
applied  
sciences

Article

Human Activity Recognition Using Cell Phone-Based
Accelerometer and Convolutional Neural Network

Ashwani Prasad 1,* , Amit Kumar Tyagi 1,2 , Maha M. Althobaiti 3 , Ahmed Almulihi 3, Romany F. Mansour 4

and Ayman M. Mahmoud 4

����������
�������

Citation: Prasad, A.; Tyagi, A.K.;

Althobaiti, M.M.; Almulihi, A.;

Mansour, R.F.; Mahmoud, A.M.

Human Activity Recognition Using

Cell Phone-Based Accelerometer and

Convolutional Neural Network. Appl.

Sci. 2021, 11, 12099. https://doi.org/

10.3390/app112412099

Academic Editor: Giuseppe Andreoni

Received: 20 November 2021

Accepted: 16 December 2021

Published: 19 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Vellore Institute of Technology,
Chennai 600127, Tamil Nadu, India; amitkrtyagi025@gmail.com

2 Centre for Advanced Data Science, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
3 Department of Computer Science, College of Computing and Information technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; Maha_m@tu.edu.sa (M.M.A.); a.almulihi@tu.edu.sa (A.A.)
4 Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt;

romanyf@sci.nvu.edu.eg (R.F.M.); ayman27@sci.nvu.edu.eg (A.M.M.)
* Correspondence: ashwani.prasad2019@vitstudent.ac.in

Abstract: Human Activity Recognition (HAR) has become an active field of research in the computer
vision community. Recognizing the basic activities of human beings with the help of computers and
mobile sensors can be beneficial for numerous real-life applications. The main objective of this paper
is to recognize six basic human activities, viz., jogging, sitting, standing, walking and whether a
person is going upstairs or downstairs. This paper focuses on predicting the activities using a deep
learning technique called Convolutional Neural Network (CNN) and the accelerometer present in
smartphones. Furthermore, the methodology proposed in this paper focuses on grouping the data in
the form of nodes and dividing the nodes into three major layers of the CNN after which the outcome
is predicted in the output layer. This work also supports the evaluation of testing and training of
the two-dimensional CNN model. Finally, it was observed that the model was able to give a good
prediction of the activities with an average accuracy of 89.67%. Considering that the dataset used in
this research work was built with the aid of smartphones, coming up with an efficient model for such
datasets and some futuristic ideas pose open challenges in the research community.

Keywords: human activity recognition; sensors; accelerometer; cell phones; dataset; deep learning;
convolutional neural network; activity prediction

1. Introduction

The accurate measurement of daily activities performed by people has gathered
attention for both researchers and the gadget industries. This has given rise to the subject
matter of Human Activity Recognition (HAR). The goal of this research is to recognize or
predict the action performed by a human subject using certain specialized sensors capable of
recording related data [1]. A wide range of activities encompasses HAR including walking,
running, sitting, standing, jogging, sleeping, nodding, raising the hand, etc. Wearable
devices, smart bands, cell phones and smartphones, are handy pieces of equipment to
identify and analyze what a person is doing. Such gadgets provide a wide spectrum of
sensors that can be used with ease in day-to-day life with stellar performance and high
accuracy. Since people are becoming more conscious about their health, exercise tracking
and sleep tracking has become a fashionable trend for many health enthusiasts, who
rely heavily on such devices and sensors for such purposes. The behavioral information
collected from these sensors is used by researchers to meet needs in the medical and
healthcare industries and smart homes [2]. The data recorded in such a manner are also
advantageous for many industries and technology giants as it helps them in directing
their research and development towards a product that can be potentially launched in the
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market in future. Additionally, numerous challenging applications, including automated
visual surveillance systems and human–computer interaction (HCI) based on several senses
(multimodal), require some level of HAR. Thus, in such cases, an accomplished recognition
of human behaviour becomes critical [3].

The research in the field of HAR has been going progressively since the 1980s. One
of the reasons is the advent of high-tech computers and smartphones. Smartphones are
frequently used by most of the population in most countries of the world. The need
to replace human beings with computers to supervise activities of other human beings
has kept the research of HAR going. Sensing technologies are widely used in Ambient
Assisted Living (AAL) and smart homes. Some existing solutions include physiological,
environmental, and vision sensors that frequently assist in human behaviour and activity
recognition for health monitoring purposes. Activity recognition is one of the core features
of a smart home. Aged and mentally retarded persons suffer from numerous kinds of
health issues. As a result, it can lead to improper performance of activities of daily living in
such populations. Therefore, the detection of abnormal behaviours becomes indispensable
for elderly and dependent people to ensure that they perform their activities correctly
with minimum deviation [4]. This can ensure that they are safe and feeling well [5].
Furthermore, suitable types of sensors are also used for different applications such as Falls,
Indoor localization, ADL recognition and Anomaly detection. Wearable sensors such as
certain accelerometers are used as sensing modalities for all such applications except for
Indoor localization [2]. This supports the fact that an accelerometer is a widely used sensor
for activity recognition.

There are two major challenges to be tackled for human activity recognition. Firstly, it
is tough to manage the huge amount of information produced by the devices and sensors.
Secondly, understanding the mapping of data to well-defined movements of the body
becomes difficult. Nonetheless, there are a few methodologies that have achieved incredible
results in bringing out useful information from the readings produced by sensors [6,7].
Mostly, their experiments required the participants to carry devices in a particular position
and orientation. It also required attaching the device to different areas of the body, such as
the arms, waist, or wrist. Consequently, the data gathered in such a constrained situation
with limitations on device orientation and the number of activities could influence the
effectiveness of those models. The ideal scenario is implausible as the device orientation
can change with every individual as per their convenience and lifestyle. Depending on
their clothing, body shape and size and their behaviour, the positioning of the device is
likely to change. Last but not least, several other commonplace activities, namely eating,
drinking, talking, typing, writing, smoking, etc., have also been included for recognition.
However, their recognition is less reliable because carrying them out requires frequent
hand movements. A solution to this problem is to use motion sensors that can be worn
on wrists. Other activities, including ascending stairs and descending stairs, cycling and
biking are more recognizable when sensors are placed near the pockets. Activities such as
these provide better repeating patterns in readings, provided that the sensors are worn at
the pocket position. However, the wrist and pocket positions have been primarily used
for individuals in seclusion [6,8–11]. For these reasons, HAR models based on artificial
intelligence (AI) show a high amount of dependency on the positioning and orientation of
the devices and wearable sensors. Additionally, the results of such models also depend
indirectly on the type of human activity being carried out.

