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Abstract: In multi-label learning, each object is represented by a single instance and is associated
with more than one class labels, where the labels might be correlated with each other. As we all know,
exploiting label correlations can definitely improve the performance of a multi-label classification
model. Existing methods mainly model label correlations in an indirect way, i.e., adding extra
constraints on the coefficients or outputs of a model based on a pre-learned label correlation graph.
Meanwhile, the high dimension of the feature space also poses great challenges to multi-label learning,
such as high time and memory costs. To solve the above mentioned issues, in this paper, we propose
a new approach for Multi-Label Learning by Correlation Embedding, namely MLLCE, where the
feature space dimension reduction and the multi-label classification are integrated into a unified
framework. Specifically, we project the original high-dimensional feature space to a low-dimensional
latent space by a mapping matrix. To model label correlation, we learn an embedding matrix from the
pre-defined label correlation graph by graph embedding. Then, we construct a multi-label classifier
from the low-dimensional latent feature space to the label space, where the embedding matrix is
utilized as the model coefficients. Finally, we extend the proposed method MLLCE to the nonlinear
version, i.e., NL-MLLCE. The comparison experiment with the state-of-the-art approaches shows
that the proposed method MLLCE has a competitive performance in multi-label learning.

Keywords: multi-label learning; label correlation; label embedding

1. Introduction

In multi-label learning, each object is represented by a single instance and is associated
with multiple class label [1–3]. The main task of learning is to build an effective classifier
based on the training data and predict the most relevant set of labels for each unseen
instance. Nowadays, multi-label learning has been applied in various fields [1,4], such as
music emotion classification [5], video classification [6], Internet [7], text classification [8,9],
and information retrieval [10].

In recent years, multi-label learning has attracted extensive attentions from researchers.
Existing research has demonstrated that exploiting label correlation can provide important
information for the prediction of new instances and significantly boost classification perfor-
mance. For example, if a piece of news is related to the theme of “Olympics”, it is more
likely to belong to the theme of “sports” and “culture”, vice versa, “war” is unlikely. When
an image was annotated with “reef”, the probability of being annotated with “waves” will
be very high, and the probability of being annotated with “desert” will be very low.

Through the investigation and research of previous work on multi-label learning, a lot
of methods [11–15] have been proposed by exploiting label correlations. For example, in
CLR [14], an extra calibration label is introduced and utilized to separate the relevant and
irrelevant labels for each instance. JFSC [15] learns the label-specific and shared features
based on pairwise label correlation. In DLCL [12], a novel multi-label learning method
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is proposed, which can find the latent class labels in the training data. DLCL exploits
the correlation between known and latent class labels to enhance the performance of the
classifier. The Maximal Correlation Embedding Network (MCEN) uses the label similarity
by embedding the maximum correlations in the label space to solve the problem of missing
labels [16]. MLC-EBMD [17] introduces a multi-label classification framework based on
Boolean matrix decomposition to improve the ability to predict labels in high-dimensional
label space, and it also performs dimension reduction in the feature space.

The aforementioned methods definitely enhance the prediction accuracy of the multi-
label algorithm by resolving and using the correlation of label. These methods on modeling
label correlation mainly use either popular regular constraints, which means that any
two labels with a strong relationship are assigned to similar model coefficients, or label
ranking. It is noted that these methods mainly model label correlations in an indirect way,
i.e., adding extra constraints on the coefficients or outputs of a multi-label classification
model based on a pre-learned label correlation graph. However, in such an indirect way
on modeling label correlation, the inherent correlations between different labels will not
be well kept. It would be better if a direct way could be proposed. Moreover, in the
environment of big data, it is convenient to collect a massive amount of data. However, the
curse of dimension has brought great obstacles to multi-label learning.Therefore, it is wise
to construct learning models in the low-dimensional feature and label space [18–20].

To solve the above mentioned issues, in this paper, we propose a new approach for
Multi-Label Learning by Correlation Embedding, namely MLLCE, where the feature space
dimension reduction and the multi-label classification are integrated into a unified frame-
work. First, we project the original high-dimensional feature space to a low-dimensional
latent space by a mapping matrix. To model label correlation, we learn an embedding
matrix from the pre-defined label correlation graph by graph embedding. Then, we use the
embedding matrix as the model coefficients to construct a multi-label classifier from the
low-dimensional latent feature space to the label space. In this way, the inherent correla-
tions between different labels will be directly kept in the model coefficients. Finally, we
extend the proposed method MLLCE to the nonlinear version, i.e., NL-MLLCE. The com-
parison experiment with the state-of-the-art approaches shows that the proposed method
MLLCE has a competitive performance in multi-label learning.

The rest of this paper is organized as follows. Section 2 reviews the previous methods
of using label correlation for multi-label learning. Section 3 introduces the proposed
method MLLCE in detail. Comparative experiment results and analyses are presented in
Section 4. Finally, we conclude this paper in Section 5.

