I(PPG) 4.39 2.68 2.28 1.44

I(ECG, PPG) 3.90 2.31 2.04 1.25

Next, the effects of input signals represented as time and frequency sequences are
examined and the results are shown in Table 3. The results show that the performance
using time and frequency signals is higher than that using only time or frequency signals.
Previous studies showed that the relationship between ECG and PPG signals in the time
domain can be used to predict BP [2]. Moreover, the performance using time signals is
higher than that using frequency signals. Therefore, the proposed approach can learn the
relationship between ECG and PPG signals in the time domain, and then the accuracy
can be increased. However, integrating with frequency information, the accuracy can be
effectively increased by using the proposed neural network.

Table 3. Experimental results of input signals represented in time or frequency domain.

RMSE MAPE

SBP DBP SBP DBP

Time 3.96 2.48 2.07 1.25
Frequency 4.69 2.57 2.43 1.37

Time + Frequency 3.90 2.31 2.04 1.25
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3.3. Analysis of Network Structure

In this subsection, the impact of network structure is examined. The CNN and fully
connected networks were treated as the basic network structure. The attention network
(AN) and the LSTM network in the proposed network structure were sequentially removed
and the experimental results are shown in Table 4. Comparing the basic network structure,
the prediction accuracy obtained by using the network structure with AN or the LSTM
network can be improved. The proposed network structure, which uses both AN and
LSTM networks, can achieve the highest accuracy.

Table 4. Experimental results of different network structures.

RMSE MAPE

SBP DBP SBP DBP

CNN 5.54 4.32 2.85 2.24
CNN + LSTM 4.39 3.02 2.28 1.60

CNN + AN 4.60 3.32 2.38 1.75
Proposed approach 3.90 2.31 2.04 1.25

The results of CNN + LSTM are slightly better than that of CNN + AN, but the layers
for CNN + LSTM and CNN + AN are 2 and 1, respectively. CNN + AN and CNN + LSTM
focus on identifying meaningful features and modeling the characteristics of time series,
respectively. These two approaches focus on different characteristics of input sequences;
thus, integrating these two networks can greatly improve the accuracy of BP estimation.

3.4. Experimental Results Compared with AAMI Standard

In this subsection, the accuracy of BP estimation of the proposed approach was
compared with the AMMI standard, which is the guideline for the evaluation of cuffless
BP monitoring devices. The results evaluated by using mean absolute error (MAE) were
shown in Table 5. It is clear that using LSTM or AN can improve the performance of CNN.
Moreover, the performance of LSTM is better than that of AN. According to the network
structure, the LSTM can save previous ECG information and compare it with current ECG
information, thus the variance of ECG signals can be effectively improved. Therefore, the
blood pressure can be accurately estimated by using the variance of ECG signals. The
effects of AN are sometimes modeled in the CNN; thus, the benefit of AN cannot be fully
demonstrated. When LSTM and AN are integrated together, AN may reduce the variety of
inputs of LSTM. Thus, the proposed approaches can achieve the best performance.

Table 5. Experimental results measured by using MAE.

SBP DBP

CNN 3.88 ± 4.55 3.18 ± 3.94
CNN + LSTM 3.22 ± 4.69 2.42 ± 3.48

CNN + AN 3.34 ± 4.91 2.60 ± 3.64
Proposed approach 2.94 ± 4.65 2.02 ± 3.81

The mean error and the standard deviation of error for these four approaches are less
than 5 and 8 mmHg, respectively. Moreover, the proposed approach can obtain the smallest
standard deviation and the most accurate. Thus, these approaches are sufficiently high for
clinical use.

In order to detail the characteristics of proposed approaches, the Bland–Altman plot
and the error distribution of the actual BP and the estimated BP are adopted, and the
results are shown in Figure 4. The mean difference of SBP and DBP were 0.189 mmHg and
0.082 mmHg, respectively. The standard derivations of SBP and DBP were 3.96 and 3.19,
respectively. Moreover, within the error range of 7.76 mmHg and 6.25 mmHg for SBP and
DBP (95% confidence level), the cumulative percentages in the predicted values of SBP and
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DBP were 96.57% and 98.57%, respectively. Thus, the performance for predicting DBP is
better than that for predicting SBP.
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devices. In this study, the motion artifacts were manually removed, which will degrade 
the performance of the proposed approaches. Therefore, developing advanced ap-
proaches to remove the motion artifacts can improve the performance of BP estimation. 

Author Contributions: These authors contributed equally: C.-C.C. and C.-C.L. Conceptualization, 
C.-C.C. and C.-C.L.; methodology, C.-C.C. and C.-C.L.; software and validation, Y.-J.C.; formal anal-
ysis and investigation, C.-C.C. and C.-C.L.; resources and data curation, C.-H.Y. and E.-C.S.; writ-

-15

-10

-5

0

5

10

15

95 105 115 125 135

D
iff

er
en

ce
 o

f a
ct

ua
l S

BP
 a

nd
 e

st
im

at
ed

 S
BP

Actual SBP

μ+1.96σ

μ-1.96σ

μ=0.189

-15

-10

-5

0

5

10

15

55 60 65 70 75 80 85

D
iff

er
en

ce
 o

f a
ct

ua
l D

BP
an

d 
es

tim
at

ed
 D

BP

Actal DBP

μ+1.96σ

μ-1.96σ

μ=0.082

0

10

20

30

40

50

60

70

80

-15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15

N
um

be
r o

f s
am

pl
es

Error of SBP estimation

μ+1.96σμ-1.96σ

0

20

40

60

80

100

120

-15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15

N
um

be
r o

f s
am

pl
es

Error of DBP estimation

μ+1.96σμ-1.96σ

Figure 4. Bland–Altman plots of (a) SBP and (b) DBP and error distributions of (c) SBP and (d) DBP.

4. Conclusions

In this study, an attention mechanism-based CNN-LSTM had been successfully pro-
posed to predict BP by using ECG and PPG signals. ECG and PPG signals in time and
frequency domain are useful to precisely predict BP and the proposed network structure
can correctly model the relations between ECG and PPG signals in time domain. The con-
volutional neural network can automatically extract the features of ECG and PPG signals.
Moreover, the meaningful features and the characteristics of time series are effectively
modeled by using AN and LSTM, respectively. The experimental results showed that the
proposed approach outperforms CNN and CNN-LSTM. Besides this, for practical appli-
cations, the computational complexity should be decreased. Without severely reducing
the prediction accuracy, the proposed approaches can meet the condition of computational
complexity by removing some types of input signals. Moreover, the proposed approach,
which is assessed by using AAMI standard, can possibly be grafted into medical devices.
In this study, the motion artifacts were manually removed, which will degrade the perfor-
mance of the proposed approaches. Therefore, developing advanced approaches to remove
the motion artifacts can improve the performance of BP estimation.
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