To address the aforementioned issues, the data used in this work were collected
through controlled laboratory conditions. The accelerometer readings were collected
from the sensors worn by the subjects as they carried out the six activities—jogging,
walking, going upstairs, going downstairs, standing and sitting. The data so obtained are
in a raw time-series format. The examples or samples are further accumulated into six
classes, where each class is provided with a unique label associated with the corresponding
activity. Furthermore, activity recognition is carried out using a predictive model as shall
be presented in this paper. The model is based on a Convolutional Neural Network (CNN),



Appl. Sci. 2021, 11, 12099 3 of 19

which is an important classification tool in deep learning. Hence, the major contributions
of this paper are listed as follows:

1. Demonstrating the methodology behind the transformation of accelerometer data
into appropriate classes, so that it can be fed into the convolutional neural network to
perform HAR.

2. Illustrating that it is plausible to perform HAR with prevalent sensors such as ac-
celerometers, and devices such as commonly used smartphones, and still achieve
accurate results. It does not have to include a sophisticated machinery and de-
vices or highly complex algorithms for most of the time to obtain appreciable and
useful outcomes. Thus, this paper gives a fundamental and preliminary approach
towards HAR.

3. To validate the proposed 2D CNN model through extensive experiments.

The remainder of this research paper is organized as follows: Section 2 presents the
literature review and previous works related to human activity recognition. This section
also compares other datasets and techniques that have been used in the past. Section 3
presents the problem description and proposed method and highlights the software tools
used. Section 4 illustrates the structure of the dataset, accelerometer data of each activity,
data collection, data balancing, data standardization and frame preparation and data
splitting. In addition, this section also discusses the development of the proposed CNN
model. Section 5 discusses the experimental results along with a comparison between the
performance of LSTM and the CNN model used in this paper for HAR. Finally, Section 6
presents the conclusion of this research work and gives ideas for future work.

2. Related Work

The research in the field of HAR has been going on for more than a decade. One of the
reasons is that most mobile phones today have sensors included in them. The accelerometer
has been one of the most widely used mobile sensors for HAR. Moreover, some of the earlier
research works used more than one accelerometer located on several areas of the subject’s
body [12]. It was primarily because mobile phones with accelerometers were less prevalent
a decade before. Bao and Intile [13] used five biaxial accelerometers in their research. The
experiment consisted of 20 persons. To collect data from them, the accelerometers were
placed on distinct parts of the body such as the non-dominant and upper arm, dominant
ankle and wrist and the subject’s right hip. They recognized 20 activities of daily living
by creating models using decision models, instance-based learning, C4.5 and Naïve Bayes
classification algorithms. Their experiment deduced that the most suitable position of
the accelerometer to place was on the user’s thigh. This finding supports the decision
implemented during data collection that the pants pocket has been a suitable position for
the subject to carry their phones in. On contrary, Krishnan et al. [14] criticized the use of
accelerometers on thighs as the collected data were inadequate for classifying activities
such as walking, sitting, lying down, etc. Therefore, they emphasized the necessity of
multiple accelerometers. Although these systems using multiple sensors can identify varied
human activities, they lack practicality and convenience as it requires the users to wear
several sensors on their bodies.

Studies on HAR have also been conducted using a combination of sensors of diverse
types. Choudhary et al. [15] employed a multimodal sensor apparatus consisting of seven
types of sensors, viz., visible/IR light sensor, tri-axial accelerometer, humidity/temperature
reader, barometer, microphone, visible light phototransistor, and a compass. They were
able to identify activities such as brushing teeth, ascending and descending stairs, standing,
sitting, walking and an elevator moving up and down. Such a multi-sensor approach
indicates that there lies a remarkable capability in mobile sensor data, especially when a
wide range of sensors are incorporated. More recent works based on multiple sensors have
been implemented in [16,17]. In these studies, more advanced sensors such as gyroscope,
GPS (Global Positioning System), magnetometer, etc., have been used apart from the
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accelerometers. Long-themed activities can be recognized more precisely and in a realistic
scenario with the aid of such advanced sensors.

In the knowledge area of HAR, other datasets apart from the one used in this paper
have been published previously. The UCI (University of California, Irvine) HAR dataset is
one of the notable datasets which has been widely used in different works and comparisons.
This dataset was proposed in [18] and it was built from the data gathered from inertial
sensors embedded in smartphones. There was a total of 30 participants involved in the
experiment. Each person performed six activities, viz., walking downstairs, walking
upstairs, standing, sitting, laying down and walking. Using the embedded sensors, linear
acceleration and angular velocity associated with the three axes were captured with a
frequency of 50Hz. The size of the sliding windows was 2.56 s, and the signals were
sampled with 50% overlap (128 readings/window) between them. For each record in
the dataset, the time and frequency domain variables consisted of a 561-feature vector,
which consequently yielded reasonable outcomes. However, the dataset is collected in
constrained laboratory circumstances with restrictions on a fixed placement and orientation
of the device. Due to such a limitation, in a real-time scenario, the results obtained would
not be trustworthy as the users could use their phones in suitable ways.

The next notable dataset is the HARSense dataset, one which has been used in [19].
For robust comprehensive data collection, two sensors (accelerometers and gyroscopes)
were used from two different smartphones and two mounting locations in the subject’s
body were used viz. front pocket and waist. In total, 16 features were collected from the
sensors present in both smartphones. This was carried out with the help of an Android
application. Some of the prominent features consisted of gravitational acceleration, gravity,
rotational rate, and rotational vectors. The dataset generation adopted a physique-based
technique in which the data of multiple subjects were clubbed based on the resemblance
of their height and weight. The downside of this dataset generation technique is that it is
bound to involve participants with a similar physique. This is likely to result in a lesser
number of participants, and hence, fewer data.

The Universidade da Coruña (UDC) dataset is yet another promising and flexible
dataset used in [1]. The major principle used while collecting data for this dataset is to
make it more realistic and applicable in real life which was a lack in dataset developed
so far in HAR. The highlighting feature of this dataset is that the smartphone used to
collect data can be put in various places of the subject’s body and not only in the pockets or
around the waist. However, the challenge lies in developing a model that could use such
a complex dataset and predict varied states of human activities such as inactive, active,
walking and driving.

Furthermore, many other works built their own datasets and carried on with their
research on HAR. For instance, in [20], the experiment consisted of nine different ori-
entations of the smartphone. They proposed an online support vector machine (SVM)
model to solve the problem. They also made comparisons between their approach with
some other state-of-the-art techniques such as Random Forest, CNN, etc. Following the
same line, Deep Learning methods have also been used to prepare datasets for HAR. The
results in [21] show that these methods are futuristic as they can predict non-stationary
activities such as running, jogging, or walking more efficiently. Additionally, it has been
found that SVM provides better results in predicting activities that take place for shorter
periods. Moving on, models using the long short-term memory (LSTM) approach are
becoming popular for both HAR and abnormal human activity prediction [5]. The main
advantage of LSTM techniques is that they do not require feature extraction in advance to
proceed to model training. However, they require huge datasets for accurate classification
outcomes. In addition, they need excess time for model training and to avoid overfitting
(and underfitting), a suitable stop criterion is also required. For instance, in [22] and [23],
we can see that the LSTM model yielded particularly reliable results. In fact, Bi-LSTMs
(bidirectional LSTMs–an improved version of regular LSTMs) used in [22] have shown
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exemplary results as the neural network adopts prospective learning, and thus the results
are obtained with accuracy as high as 95%.