2. Related Works

In multi-label learning, mining the correlation among labels can provide important
information, make the prediction results more accurate, and boost the performance of
the model. According to the ways on modeling label correlations, existing multi-label
learning algorithm can be divided into three categories, i.e., first-order, second-order, and
high-order algorithms. The first-order methods [21,22] deal with multi-label classification
problems without modeling the label correlations. BR [21] is a typical first-order algorithm
whose basic idea is to transform a multi-label learning problem into multiple independent
binary classification problems. The second-order methods exploit the pairwise relationship
between labels [23–25]. For the high-order methods, the relationship between all class
labels or a subset is modeled, such as [26–28]. For example, the classifier chain (CC) [29]
is a chain algorithm that uses a vector of class labels as additional instance attributes
to model high-order label correlation. The Probabilistic Classifier Chain (PCC) [30] is a
probabilistic version of CC. LELC [31] combines label embedding and label correlation to
solve multi-label text classification problems. HIDDEN [32] learns the hierarchical multi-
label classification based on the joint learning of document classifier and label embedding.
ELM-LMF [33] generates the latent label matrix and k-label dependency matrix based
on the label matrix decomposition. CLP-RNN [34] is a multi-label classification method
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that allows the selection of dynamic and context-dependent label ordering based on label
embedding. The MLL-FLSDR [20] algorithm is a multi-label learning method for solving
the problem with many labels and features based on the label embedding, which reduces
the dimension in both feature space and label space.

The second-order methods deal with the multi-label learning problem by exploring
the pairwise relationship between the labels that can be divided into two types. First, the
second-order methods incorporate the classification criteria ranking loss into the objective
function of multi-label learning, such as Rank-SVM [23], MIMLfast [24], and LSEP [25].
Second, the second-order methods constrain the label correlations to the model coefficients
or outputs, such as [11,35–38]. LLSF [35] used the correlation between the labels to learn
specific label features for multi-label learning. LSF-CI [36] is a multi-label feature multi-
label learning method which considered the relevant information of the label space and the
feature space simultaneously. There are also some algorithms that tend to investigate global
and local label correlations. ML-LOC [11] exploits local pairwise label correlation for multi-
label learning. LF-LPLC [37] learns specific label features and exploits local pairwise label
correlation for multi-label learning. GRRO [38] is a multi-label feature selection method
that exploits the global pairwise label correlation to facilitate the selection of features. These
algorithms only utilize positive label correlation between labels, while some of the label
are negatively correlated or mutually exclusive with each other. To solve this problem,
several algorithms have been proposed to model the negative correlation between labels.
For example, the LPLC [39] is a simple and effective Bayesian model to investigate the
positive correlation and negative correlation between the labels, and it finds the positive
and negative relevance class labels for each label. Nan et al. [40] exploited the local positive
and negative correlation between labels through kNN method. Most of these multi-label
learning algorithms model label correlation with external conditions, and may not be able
to maintain the correlation structure of labels well.

Dimension reduction is a fundamental pre-processing procedure for high-dimensional
data, and many methods have been proposed for multi-label learning, such as MLDA [41],
SSMLDA [42], and MLLS [43]. Through the overview of dimension reduction [44], dimen-
sion reduction can basically be divided into three categories, i.e, dimension reduction of the
feature space, dimension reduction of the label space, and dimension reduction of the label
and feature spaces simultaneously. PCA [45] is a method of dimension reduction in feature
space based on label-independence. DCR [46] is a new multi-label feature selection method
by combining feature relevance and label relevance. In [47], the authors propose a dimen-
sion reduction method DSE to learn the sparse weight matrix by projecting the original
sample into a low-dimensional subspace. MDDM [48] is a multi-label dimension reduction
approach based on maximizing the dependency between feature descriptions and relevant
class labels. CLEMS [49] performs the dimension reduction of the label space through
embedded instances. In addition, some methods are proposed to reduce dimension of
the label space, such as [50,51]. GIMC [52] learns a nonlinear mapping of the features by
reducing the instance features and labels.

In the environment of big data, the feature space of data sets becomes larger and
larger, adopting dimension reduction, which can help to get rid of redundant features
and obtain a more compact feature space, and further improve the performance of a
model. To solve the above mentioned issues, in this paper, we propose a new approach
for Multi-Label Learning by Correlation Embedding, namely MLLCE, where the feature
space dimension reduction and the multi-label classification are integrated into a unified
framework. We learn an embedding matrix from the pre-defined label correlation graph by
graph embedding and utilize the embedding matrix as the model coefficients.

3. The Proposed Method

In multi-label learning, X = [x1, x2, . . . , xn]T ∈ Rn×d is the feature matrix and Y ∈ {0, 1}n×q

is the label matrix, where n is the number of instances, d is the dimension and q is the
number of class labels. The i-th example is denoted by a vector with d attribute values
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xi = [xi1, xi2, . . . , xid], and yi = [yi1, yi2, . . . , yiq] is a set of possible labels for xi, where
yij = 1 indicates the i-th instance belonging to the j-th label, otherwise, yij = 0.

In this paper, we integrate the feature space dimension reduction and the multi-label
classification into a unified framework. The learning framework of our proposed method
MLLCE is shown in Figure 1. First, we project the original high-dimensional feature space
to a low-dimensional latent space by a mapping matrix. To model label correlation, we learn
an embedding matrix from the pre-defined label correlation graph by graph embedding.
Then, we use the embedding matrix as the model coefficients to construct a multi-label
classifier from the low-dimensional latent feature space to the label space. In this way, the
inherent correlations between different labels will be directly kept in the model coefficients.
Finally, we extend the proposed method MLLCE to the nonlinear version, i.e., NL-MLLCE.
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Figure 1. The learning framework of MLLCE.

3.1. Label Correlation Embedding

Exploiting the label correlation can improve the generalization ability of a model and
significantly improve the accuracy of model prediction in multi-label learning [53,54]. In
this paper, we model the label correlation under the second-order strategy.

First, we calculate the label correlation matrix C ∈ Rq×q by cosine similarity based on
the label matrix Y ∈ {0, 1}n×q, where n represents the number of samples, and q indicates
the number of labels. Each element Cij indicates the correlation between the i-th and j-th
labels, and it is obtained by Equation (1).

Cij =
n

∑
h=1

YhiYhj/

(√
n

∑
h=1

Y2
hi

√
n

∑
h=1

Y2
hj

)
(1)

where Yhi represents the value of the element in the h-th row and i-th column of Y, and Yhj
represents the value of the element in the h-th row and j-th column of Y.

Second, we decompose the label correlation matrix C into a low-dimensional space by
graph embedding as follows

min
W

λ1

4
||C−WTW‖2

F. (2)

For W, we can utilize it as the model coefficient to construct a multi-label classifier. In
this paper, we first construct a linear model for multi-label classification as follows

min
W

1
2
||XW− Y‖2

F +
λ1

4
||C−WTW‖2

F +
λ2

2
‖W‖21, (3)

where W = [w1, w2, . . . , wq] ∈ Rd×q, λ1 and λ2 are non-negative weight parameters. The
`21-norm regularization term is imposed on W to ensure the sparsity, which can select
discriminative features. In addition, `21 norm has been confirmed to be robust to outliers
and noise [55].
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Previous studies mainly constrain the correlation between labels on the model coef-
ficient matrix or the output by manifold regularization [35,36]. Different from previous
studies, we directly model the pairwise label correlations by graph embedding, and the
structure of label correlation will be well kept in W.

3.2. Dimension Reduction

During the past decades, multi-label classifiers are generally constructed from the
feature space to the label space [56,57] directly. However, the high dimension of multi-label
data in the feature space puts great pressure on time and memory costs. To address this
issue, we explicitly introduce a feature dimension reduction stage that the data is projected
from the original feature space to the low-dimensional feature space by mapping matrix.

We adopt the multiple linear regression model to build a linear classification model
f (X, P, W) = XPW from the low-dimensional feature space to the label space, where
P ∈ Rd×d1 is the feature mapping matrix, and W ∈ Rd1×q is the model coefficient matrix.
Consequently, the objective function can be rewritten as follows

min
P,W

1
2
||XPW− Y‖2

F +
λ1

4
||C−WTW‖2

F +
λ2

2
‖W‖21. (4)

For any matrix W ∈ Rm×n, ‖W‖2
F = ∑m

i=1 ∑n
j=1 W2

ij = tr(WTW), The `21 of W is

defined as ‖W‖21 = ∑m
i=1

√
∑n

j=1 W2
ij. Consequently, we can rewrite the third term ‖W‖21

by 2tr(WTDW), where D is a diagonal matrix with its diagonal element Dii =
1

2
√

WT
i: Wi:+ε

and ε is a small positive constant. As a result, the objective function becomes

min
P,W

1
2
||XPW− Y‖2

F +
λ1

4
||C−WTW‖2

F + 2λ2tr(WTDW). (5)

3.3. Optimization

For problem (5), it is convex, and there are two parameters, i.e., W and P. We adopt
the effective alternate optimization strategy. Specifically, in each iteration, we update
one parameter and fix the other one. We use F ( ) to represent the objective function in
problem (5), where ψ = {P, W} indicates the set of the two parameters.

3.3.1. Update P

By fixing W, the problem (5) is simplified as

min
P

1
2
||XPW− Y‖2

F. (6)

Then, we can obtain the gradient w.r.t P as

∇PF = XTXPWWT − XTYWT . (7)

According the gradient descend algorithm, P can be updated by

P = P− λp∇PF , (8)

where λp is step size of P in the gradient descent update rules. Choosing an appropriate
step size is crucial to improve the convergence rate and reduce the total running time
of MLLCE. According to the literature [58], we adopt the Armijo rule to automatically
determine the step size λp in each iteration.
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3.3.2. Update W

With P fixed, the Equation (5) becomes:

min
W

1
2
||XPW− Y‖2

F +
λ1

4
||C−WTW‖2

F + 2λ2tr(WTDW) (9)

Therefore, we can obtain the gradient w.r.tW as

∇WF = PTXTXPW− PTXTY + λ1(WWTW) + 2DW. (10)

Consequently, W can be updated by

W = W− λw∇WF . (11)

Similarly, the step size λw is also determined by the Armijo rule [58]. According to the
above optimization process, we give the pseudo code of the proposed method MLLCE in
Algorithm 1.

Algorithm 1: Improving Multi-Label Learning by Correlation Embedding

Input: Training data matrix X ∈ Rn×d, label matrix Y ∈ Rn×q, and weighting
parameters λ1, λ2;

Output: Model Coefficient W∗ and Projection Matrix P∗;
1 repeat
2 Calculate the gradient ∇PF = XTXPWWT − XTYWT ;
3 Update P by Equation (8);
4 Calculate the gradient ∇WF = PTXTXPW− PTXTY + λ1(WWTW) + 2DW;
5 Update W by Equation (11);
6 Update D;
7 until converge;
8 Return W∗, P∗;

3.4. Non-Linear Extension of MLLCE

In addition, by considering nuclear techniques [59], a non-linear version of the MLLCE
method can be derived by introducing the kernel trick. Specifically, we adopt a nonlinear
feature mapping Φ(·) : Rd −→ RΨ, which maps the original feature space to the higher-
dimensional Reproducing Kernel Hilbert Space (RKHS). Accordingly, the feature mapping
matrix is set to be P = ΦH, where Φ = [Φ(x1), Φ(x2), . . . , Φ(xn)] ∈ RΨ×n, H ∈ Rn×d. The
kernel matrix is usually given as K = Φ(x)TΦ(x) ∈ Rn×n, Φ(x)TP = Φ(x)TΦ(x)H = KH.