Moreover, these studies have also used the sliding window approaches in their meth-
ods for performing HAR, as can be seen in [24]. Again, this approach depends on the kinds
of human activities taken into consideration, placement of the sensor (accelerometer has
been used as a sensor), classification methods used and the window size (in seconds). For
example, Hemalatha et al. [25] used Frequent Bit Pattern-based Associative Classification
(FBPAC) to identify activities such as walking, sitting/standing, lying down and falling.
The classification algorithm used a pattern mining based approach to identify the classes
corresponding to human activities. The sensor in this study was placed around the chest of
the subject. With a window size of 10, they achieved an in-subject classification accuracy
of 92%.

The aforementioned methods and techniques have their own advantages. Some of
their limitations include:

1. The dataset used in the proposed methods which showed better results have a smaller
number of participants. For producing generic HAR outcomes, a bigger size of data
collected from several participants is advantageous.

2. Except for one or two proposed methods, there is a meagre analysis and in-depth
study carried out on already existing methods, which may still bring comparable
results such as the newly developed methods.

3. Less emphasis might be given to the evaluation of the models so developed for
performing HAR.

These points are sources of motivation for this paper. Hence, in this paper, an already
existing deep neural network method viz. CNN is used to perform the prediction of
human activities. Furthermore, it has also been taken care that the model used in this
research work is well evaluated before it is put into use. Finally, the dataset used in this
paper is that of Wireless Sensor Data Mining (WISDM) as it has been the most widely used,
including its first use in [12] and later in many others, including [26–36]. This shows that the
dataset used is authentic. Moreover, the dataset boasts a maximum number of participants
comparatively. Table 1 shows a qualitative comparison between various datasets used
for HAR.

Table 1. A brief and qualitative comparison between some datasets used for HAR.

UCI HAR WISDM
(Used in This Work) UDC HAR HARSense

Human activities studied
Walking, Walking upstairs,

Walking downstairs,
Sitting, Standing, Laying

Walking, Jogging,
Upstairs, Downstairs,

Sitting, Standing

Inactive, Active,
Walking, Driving

Walking, Standing,
Upstairs, Downstairs,

Running, Sitting
Smartphone orientation Fixed Fixed Free Fixed

Smartphone positioning Waist Front pants leg pocket As per the individual’s
choice Front pocket and waist

Sensor frequency Fixed Fixed Not fixed Fixed
Dissimilar Individuals Yes Yes Yes No

Type(s) of sensors used Accelerometer; gyroscope Accelerometer; gyroscope Accelerometer; gyroscope;
magnetometer; GPS Accelerometer; gyroscope

Number of subjects
involved in the study 30 36 19 12

3. Research Methodology

In this section, Section 3.1 presents a description of our problem associated with the
recognition of human activities. Next, Section 3.2 gives a brief introduction about the
methodology used in general and then the step-by-step approach followed to perform
human activity recognition (HAR). Finally, Section 3.3 presents the software tools used in
the implementation of this research.
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3.1. Problem Description

Human activity recognition plays a key role in studying interactions between human
beings. It assists in understanding the interpersonal relations of the person. Intuitively, it is
difficult to extract the same without human intervention because it consists of comprehend-
ing complex factors such as their psychological state, their physiological state and their
personality that makes them unique as a person [37]. Additionally, human activity recogni-
tion can support the surveillance systems to identify any criminal activity. Moreover, HAR
is a significant function for monitoring the health of patients to ensure their well-being.
There is a plethora of activities that humans perform in their daily lives. However, this
work focuses on the identification of few basic human activities such as walking, jogging,
sitting, standing, going downstairs and going upstairs. Each class of activity is labelled
from 0 to 5, which shall be differentiated using the CNN model, as mentioned below in
Table 2.

Table 2. Human activities and their corresponding labels.

Human Activity Label

Downstairs 0
Jogging 1
Sitting 2

Standing 3
Upstairs 4
Walking 5

3.2. CNN for Human Activity Recognition

A convolutional neural network, abbreviated as CNN or ConvNet, is a deep learning
method that falls under the category of artificial neural networks (ANN). It is mostly
applied to analyze visual imagery in common [38]. CNNs have had pioneering results
over the years in an array of fields related to pattern recognition, from voice recognition
to image processing and video recognition. Additionally, they also have applications in
recommender systems [39], image classification, image segmentation and analysis, natural
language processing [40], brain–computer interfaces [41] and financial time-series [42]. The
striking feature of CNN is that it reduces the number of parameters in neural networks.
This advantage has motivated researchers to build bigger models to work out sophisticated
tasks, which was otherwise not achievable with classic artificial neural networks [43].

The CNN architecture consists of three layers viz. an input layer, hidden layers
and an output layer. The hidden layers consist of convolutional layers which perform a
dot product (Frobenius inner product) of the convolution kernel with the input matrix
associated with the layers. The activation function related to this dot product is ReLU. A
feature map is generated using the convolution operation. Furthermore, it contributes to
the input of the next layer. Pooling layers and fully connected layers are the next type of
layers that enter the picture. The pooling layers minimize the dimensions of data through
the combination of the outputs of neuron clusters into a single neuron in consecutive layers,
respectively. Therefore, the computational power required to process the data is reduced.
On the other hand, the fully connected (FC) layer extracts the features from the previous
layers along with their corresponding filters and accordingly performs classification. In
this type of layer, the Softmax activation function is used to classify inputs. The outcome of
this function is the probability value lying between 0 and 1.