Consequently, for the nonlinear version of MLLCE, the objective function of problem (5)
can be rewritten as

min
H,W

1
2
||KHW− Y‖2

F +
λ1

4
||C−WTW‖2

F + λ2‖W‖21. (12)

Then, similar to the optimization of the linear version of MLLCE method, W and H
are updated through an effective alternate optimization manner. The specific optimization
process is based on Equations (7)–(11).

3.5. Complexity Analysis

For the proposed approach, data matrix X ∈ Rn×d, projection matrix P ∈ Rd×d1 ,
W ∈ Rd1×q, label matrix Y ∈ {0, 1}n×q, D ∈ Rd1×d1 , label correlation matrix C ∈ Rq×q,
which n and q are the number of instance and label respectively, d and d1 are the dimension
of the original and the low-dimensional feature space.

In Algorithm 1, steps 5–7 are the most time-consuming parts. For steps 5 and 6, the
update needs to be calculated by steps 2 and 3, in which the calculation mainly consists
of some matrix multiplications. Therefore, the total time complexity is O(t(nd2 + ndq +
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ndd1 + nd1q + d2d1 + dd1q + dd2
1 + d2

1q)), where t is the number of iterations. After the
optimization, we only need to save P and W, it can lead to a memory cost of O(d1q + dd1).

4. Experiment
4.1. Comparing Algorithms

In order to verify the performance of our proposed method, the paper selects five
existing state-of-the-art multi-label classification approaches to compare with MLLCE,
i.e., BR, JFSC, ML-LSS, MLL-FLSDR, and Glocal. The detailed information regarding the
method of comparison and the linear and non-linear proposed in this paper are as follows:

1. BR [21]: The basic idea of BR is to decompose a multi-label learning problem into a
set of independent binary classification sub-problems. In this paper, linear regression
is adopted as the base learner for each binary classification sub-problem, where the
regularization parameter is searched in {0.1, 1, . . . , 10}.

2. JFSC [15]: JFSC is a feature selection and multi-label classification algorithm by exploit-
ing label correlation. The search scope for parameters α, β and γ are {4−5, 4−4 . . . 45}.
Parameter η is searched in {0.1, 1, . . . , 10}.

3. ML-LSS [60]: ML-LSS is proposed for multi-label learning by modeling local similar-
ity. Parameter λ1, λ2 are tuned in {2−5, 2−4, . . . , 26}.

4. MLL-FLSDR [20]: A multi-label learning method based on label embedding that is
used to solve the problem of many labels and features, where the parameter λ1 is
searched in {102, 103, . . . , 106}, λ2, and λ3 and λ4 are searched in {10−3, 10−2, . . . , 101}.

5. Glocal [61]: A multi-label learning approach that utilized the global and local la-
bel correlation. The parameter λ = 1 and the parameters λ1 to λ5 are tuned in
{10−5, 10−4 . . . 101}, k is searched in {0.1l, 0.2l . . . 0.6l}, where l is the number of labels
in each data set. g is searched in {5, 10, 15, 20}.

6. MLLCE and NL-MLLCE:The two versions of our proposed method in this paper.
Parameter λ1 and λ2 are tuned in {10−6, 10−4, . . . , 102}. d1 = 0.3d is the feature dimen-
sion in the low feature space, where d is the dimension of the original feature space.

4.2. Data Sets

In this paper, a total of 15 multi-label benchmark data sets are used to verify the
effectiveness of our method. Detailed information about these data sets are summarized
in Table 1. For each data set S, |S| denotes the number of instances, dim(S) denotes the
number of features, and L(S) denotes the number of labels. In addition, LCard(S) is
cardinality, which indicates the average number of labels belonging to instances, and
rDep(S) denotes the ratio of unconditionally dependent label pairs.

Table 1. Description of datasets.

ID Data Set |S| dim(S) L(S) LCard(S) rDep(S)

1 rcv1v2(subset1) 6000 944 101 2.88 0.202
2 rcv1v2(subset2) 6000 944 101 2.63 0.179
3 delicious 16,105 500 983 19.02 0.143
4 enron 1702 1001 53 3.38 0.141
5 recreation 5000 606 22 1.42 0.455
6 Stackex-coffee 225 1763 123 1.99 0.017
7 Stackex-chess 1675 585 227 2.41 0.030
8 Stackex-chemistry 6961 540 175 2.11 0.056
9 Stackex-philosophy 3971 842 233 2.27 0.040
10 Stackex-cs 9270 635 274 2.56 0.049
11 Stackex-cooking 10,491 577 400 2.23 0.034
12 Corel16k001 13,766 500 153 2.86 0.142
13 Corel16k002 13,761 500 164 2.88 0.128
14 Water-quality 1060 16 14 5.073 0.473
15 flags 194 19 7 3.392 0.381
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4.3. Evaluation Metrics

A great many evaluation metrics have been proposed to evaluate the performance of
multi-label learning algorithms. In the paper, we choose six common evaluation metrics.
Define a test data T = {(x1, Y1), (x2, Y2) . . . (x1, Ynt)}, where the ground truth labels set of
the instance xi is represented as Yi ∈ {0, 1}q, Yi ∈ Y , h(xi) ∈ {0, 1}q is the set of predicted
class labels for the i-th instance, f (xi, y) is the the confidence score that xi belongs to label y.

Hamming Loss evaluates the error between the predicted label of each instance
obtained by the model and the true label of each instance.

Hamming Loss =
1
nt

nt

∑
i=1

1
l
|h(xi)∆Yi| (13)

where ∆ indicates the symmetric difference between two sets.
One Error evaluates the proportion of instances whose top-ranked label is not in the

ground truth label set.

One Error =
1
nt

nt

∑
i=1

J[arg max
y∈Y

f (xi, y)] ∈ YiK (14)

where J·K represents the indication function.
Ranking Loss indicates how many irrelevant labels are ranked higher than related labels.

Ranking Loss =
1
nt

nt

∑
i=1

1
|Yi||Ŷi|

|{(y′, y′′)| f (xi, y′) ≤ f (xi, y′′), (y′, y′′) ∈ Yi × Ȳi}| (15)

Average Precision evaluates the proportion of the label that is ranked before the
relevant label of the instance is still the related label .

Average Precision =
1
nt

nt

∑
i=1

1
|Yi| ∑

y∈Yi

|{y′|rank f (xi ,y′) ≤ rank f (xi ,y), y′ ∈ Yi}|
rank f (xi ,y)

(16)

Micro F1-Measure evaluates the prediction performance of the learned classifier on
the label set.

MicroF1 =

2
nt
∑

i=1
|h(xi) ∩Yi|

nt
∑

i=1
|Yi|+

nt
∑

i=1
|h(xi)|

(17)

Example-based F1 is the integrated version of precision and recall for each instance.

Example-based F1 =
1
nt

nt

∑
i=1

2piri
pi + ri

(18)

where pi and ri are the precision and recall for the i-th instance.
Macro AUC evaluates the probability that a positive instance is ranked before a

negative instance, averaged over all labels.

AUC =
1
l

l

∑
i=1

|{(x′, x′′)| f (x′, yj) ≥ f (x′′, yj), (x′, x′′) ∈ Zj × Z̄j}|
|Zj||Z̄j|

(19)

where Zj = {xi|yj ∈ Yi, 1 ≤ i ≤ l}(Z̄j = {xi|yj /∈ Yi, 1 ≤ i ≤ l}) indicates that it does not
belong to a set of test instances labeled yj.

For the AUC and AP evaluation metrics, the larger the value, the better the classifi-
cation result. Hamming loss, One Error,Ranking Loss, and Coverage value are smaller,
indicating better classification performance.
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4.4. Experimental Results

For each data set, 80% is used for training and 20% is used for test set. The average
value as well as standard deviation of each comparison algorithm in terms of each the
evaluation metric are recorded in Tables 2–8 for 13 data sets. The best results in each row
of the table will be emphasized in bold.

To further understand whether MLLCE makes a significant performance difference,
we adopt the Wilcoxon signed-rank test [62]. For any pair of two comparing classifiers, the
test can return three probabilities between them: the probability that the first classifier has
a higher score than the second (left), the probability that differences are within the region
of practical equivalence (rope), or that the second classifier has a higher score (right). The
sum of the probabilities of left, right, and rope is 1. The larger the value of left or right, the
better the performance of the first or second classifier is. A large value of rope indicates
that there is no significant difference in the performance between the two classifiers. The
results of Wilcoxon signed-rank test in terms of seven metrics are reported in Tables 9–12.

Table 2. The experimental results (mean ± standard) of all comparison methods in this paper in terms of Hamming Loss.
↓means that the smaller the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
Hamming Loss ↓

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.026 ± 0.000 0.026 ± 0.000 0.026 ± 0.000 0.027 ± 0.000 0.024 ± 0.000 0.027 ± 0.001 0.026 ± 0.000
rcv1subset2 0.023 ± 0.000 0.023 ± 0.000 0.023 ± 0.000 0.023 ± 0.001 0.025 ± 0.001 0.024 ± 0.001 0.024 ± 0.001

enron 0.047 ± 0.000 0.047 ± 0.002 0.047 ± 0.002 0.047 ± 0.002 0.047 ± 0.002 0.060 ± 0.004 0.044 ± 0.002
recreation 0.053 ± 0.001 0.054 ± 0.002 0.054 ± 0.001 0.054 ± 0.002 0.048 ± 0.001 0.063 ± 0.001 0.054 ± 0.001

stackex-coffee 0.015 ± 0.001 0.015 ± 0.001 0.015 ± 0.001 0.016 ± 0.001 0.016 ± 0.001 0.029 ± 0.015 0.016 ± 0.001
stackex-chess 0.009 ± 0.000 0.010 ± 0.000 0.009 ± 0.000 0.010 ± 0.000 0.010 ± 0.000 0.036 ± 0.006 0.012 ± 0.005

stackex-philosophy 0.009 ± 0.000 0.009 ± 0.000 0.009 ± 0.000 0.009 ± 0.000 0.009 ± 0.000 0.046 ± 0.007 0.009 ± 0.000
stackex-chemistry 0.011 ± 0.000 0.011 ± 0.000 0.011 ± 0.000 0.012 ± 0.000 0.011 ± 0.000 0.022 ± 0.002 0.011 ± 0.000

stackex-cs 0.008 ± 0.000 0.008 ± 0.000 0.008 ± 0.000 0.009 ± 0.000 0.008 ± 0.000 0.014 ± 0.001 0.009 ± 0.000
stackex-cooking 0.005 ± 0.000 0.005 ± 0.000 0.005 ± 0.000 0.005 ± 0.000 0.005 ± 0.000 0.009 ± 0.001 0.005 ± 0.000