The input layer requires that the data be reshaped. In 2D CNN, the kernel moves in
two directions and hence the adjective “2D” is used to refer to such CNNs. The input and
output data of 2D CNN are 3-dimensional. Therefore, the proposed 2D CNN model is
given 3-dimensional input data as the values of three accelerometer readings (x, y, z-axes).
The accelerometer readings represent time-series data. It is to be noted that the individual
accelerometer data of each axis are 2-dimensional. The first dimension represents the
time-steps and the second dimension represent the acceleration for the respective axis.
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Furthermore, the CNN networks are prone to overfitting data due to the full connectivity
of its layers. Overfitting can be regularized using weight decay, skipped connections or
dropout [44] methods. During the development of the 2D CNN model, we have used the
dropout method to reduce overfitting. Additionally, the activity data are collected from
each person involved in the experiment for each activity to minimize overfitting. After
pre-processing of data is complete, each record (associated with each activity) is fed into the
neural network. Once reshaping of data takes place, the convolutional layer, pooling layer,
and the fully connected layers present in the hidden layer perform the necessary operation
on the data with Softmax activation at the final layer. The activities can be classified into
six classes which implies the creation of 6 output values, one for each activity. Figure 1
indicates the CNN model development to perform HAR.
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Now, we briefly describe the model development process as depicted in Figure 1. The
human subject performs any one of the six activities. The accelerometer data are recorded
for the three axes (x, y and z). For pre-processing this recorded data, it must be reshaped
before feeding it into the neural network. During reshaping, it must be ensured that each
person has multiple two-dimensional records which hold 80 time slices for each of the three
accelerometer readings. Every record corresponds to a unique label. There are six unique
labels, each representing the discussed human activities. Next, those records are fed into
the neural network during training. Moving on to the input layer, this layer is a vector
with 240 elements (flattened representation of 80-time slices for 3 accelerometer readings
each). Furthermore, the three hidden layers have 100 nodes each. The layers are fully
connected. There is also an additional layer for reshaping the input into an 80 × 3 matrix
and a Softmax activation layer as the ending layer. Finally, coming to the output layer, the
six available labels, viz., 0, 1, 2, 3, 4 and 5 can be observed in Figure 1. The network would
eventually provide the probabilities regarding each output class.

3.3. Software Tools Used

The experiment with the CNN model conducted in Section 4 was implemented in
the Python programming language. Keras [46] is the major library of Python that was
used along with TensorFlow [47]. A Jypyter Notebook was chosen as the implementation
platform. Moreover, other important Python libraries used during model development
and data analysis were matplotlib [48], scikit-learn [49], pandas [50] and NumPy [51].

Moving on, the model needs to be compiled and fitted. Thus, a mini-batch size is
fixed experimentally to 80 samples. This process is supported using an optimizer such
as ADAM [52]. It is an algorithm that can be used to rationalize the network weights
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iteratively for the concerned training data. It provides better optimization than classical
stochastic gradient descent methodology.

4. Experiment Study

In this section, the implementation work behind the activity recognition task is ex-
plained. Section 4.1 explains the dataset and the data collection process. Section 4.2
describes the six activities concerning the accelerometer readings. Section 4.3 explains how
data are balanced in the dataset. Section 4.4 discusses the data standardization and frame
preparation for the study. Section 4.5 briefly explains the splitting of data for training and
testing purposes. Finally, Section 4.6 presents the development of the 2D CNN model along
with model evaluation and the confusion matrix.

4.1. Data Collection

This research uses the WISDM dataset [12] as described in Table 1. A total of
1,098,209 examples are present in the dataset. A total of 36 participants participated in the
experiment. To collect data for this experiment, every participant was required to carry
a smartphone running on the Android operating system during the performance of each
of the six activities. The subjects were required to carry their Android phones in a pocket
situated in the front portion of their pants. Furthermore, they were advised to sit, walk,
stand, jog, climb upstairs and go downstairs for specific durations of time.

An Android application, running on the smartphone, controlled the data collection
from the accelerometer during activity performance by the subjects. The application used
in the experiment comprised a graphical user interface, which permitted the experiment
supervisor to record the subject’s name and label the activity that the subject performed.
Furthermore, the application also provided a feature to start and stop collecting data. In
addition, the application enabled the supervisor to control the type of data from different
sensors (e.g., gyroscope, accelerometer) and to set the frequency of data collection. Over-
all, the data from the accelerometer were collected every 50 milliseconds at the rate of
20 samples per second.

For example, Table 3 shows a part of the dataset with the activity details of participant
with user ID 33. The participant is performing the jogging activity. The time column
consists of the timestamps in numeric form, which is generally the phone’s uptime in
nanoseconds. The corresponding coordinate values of the three axes are also included in
the table.

Table 3. Activity details of a typical subject of the experiment.

User ID Activity Time x y z

0 33 Jogging 49105962326000 −0.6946377 12.680544 0.50395286
1 33 Jogging 49106062271000 5.012288 11.264028 0.95342433
2 33 Jogging 49106112167000 4.903325 10.882658 −0.08172209
3 33 Jogging 49106222305000 −0.61291564 18.496431 3.0237172
4 33 Jogging 49106332290000 −1.1849703 12.108489 7.205164

4.2. The Activities

In this research study, the activities that are taken into consideration are: walking,
going upstairs, going downstairs, sitting, jogging and standing. There are two reasons why
these activities were selected. Firstly, these activities are quite common, and many people
perform them in their everyday lives. Secondly, these activities also involve movements
of the body that take place for a considerable amount of time, hence recognizing them
becomes an easy task. Moreover, most of these activities show repetitive patterns in body
movements, which can make their recognition easier [12]. When the data are recorded
for respective activities, the accelerometer readings (acceleration values) are recorded in
the three axes, viz., x-axis, y-axis and z-axis. For this study, the horizontal motion of the
subject’s leg is captured in the x-axis. The upward and downward motion of the body is
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captured in the y-axis. Lastly, the forward motion of the subject’s leg is captured in the
z-axis.

Figure 2a–f shows six plots for each activity performed by a typical human subject
who had participated in the experiment. Before depicting the accelerometer values of
the three axes in their graphical forms, a check for null or missing values was performed.
It was found that there were no null values in the reading, thus ensuring that the data
are well-filtered before representation. Every plot consists of three subplots representing
acceleration values concerning the x, y, and z-axis. As mentioned before, the data are
recorded at a frequency of 20 Hz, i.e., 20 samples per second. As only 180 records are
considered from the beginning, each plot illustrates an interval of 9 s for the respective
activities (calculation: 0.05 ∗ 180 = 9 s). It could be observed that sitting and standing
activities as seen in Figure 2e,f, respectively, do not display recurring behaviour but do
possess distinguishing patterns with respect to points on the x, y and z axes. In contrast,
the rest of the four activities (Figure 2a–d), which involve carrying out repeated motions,
do show recurring patterns in the plots. An important aspect of the plots in Figure 2 that
should be noted is that the values of the y-axes have the highest magnitudes of acceleration
compared with other axes. This is because of Earth’s gravity, which causes an acceleration
of 9.8 m/s2 towards the centre of the earth. Due to this, the accelerometer measures
9.8 m/s2 in the direction of the Earth’s centre.