corel16k001 0.019 ± 0.000 0.019 ± 0.000 0.019 ± 0.000 0.019 ± 0.000 0.019 ± 0.000 0.019 ± 0.000 0.019 ± 0.000
corel16k002 0.017 ± 0.000 0.017 ± 0.000 0.017 ± 0.000 0.017 ± 0.000 0.018 ± 0.000 0.017 ± 0.000 0.017 ± 0.000

water-quality 0.303 ± 0.007 0.305 ± 0.016 0.309 ± 0.008 0.302 ± 0.008 0.312 ± 0.008 0.314 ± 0.007 0.323 ± 0.005
flags 0.267 ± 0.044 0.281 ± 0.029 0.267 ± 0.031 0.271 ± 0.025 0.278 ± 0.025 0.286 ± 0.009 0.278 ± 0.031

delicious 0.018 ± 0.000 0.018 ± 0.000 0.018 ± 0.000 0.018 ± 0.000 0.019 ± 0.000 0.057 ± 0.002 0.018 ± 0.000

Table 3. The experimental results (mean ± standard) of all comparison methods in this paper in terms of Average Precision.
↑means that the larger the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
Average Precision ↑

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.620 ± 0.006 0.622 ± 0.007 0.608 ± 0.007 0.589 ± 0.002 0.637 ± 0.006 0.606 ± 0.008 0.610 ± 0.011
rcv1subset2 0.638 ± 0.003 0.635 ± 0.005 0.635 ± 0.007 0.620 ± 0.010 0.600 ± 0.011 0.629 ± 0.008 0.606 ± 0.036

enron 0.701 ± 0.007 0.699 ± 0.011 0.693 ± 0.018 0.691 ± 0.009 0.729 ± 0.006 0.674 ± 0.011 0.715 ± 0.012
recreation 0.643 ± 0.006 0.650 ± 0.012 0.640 ± 0.010 0.637 ± 0.015 0.586 ± 0.009 0.594 ± 0.019 0.630 ± 0.010

stackex-coffee 0.517 ± 0.064 0.524 ± 0.043 0.424 ± 0.031 0.450 ± 0.033 0.479 ± 0.057 0.481 ± 0.026 0.400 ± 0.040
stackex-chess 0.512 ± 0.009 0.507 ± 0.021 0.507 ± 0.009 0.479 ± 0.014 0.515 ± 0.015 0.458 ± 0.019 0.456 ± 0.083

stackex-philosophy 0.517 ± 0.013 0.510 ± 0.006 0.508 ± 0.013 0.484 ± 0.005 0.515 ± 0.013 0.466 ± 0.012 0.493 ± 0.012
stackex-chemistry 0.464 ± 0.006 0.468 ± 0.005 0.461 ± 0.008 0.437 ± 0.006 0.449 ± 0.006 0.445 ± 0.008 0.455 ± 0.009

stackex-cs 0.532 ± 0.004 0.533 ± 0.006 0.529 ± 0.008 0.495 ± 0.006 0.504 ± 0.010 0.485 ± 0.005 0.502 ± 0.005
stackex-cooking 0.519 ± 0.005 0.522 ± 0.006 0.522 ± 0.008 0.504 ± 0.008 0.502 ± 0.008 0.505 ± 0.004 0.502 ± 0.006

corel16k001 0.347 ± 0.006 0.347 ± 0.004 0.345 ± 0.004 0.344 ± 0.002 0.363 ± 0.005 0.338 ± 0.005 0.345 ± 0.002
corel16k002 0.341 ± 0.005 0.341 ± 0.003 0.341 ± 0.005 0.340 ± 0.007 0.355 ± 0.005 0.332 ± 0.003 0.339 ± 0.004

water-quality 0.669 ± 0.005 0.668 ± 0.005 0.662 ± 0.010 0.671 ± 0.014 0.650 ± 0.015 0.654 ± 0.010 0.629 ± 0.005
flags 0.816 ± 0.035 0.821 ± 0.028 0.821 ± 0.027 0.809 ± 0.028 0.815 ± 0.028 0.811 ± 0.017 0.816 ± 0.031

delicious 0.363 ± 0.002 0.389 ± 0.002 0.377 ± 0.004 0.366 ± 0.002 0.387 ± 0.002 0.355 ± 0.004 0.355 ± 0.053
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Table 4. The experimental results (mean± standard) of all comparison methods in this paper in terms of One Error. ↓means
that the smaller the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
One Error ↓

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.415 ± 0.013 0.414 ± 0.016 0.426 ± 0.006 0.446 ± 0.008 0.450 ± 0.014 0.417 ± 0.008 0.414 ± 0.016
rcv1subset2 0.408 ± 0.005 0.416 ± 0.016 0.406 ± 0.010 0.413 ± 0.014 0.467 ± 0.014 0.411 ± 0.012 0.444 ± 0.055

enron 0.217 ± 0.009 0.219 ± 0.023 0.227 ± 0.019 0.249 ± 0.018 0.212 ± 0.018 0.246 ± 0.014 0.216 ± 0.014
recreation 0.443 ± 0.008 0.439 ± 0.018 0.452 ± 0.013 0.465 ± 0.023 0.482 ± 0.012 0.512 ± 0.026 0.456 ± 0.013

stackex-coffee 0.484 ± 0.081 0.458 ± 0.083 0.569 ± 0.043 0.573 ± 0.038 0.551 ± 0.065 0.533 ± 0.040 0.636 ± 0.041
stackex-chess 0.405 ± 0.009 0.421 ± 0.034 0.423 ± 0.018 0.463 ± 0.015 0.435 ± 0.023 0.474 ± 0.031 0.472 ± 0.100

stackex-philosophy 0.431 ± 0.015 0.446 ± 0.010 0.441 ± 0.015 0.473 ± 0.006 0.454 ± 0.024 0.479 ± 0.014 0.457 ± 0.023
stackex-chemistry 0.544 ± 0.009 0.542 ± 0.012 0.553 ± 0.014 0.579 ± 0.007 0.582 ± 0.009 0.560 ± 0.008 0.557 ± 0.009

stackex-cs 0.437 ± 0.007 0.438 ± 0.010 0.435 ± 0.013 0.474 ± 0.010 0.494 ± 0.012 0.457 ± 0.007 0.466 ± 0.008
stackex-cooking 0.412 ± 0.007 0.410 ± 0.004 0.408 ± 0.011 0.424 ± 0.012 0.451 ± 0.010 0.424 ± 0.007 0.419 ± 0.008

corel16k001 0.640 ± 0.008 0.640 ± 0.004 0.638 ± 0.006 0.640 ± 0.004 0.638 ± 0.011 0.641 ± 0.011 0.633 ± 0.006
corel16k002 0.637 ± 0.011 0.641 ± 0.006 0.639 ± 0.009 0.637 ± 0.013 0.636 ± 0.009 0.640 ± 0.009 0.636 ± 0.010

water-quality 0.309 ± 0.022 0.312 ± 0.029 0.338 ± 0.020 0.323 ± 0.040 0.337 ± 0.032 0.340 ± 0.027 0.338 ± 0.018
flags 0.203 ± 0.078 0.177 ± 0.046 0.193 ± 0.045 0.213 ± 0.069 0.198 ± 0.072 0.203 ± 0.059 0.204 ± 0.052

delicious 0.345 ± 0.004 0.310 ± 0.002 0.326 ± 0.009 0.339 ± 0.005 0.325 ± 0.002 0.369 ± 0.007 0.364 ± 0.088

Table 5. The experimental results (mean ± standard) of all comparison methods in this paper in terms of Ranking Loss.
↓means that the smaller the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
Ranking Loss ↓

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.044 ± 0.002 0.043 ± 0.002 0.056 ± 0.002 0.061 ± 0.003 0.040 ± 0.002 0.057 ± 0.002 0.053 ± 0.004
rcv1subset2 0.044 ± 0.002 0.043 ± 0.001 0.053 ± 0.002 0.057 ± 0.003 0.065 ± 0.005 0.056 ± 0.003 0.058 ± 0.006

enron 0.081 ± 0.004 0.078 ± 0.006 0.085 ± 0.006 0.095 ± 0.007 0.075 ± 0.002 0.110 ± 0.009 0.081 ± 0.005
recreation 0.147 ± 0.005 0.134 ± 0.008 0.137 ± 0.010 0.136 ± 0.006 0.117 ± 0.004 0.145 ± 0.005 0.148 ± 0.004

stackex-coffee 0.144 ± 0.034 0.156 ± 0.014 0.224 ± 0.038 0.307 ± 0.036 0.146 ± 0.023 0.152 ± 0.021 0.211 ± 0.037
stackex-chess 0.117 ± 0.009 0.089 ± 0.008 0.106 ± 0.004 0.130 ± 0.011 0.092 ± 0.006 0.128 ± 0.009 0.116 ± 0.035

stackex-philosophy 0.106 ± 0.008 0.098 ± 0.008 0.113 ± 0.004 0.115 ± 0.006 0.098 ± 0.004 0.144 ± 0.001 0.101 ± 0.003
stackex-chemistry 0.114 ± 0.002 0.104 ± 0.002 0.104 ± 0.004 0.100 ± 0.004 0.103 ± 0.003 0.126 ± 0.006 0.104 ± 0.006

stackex-cs 0.069 ± 0.002 0.067 ± 0.002 0.071 ± 0.003 0.076 ± 0.002 0.068 ± 0.004 0.097 ± 0.003 0.077 ± 0.003
stackex-cooking 0.084 ± 0.002 0.084 ± 0.002 0.091 ± 0.001 0.091 ± 0.003 0.084 ± 0.004 0.105 ± 0.003 0.089 ± 0.003

corel16k001 0.148 ± 0.003 0.153 ± 0.003 0.160 ± 0.003 0.160 ± 0.003 0.161 ± 0.002 0.173 ± 0.008 0.164 ± 0.002
corel16k002 0.162 ± 0.005 0.150 ± 0.003 0.154 ± 0.003 0.154 ± 0.005 0.157 ± 0.003 0.173 ± 0.003 0.163 ± 0.001

water-quality 0.268 ± 0.005 0.269 ± 0.007 0.275 ± 0.009 0.264 ± 0.010 0.282 ± 0.005 0.285 ± 0.008 0.310 ± 0.009
flags 0.211 ± 0.043 0.207 ± 0.022 0.206 ± 0.023 0.221 ± 0.024 0.214 ± 0.034 0.216 ± 0.019 0.213 ± 0.038

delicious 0.138 ± 0.002 0.118 ± 0.002 0.115 ± 0.001 0.113 ± 0.001 0.116 ± 0.001 0.149 ± 0.001 0.121 ± 0.084