The approximate periodic patterns for the activities shown in Figure 2a–f show a
relationship between time and accelerometer reading values. Additionally, as per expec-
tation, standing and sitting activities have constant acceleration values when there is a
negligible motion before and after sitting or standing. The plot for walking shown in
Figure 2a shows more variations and many peaks as it involves more motion. The distance
between two consecutive peaks on the y-axis and z-axis represents the time taken by the
subject to perform a stride while walking. The adjacent values of the x-axis plot are lesser in
magnitude comparatively and display the peaks in association with the remaining two axes.
For jogging activity (Figure 2d), similar trends such as walking are seen for the data related
to the y-axis and z-axis. Nonetheless, the extent of magnitudes of acceleration on the y-axis
is more than that present in walking, with an observable shift in the negative direction.
Additionally, it can be observed that jogging involves comparatively more variation and
higher frequency due to repetitive motions of the body.
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For downstairs, as seen in Figure 2c, each small peak in the y-axis plot indicates that
the subject is going down by one stairstep. Similarly, the z-axis values show that the
subject is moving down each stair, but with acceleration in the negative direction. Next,
the x-axis plot displays a progression of small peaks in a semi-regular fashion, wherein
the acceleration is wavering between positive and negative magnitudes. For upstairs
(Figure 2b), there is a sequence of semi-regular peaks in the x-axis with greater magnitudes
initially. In the y-axis, the peaks are occurring in regular intervals. The z-axis data have
slightly spaced peaks, which shows that the subject takes a longer time to climb upstairs in
comparison with downstairs.

4.3. Data Balancing

The initial data from the dataset are highly unbalanced. It can be seen from Figure 3
that a greater amount of data for walking and jogging activities is present compared with
other activities. This is because the number of training examples or samples for those
two activities have been collected in abundance compared with the rest of the activities
during the actual experiment. The training examples or samples are crucial for model
development and human activity prediction. As CNNs are supervised deep learning
models, they require huge set of input data and known responses to the output data for
learning. Greater number of samples assist in better learning of the CNN model and hence
lead to better prediction, provided that the number of samples for all the six activities are
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equal. It is also clear from Figure 4 that the total number of participants in the experiment
is 36.
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Furthermore, from Figure 4, it is obvious that user 20 has recorded the highest amount
of data for the experiment. On the other hand, user 4 has recorded the least amount of data.
Hence, there is non-uniformity in the recording of data by participants as well. However,
this non-uniform distribution of training examples is less of a concern as we are more
interested in the greater number of examples for different activities with little stress over
who performs them. However, for better prediction and recognition of human activities, it
is crucial to have balanced data for each of the six activities. From Figure 3, we can observe
that the data are highly skewed towards walking and jogging. If this issue is avoided, it
might result in overfitting during training, which could lead to an unwanted performance
drop of our machine learning model [53]. Since equal importance is ought to be given for
all the six activities, it is necessary to observe the activity which has the least number of
examples. It is a standing activity with 3555 examples. Therefore, data are balanced by
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considering 3555 training examples from each of the six activities. The balanced number of
training examples by activity type is shown in Figure 5.
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Furthermore, the columns present in Table 3 are in string format. However, the values
of x, y and z are required in the format of floating-point numbers for further processing.
Thus, the datatype of x, y and z column is changed to “float64”, representing floating-
point values. After the dataset is balanced, all the activities are brought in a single Data
frame. Moving on, the activity variables are converted into categorical values. Labels
(output/target variables) from 0 to 5 are given to activities, viz., going downstairs, jogging,
sitting, standing, going upstairs and walking, respectively, with the help of an array of
size 6.

4.4. Data Standardization and Frame Preparation

The values of x, y and z can be seen in Table 3 for the jogging activity performed by
user 33. It can be observed that the respective values show a variance of greater magnitude
between them in their respective columns. To decrease variance among the data, a standard
scaling technique was used, which resulted in values with much lesser variance, as seen in
Table 4.

Table 4. Standardized data with lesser variance in x, y and z values.

x y z Label

0 0.000503 0.000503 0.000503 5
1 0.073590 0.073590 0.073590 5
2 −0.361275 −0.361275 −0.361275 5
3 1.060258 1.060258 1.060258 5
4 −0.237028 −0.237028 −0.237028 5

. . . . . . . . . . . . . . .
21325 −0.470217 −0.470217 −0.470217 3
21326 −0.542658 −0.542658 −0.542658 3
21327 −0.628514 −0.628514 −0.628514 3
21328 −0.781444 −0.781444 −0.781444 3
21329 −0.800225 −0.800225 −0.800225 3
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The features are standardized by removing the mean and scaling to unit variance. For
instance, consider a sample X. The standard score of the sample X is calculated as:

z = (X−u)/s

where u is the mean of the training samples and s is the standard deviation of the training
samples. During implementation to obtain the standardized data, the data were firstly fit
and then transformed using the fit_transform () method under the sklearn.preprocessing.
StandardScaler class. These data are further converted into a data frame using the pandas.
DataFrame class.

Data frame preparation is necessary as the subjects will be performing their activity
for a random period of time, but only a certain amount of data can be fed into the neural
network at a time. Therefore, with the help of a Data frame, it is possible to analyze the data
in two dimensions. It also helps in dividing the data into batches that need to be processed
by the model. For this purpose, the frequency is taken as 20, and the frame size is taken to
be equal to 80 (frequency ∗ 4). This implies that 80 ∗ 3 samples will be fed to the model in a
batch, considering all three dimensions. The hop size is taken as twice as the frequency, i.e.,
equal to 40. This implies that the advancement on the Data frame will be made with 40
data samples. Thus, the number of records in each dataset can be calculated as:

(No. of training samples of an activity × Total no. of activities/hop size) = 3555 ×
6/40 ≈ 533.

4.5. Splitting Data for Training and Testing

The complete dataset is split into a training set and a test set as it is necessary for
training and evaluating the model. While splitting the data, care was taken that the data
present in the test set did not affect the training set data. This is ensured by allocating 80%
of available data for training and the remaining 20% of data for testing. This approach can
also prove beneficial for analyzing the overall performance of the model during training
and validation. The idea behind splitting is to let the neural network learn from the data
generated by few persons who have been through the experiment. Additionally, since each
two-dimensional record should hold 80 time slices for the accelerometer readings, the data
are reshaped as follows:

Before reshaping

Shape of the training set = (532, 80, 3)

Shape of the testing set = (532)

where 532 represents number of samples which is approximately equal to the calculated
number of records, which is 533; 80 is the width, i.e., the number of time slices is 80 and 3
represents the height (3 accelerometer readings from x, y and z axes).

After reshaping

Shape of training set = (425, 80, 3); since, 532 × 0.8 ≈ 425

Shape of testing set = (107, 80, 3); since, 532 × 0.2 ≈ 107

where 425 and 107 are the number of samples in the training and the testing set, respectively.
The reason for reshaping is to ensure that the data input to the model are in the correct
shape. Next, we are interested in knowing how well our model predicts the bodily motions
of persons it has not come across.

4.6. The 2D CNN Model

After the prerequisite steps were completed, the next step was the development of a
two-dimensional convolutional neural network. The data were, therefore, made ready to
be processed by Keras. Moving on, the model was developed using five layers. The first
layer is the sequential layer, which enabled us to add further layers to the neural network.
This layer also performs reshaping of the data by bringing them into the “old” format. The
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filter size for this layer is set to 16. Following the previous layer, the next three layers are
the hidden layers. Six classes were used in the model (going downstairs, jogging, sitting,
standing, going upstairs, walking). The aforementioned layers use the Rectified Linear
Unit (ReLU) as a universal activation function and have a filter size of 32. The kernel size
for the first four layers is (2,2), which implies that the height and width of the convolution
window are 2 and 2, respectively. Lastly, the fifth layer comprises the dense layer which
identifies the six classes and runs a Softmax activation function for multi-class probability
calculation. To reduce overfitting, a dropout of 0.1 is used for the sequential layer and a
dropout of 0.2 is used for the next three hidden layers. Next, for the dense layers, a dropout
of 0.5 is used. The model is finally built. The input, convolution, pooling, fully connected
and output layer is depicted in Figure 6. The next step is the compilation of our model. This
is carried out by executing ADAM optimizer with a learning rate of 0.001, the loss is taken
as sparse categorical cross-entropy and the metrics are based on accuracy. Furthermore,
the training data are fitted into the model with 10 epochs and the training begins. The first
epoch had achieved an accuracy of only 24% with training, whereas the validation was
42.06% accurate. Coming to the tenth epoch, the training was highly accurate with 93.88%
accuracy whereas the validation was 89.72% accurate. Section 4.6.1 describes how well
the model has learnt, and the final confusion matrix for activity prediction is shown in
Section 4.6.2.
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4.6.1. Model Evaluation

After the training is finished, it is necessary to gauge our model so that we can be sure
that it can predict human activities well enough. For this purpose, two learning curves
were plotted, which are presented in this paper. Figure 7 shows the plot of training and
validation accuracy values for all the ten epochs. Next, Figure 8 shows the plot of training
and validation loss values for all the ten epochs.

From Figures 7 and 8, we can conclude that the CNN model has been trained with
high accuracy. Additionally, in Figure 8, the validation loss is less than the training loss.
This shows that the developed model is neither overfitting nor underfitting.
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4.6.2. The Confusion Matrix

Finally, the six activities are predicted using a confusion matrix. For this, the test data
are passed in an appropriate function, and as a result a 6 × 6 matrix is obtained with the
diagonal squares containing the probabilities of recognition of each of the six classes (See
Figure 9).
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5. Results and Discussion

Based on the confusion matrix as seen in Figure 9, we conclude that the proposed 2D
CNN model was successful in predicting the human activities with the accuracies seen in
Table 5.

Table 5. Human activity prediction scores.

Activity Prediction Accuracy (%)

Downstairs 89%
Jogging 94%
Sitting 100%

Standing 100%
Upstairs 61%
Walking 94%

From Table 5, it can be concluded that the 2D CNN model was perfectly able to
recognize sitting and standing activity. Moreover, activities such as jogging, walking and
downstairs were predicted with good accuracy. However, the upstairs activity has the least
accuracy because the model becomes confused with the downstairs activity due to the
similar nature of both the activities. The average accuracy of predicting the six activities
is 89.67%

Now, to substantiate the efficacy of the method that we put forward in this paper, we
compare it with a state-of-the-art method, namely a popular method such as the LSTM.
The results are summarized in Table 6.

From Table 6, it can be said that LSTM fares well in the prediction of all the six activities
with high accuracy. However, the 2D CNN model performs better in activities such as
downstairs activity, standing and sitting. Additionally, the average accuracy of predicting
the same activities using LSTM is found out to be approximately 92.33%. Even though
LSTM has higher average accuracy, the 2D CNN model still fares well in activity prediction.
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Table 6. Comparison of accuracy between 2D-CNN and LSTM.

Activity LSTM Accuracy (%) 2D CNN Accuracy (%)

Downstairs 86% 89%
Jogging 96% 94%
Sitting 92% 100%

Standing 94% 100%
Upstairs 87% 61%
Walking 99% 94%

6. Conclusions

This paper presented a 2D CNN model for recognizing and predicting simple human
activities with the help of an existing dataset based on accelerometer readings. The pro-
posed model identifies and predicts the majority of the six activities with a high degree of
accuracy—over 85% of the time, on average. The approach of building the convolutional
neural network in a two-dimensional format and its application in HAR is the highlighted
feature of our work. This paper also shows how important research on human activity
recognition has become in present times, with newer methods coming over time.

In addition, this paper also shows how learning evaluation is necessary before pro-
ceeding towards model development. This helps in comparing the learning scores with
the actual prediction scores of the model, and thereby a consistency check can be per-
formed. Moreover, the results obtained in this paper were comparable with a renowned
state-of-the-art method—the LSTM.

Our future work can focus on working on newly developed datasets that are more
aligned with real-life scenarios, consisting of a greater number of activities to predict and a
bigger number of participants. Otherwise, an effort can also be made to collect data, per se,
with a greater number of participants with different lifestyles, behaviour, ageing, sex, etc.
Another future work could include abnormal human behaviour prediction. With the help
of a functional activity recognition system, one can supervise the dependent persons such
as the elderly people in smart homes and evaluate their activity level for healthcare services.
Moreover, for all the residents staying in smart buildings, human activity recognition can
be utilized in checking their comfort level concerning factors such as temperature and
humidity. Last but not least, 1D and 3D approaches towards building the CNN model
could be tried out for predicting human activities in future.

Author Contributions: All authors have contributed equally to this paper. Conceptualization, A.P.;
Methodology, A.P.; Supervision, A.K.T., M.M.A., A.A., R.F.M. and A.M.M.; Writing—original draft,
A.P.; Writing—review & editing, A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: We deeply acknowledge Taif University for supporting this research through Taif University
Researchers Supporting Project Number (TURSP-2020/328), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The WISDM (Wireless Sensor Data Mining) data set used for this
research work was taken from https://www.cis.fordham.edu/wisdm/dataset.php.

Acknowledgments: This research work gratefully acknowledges the Centre for Advanced Data
Science, VIT Chennai for conducting a research internship program in the month of July 2021 (under
the supervision of Amit Kumar Tyagi) and supporting the research activity, without which it would
not have been possible to complete this research paper. And we deeply acknowledge Taif University
for supporting this research through Taif University Researchers Supporting Project Number (TURSP-
2020/328), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.cis.fordham.edu/wisdm/dataset.php


Appl. Sci. 2021, 11, 12099 18 of 19

References
1. Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. A Public Domain Dataset for Real-Life Human Activity

Recognition Using Smartphone Sensors. Sensors 2020, 20, 2200. [CrossRef] [PubMed]
2. Zhu, N.; Diethe, T.; Camplani, M.; Tao, L.; Burrows, A.; Twomey, N.; Kaleshi, D.; Mirmehdi, M.; Flach, P.; Craddock, I.J. Bridging

e-Health and the Internet of Things: The SPHERE Project. IEEE Intell. Syst. 2015, 30, 39–46. [CrossRef]
3. Oliver, N.; Horvitz, E.; Garg, A. Layered representations for human activity recognition. In Proceedings of the Fourth IEEE

International Conference on Multimodal Interfaces, Pittsburgh, PA, USA, 16 October 2002; pp. 3–8. [CrossRef]
4. Aran, O.; Sanchez-Cortes, D.; Do, M.-T.; Gatica-Perez, D. Anomaly Detection in Elderly Daily Behavior in Ambient Sensing

Environments. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; pp. 51–67.
5. Zerkouk, M.; Chikhaoui, B. Long Short Term Memory Based Model for Abnormal Behavior Prediction in Elderly Persons. In How

AI Impacts Urban Living and Public Health; Springer: Cham, Switzerland, 2019; pp. 36–45.
6. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, J.; Havinga, P.J.M. Complex Human Activity Recognition Using Smartphone and

Wrist-Worn Motion Sensors. Sensors 2016, 16, 426. [CrossRef] [PubMed]
7. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition

Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [CrossRef] [PubMed]
8. Parate, A.; Chiu, M.C.; Chadowitz, C.; Ganesan, D.; Kalogerakis, E. RisQ: Recognizing smoking gestures with inertial sensors on

a wristband. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, New
York, NY, USA, 2 June 2014; pp. 149–161.

9. Ramos-Garcia, R.I.; Hoover, A.W. A Study of Temporal Action Sequencing During Consumption of a Meal. In Proceedings of
the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, DC, USA,
22–25 September 2021.

10. Dong, Y.; Scisco, J.; Wilson, M.; Muth, E.; Hoover, A. Detecting Periods of Eating During Free-Living by Tracking Wrist Motion.
IEEE J. Biomed. Health Inform. 2013, 18, 1253–1260. [CrossRef] [PubMed]

11. Guiry, J.J.; Van De Ven, P.; Nelson, J. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with
Ubiquitous Devices. Sensors 2014, 14, 5687–5701. [CrossRef] [PubMed]

12. Kwapisz, J.R.; Weiss, G.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 2011, 12,
74–82. [CrossRef]

13. Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In Artificial Intelligence and Soft Computing—
ICAISC 2008; Springer: New York, NY, USA, 2004; Volume 3001, pp. 1–17.

14. Krishnan, N.C.; Colbry, D.; Juillard, C.; Panchanathan, S. Real Time Human Activity Recognition Using Tri-Axial Accelerometers.
In Proceedings of the Sensors Signals and Information Processing Workshop, Sedona, AZ, USA, 11–14 May 2008.

15. Choudhury, T.; Borriello, G.; Consolvo, S.; Haehnel, D.; Harrison, B.; Hemingway, B.; Hightower, J.; Klasnja, P.; Koscher, K.;
Lamarca, A.; et al. The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Comput. 2008, 7,
32–41. [CrossRef]

16. Voicu, R.-A.; Dobre, C.; Bajenaru, L.; Ciobanu, R.-I. Human Physical Activity Recognition Using Smartphone Sensors. Sensors
2019, 19, 458. [CrossRef] [PubMed]

17. Figueiredo, J.; Gordalina, G.; Correia, P.; Pires, G.; Oliveira, L.; Martinho, R.; Rijo, R.; Assuncao, P.; Seco, A.; Fonseca-Pinto,
R. Recognition of human activity based on sparse data collected from smartphone sensors. In Proceedings of the IEEE 6th
Portuguese Meeting on Bioengineering, Instituto Superior de Engenharia de Lisboa (ISEL), Lisbon, Portugal, 22 February 2019;
pp. 1–4.

18. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using
Smartphones. InEsann 2013, 3, 3.

19. Choudhury, N.A.; Moulik, S.; Roy, D.S. Physique-Based Human Activity Recognition Using Ensemble Learning and Smartphone
Sensors. IEEE Sens. J. 2021, 21, 16852–16860. [CrossRef]

20. Chen, Z.; Zhu, Q.; Soh, Y.C.; Zhang, L. Robust Human Activity Recognition Using Smartphone Sensors via CT-PCA and Online
SVM. IEEE Trans. Ind. Inform. 2017, 13, 3070–3080. [CrossRef]

21. Ronao, C.A.; Cho, S.-B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.
Appl. 2016, 59, 235–244. [CrossRef]

22. Hernandez, F.; Suarez, L.F.; Villamizar, J.; Altuve, M. Human Activity Recognition on Smartphones Using a Bidirectional LSTM
Network. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga,
Colombia, 24–26 April 2019; pp. 1–5.

23. Badshah, M. Sensor—Based Human Activity Recognition Using Smartphones. Master’s Thesis, San Jose State University, San
Jose, CA, USA, 2019. [CrossRef]

24. Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14,
6474–6499. [CrossRef] [PubMed]

25. Hemalatha, C.; Vaidehi, V. Frequent Bit Pattern Mining Over Tri-axial Accelerometer Data Streams for Recognizing Human
Activities and Detecting Fall. Procedia Comput. Sci. 2013, 19, 56–63. [CrossRef]

26. Gallagher, S. Smartphone Sensor Data Mining for Gait Abnormality Detection; Fordham University: New York, NY, USA, 2013.

http://doi.org/10.3390/s20082200
http://www.ncbi.nlm.nih.gov/pubmed/32295028
http://doi.org/10.1109/MIS.2015.57
http://doi.org/10.1109/ICMI.2002.1166960
http://doi.org/10.3390/s16040426
http://www.ncbi.nlm.nih.gov/pubmed/27023543
http://doi.org/10.3390/s151229858
http://www.ncbi.nlm.nih.gov/pubmed/26690450
http://doi.org/10.1109/JBHI.2013.2282471
http://www.ncbi.nlm.nih.gov/pubmed/24058042
http://doi.org/10.3390/s140305687
http://www.ncbi.nlm.nih.gov/pubmed/24662406
http://doi.org/10.1145/1964897.1964918
http://doi.org/10.1109/MPRV.2008.39
http://doi.org/10.3390/s19030458
http://www.ncbi.nlm.nih.gov/pubmed/30678039
http://doi.org/10.1109/JSEN.2021.3077563
http://doi.org/10.1109/TII.2017.2712746
http://doi.org/10.1016/j.eswa.2016.04.032
http://doi.org/10.31979/etd.8fjc-drpn
http://doi.org/10.3390/s140406474
http://www.ncbi.nlm.nih.gov/pubmed/24721766
http://doi.org/10.1016/j.procs.2013.06.013


Appl. Sci. 2021, 11, 12099 19 of 19

27. Lockhart, J.W. The Benefits of Personalized Data Mining Approaches to Human Activity Recognition with Smartphone Sensor
Data. Ph.D. Thesis, Fordham University, New York, NY, USA, 2016.

28. The Burgos Tapestry: Medieval Theatre and Visual Experience|Attitudes towards Immigration Reform in the United States: The
Importance of Neighborhoods|The Spontaneous Formation of Selenium Nanoparticles on Gallic Acid Assemblies and Their
Antioxidant Properties|A Power Beyond the Reach of Any Magic’: Mythology in Harry Potter|A Canyon Apart: Immigration
Politics and Hispanic Mobilization in Arizona. Available online: www.fordham.edu/fcrh/furj (accessed on 29 August 2021).

29. Weiss, G.M.; Lockhart, J.W. Identifying user traits by mining smart phone accelerometer data. In Proceedings of the Fifth
International Workshop on Knowledge Discovery from Sensor Data—SensorKDD, San Diego, CA, USA, 21 August 2011.

30. Lockhart, J.W.; Weiss, G.M.; Xue, J.C.; Gallagher, S.T.; Grosner, A.B.; Pulickal, T.T. Design considerations for the WISDM smart
phone-based sensor mining architecture. In Proceedings of the Fifth International Workshop on Knowledge Discovery from
Sensor Data—SensorKDD, San Diego, CA, USA, 21 August 2011.

31. Weiss, G.M.; Lockhart, J.W. The Impact of Personalization on Smartphone-Based Activity Recognition. Available online:
www.aaai.org (accessed on 29 August 2021).

32. Lockhart, J.W.; Pulickal, T.; Weiss, G.M. Applications of mobile activity recognition. In Proceedings of the 2012 ACM Conference
on Ubiquitous Computing—UbiComp, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1054–1058.

33. Weiss, G.M.; Lockhart, J.W. A comparison of alternative client/server architectures for ubiquitous mobile sensor-based applica-
tions. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp, Pittsburgh, PA, USA, 5–8 September
2012; pp. 721–724.

34. Weiss, G.M.; Nathan, A.; Kropp, J.; Lockhart, J.W. WagTag. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication 2013, Zurich, Switzerland, 8–12 September 2013; pp. 405–414.

35. Lockhart, J.W.; Weiss, G.M. The Benefits of Personalized Smartphone-Based Activity Recognition Models. In Proceedings of the
2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014.

36. Lockhart, J.W.; Weiss, G.M. Limitations with activity recognition methodology & data sets. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA,
13–17 September 2014.

37. Vrigkas, M.; Enikou, C.; Kakadiaris, I.A. A Review of Human Activity Recognition Methods. Front. Robot. AI 2015, 2, 28.
[CrossRef]

38. Valueva, M.; Nagornov, N.; Lyakhov, P.; Valuev, G.; Chervyakov, N. Application of the residue number system to reduce hardware
costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [CrossRef]

39. Van Den Oord, A.; Dieleman, S.; Schrauwen, B. Deep content-based music recommendation. In Neural Information Processing
Systems Conference; Neural Information Processing Systems Foundation: Vancouver, Canada, 2013.

40. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep Neural Networks with Multitask Learning.
In Proceedings of the 25th International Conference on Machine Learning, New York, NY, USA, 5–9 July 2008; pp. 160–167.
[CrossRef]

41. Avilov, O.; Rimbert, S.; Popov, A.; Bougrain, L. Deep Learning Techniques to Improve Intraoperative Awareness Detection from
Electroencephalographic Signals. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 142–145.

42. Tsantekidis, A.; Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. Forecasting Stock Prices from the Limit Order
Book Using Convolutional Neural Networks. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI),
Thessaloniki, Greece, 24–27 July 2017; Volume 1, pp. 7–12.

43. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.

44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [CrossRef]

45. Ackermann, N. Deep Neural Network Example. In Licensed under Creative Commons CC BY-ND 4.0; Retrieved 17 August 2021;
Available online: https://towardsdatascience.com/human-activity-recognition-har-tutorial-with-keras-and-core-ml-part-1-
8c05e365dfa0 (accessed on 31 August 2021).

46. Chollet, F. Keras. 2015. Available online: https://keras.io/ (accessed on 31 August 2021).
47. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 4 June 2021).
48. MatPlotLib. Available online: https://matplotlib.org/ (accessed on 31 August 2021).
49. Scikit-Learn. Scikit-Learn: Machine Learning in Python. Scikit-Learn. 2020. Available online: https://scikit-learn.org/stable/

(accessed on 15 July 2021).
50. Pandas. Available online: https://pandas.pydata.org/ (accessed on 31 August 2021).
51. NumPy. Available online: https://numpy.org/ (accessed on 31 August 2021).
52. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
53. Roelofs, R.; Fridovich-Keil, S.; Miller, J.; Shankar, V.; Hardt, M.; Recht, B.; Schmidt, L. A Meta-Analysis of Overfitting in Machine

Learning. Available online: https://www.kaggle.com/kaggle/meta-kaggle (accessed on 31 August 2021).

www.fordham.edu/fcrh/furj
www.aaai.org
http://doi.org/10.3389/frobt.2015.00028
http://doi.org/10.1016/j.matcom.2020.04.031
http://doi.org/10.1145/1390156.1390177
http://doi.org/10.5555/2627435
https://towardsdatascience.com/human-activity-recognition-har-tutorial-with-keras-and-core-ml-part-1-8c05e365dfa0
https://towardsdatascience.com/human-activity-recognition-har-tutorial-with-keras-and-core-ml-part-1-8c05e365dfa0
https://keras.io/
https://www.tensorflow.org/
https://matplotlib.org/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://numpy.org/
https://www.kaggle.com/kaggle/meta-kaggle

	Introduction 
	Related Work 
	Research Methodology 
	Problem Description 
	CNN for Human Activity Recognition 
	Software Tools Used 

	Experiment Study 
	Data Collection 
	The Activities 
	Data Balancing 
	Data Standardization and Frame Preparation 
	Splitting Data for Training and Testing 
	The 2D CNN Model 
	Model Evaluation 
	The Confusion Matrix 


	Results and Discussion 
	Conclusions 
	References