Table 6. The experimental results (mean ± standard) of all comparison methods in this paper in terms of AUC. ↑means
that the larger the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
AUC ↑

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.941 ± 0.002 0.942 ± 0.003 0.928 ± 0.002 0.921 ± 0.003 0.940 ± 0.004 0.925 ± 0.002 0.930 ± 0.004
rcv1subset2 0.936 ± 0.002 0.938 ± 0.002 0.925 ± 0.002 0.919 ± 0.004 0.910 ± 0.006 0.920 ± 0.003 0.918 ± 0.006

enron 0.911 ± 0.001 0.913 ± 0.004 0.904 ± 0.005 0.890 ± 0.009 0.908 ± 0.004 0.882 ± 0.002 0.908 ± 0.004
recreation 0.813 ± 0.009 0.826 ± 0.010 0.824 ± 0.010 0.821 ± 0.009 0.723 ± 0.005 0.820 ± 0.005 0.813 ± 0.005

stackex-coffee 0.853 ± 0.027 0.841 ± 0.019 0.763 ± 0.035 0.794 ± 0.030 0.810 ± 0.042 0.836 ± 0.022 0.781 ± 0.042
stackex-chess 0.876 ± 0.009 0.903 ± 0.009 0.884 ± 0.005 0.883 ± 0.010 0.881 ± 0.007 0.866 ± 0.011 0.877 ± 0.035

stackex-philosophy 0.881 ± 0.008 0.888 ± 0.009 0.874 ± 0.004 0.879 ± 0.003 0.870 ± 0.005 0.845 ± 0.001 0.884 ± 0.002
stackex-chemistry 0.877 ± 0.003 0.886 ± 0.002 0.888 ± 0.004 0.892 ± 0.003 0.846 ± 0.004 0.866 ± 0.004 0.887 ± 0.006

stackex-cs 0.925 ± 0.003 0.927 ± 0.002 0.923 ± 0.003 0.922 ± 0.002 0.883 ± 0.006 0.902 ± 0.003 0.917 ± 0.002
stackex-cooking 0.900 ± 0.002 0.899 ± 0.003 0.894 ± 0.005 0.892 ± 0.004 0.863 ± 0.004 0.892 ± 0.002 0.895 ± 0.002

corel16k001 0.850 ± 0.003 0.845 ± 0.003 0.838 ± 0.004 0.837 ± 0.003 0.831 ± 0.002 0.825 ± 0.007 0.834 ± 0.002
corel16k002 0.839 ± 0.004 0.851 ± 0.003 0.847 ± 0.002 0.846 ± 0.003 0.824 ± 0.003 0.828 ± 0.003 0.839 ± 0.001

water-quality 0.699 ± 0.005 0.697 ± 0.008 0.694 ± 0.007 0.702 ± 0.011 0.684 ± 0.007 0.691 ± 0.005 0.664 ± 0.012
flags 0.745 ± 0.031 0.748 ± 0.025 0.751 ± 0.017 0.736 ± 0.014 0.743 ± 0.032 0.742 ± 0.020 0.744 ± 0.037

delicious 0.859 ± 0.002 0.881 ± 0.001 0.884 ± 0.002 0.886 ± 0.001 0.882 ± 0.001 0.848 ± 0.001 0.877 ± 0.090
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Table 7. The experimental results (mean ± standard) of all comparison methods in this paper in terms of Micro F1. ↑means
that the larger the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
Micro F1 ↑

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.313 ± 0.008 0.315 ± 0.007 0.353 ± 0.005 0.316 ± 0.009 0.286 ± 0.009 0.354 ± 0.008 0.328 ± 0.011
rcv1subset2 0.302 ± 0.011 0.299 ± 0.006 0.368 ± 0.009 0.351 ± 0.012 0.333 ± 0.016 0.357 ± 0.006 0.303 ± 0.022

enron 0.525 ± 0.006 0.530 ± 0.019 0.526 ± 0.016 0.553 ± 0.018 0.573 ± 0.010 0.506 ± 0.021 0.577 ± 0.019
recreation 0.373 ± 0.007 0.348 ± 0.010 0.350 ± 0.015 0.333 ± 0.018 0.365 ± 0.010 0.053 ± 0.010 0.345 ± 0.013

stackex-coffee 0.158 ± 0.065 0.161 ± 0.031 0.155 ± 0.028 0.087 ± 0.052 0.009 ± 0.011 0.231 ± 0.060 0.066 ± 0.041
stackex-chess 0.314 ± 0.003 0.238 ± 0.023 0.274 ± 0.017 0.207 ± 0.011 0.248 ± 0.011 0.110 ± 0.014 0.251 ± 0.023

stackex-philosophy 0.271 ± 0.007 0.247 ± 0.007 0.298 ± 0.009 0.227 ± 0.007 0.256 ± 0.009 0.071 ± 0.006 0.242 ± 0.017
stackex-chemistry 0.192 ± 0.006 0.190 ± 0.011 0.190 ± 0.011 0.141 ± 0.006 0.166 ± 0.009 0.138 ± 0.009 0.157 ± 0.008

stackex-cs 0.296 ± 0.005 0.299 ± 0.005 0.301 ± 0.009 0.216 ± 0.007 0.257 ± 0.009 0.220 ± 0.014 0.256 ± 0.011
stackex-cooking 0.284 ± 0.007 0.317 ± 0.007 0.324 ± 0.006 0.247 ± 0.008 0.290 ± 0.007 0.181 ± 0.013 0.297 ± 0.004

corel16k001 0.044 ± 0.003 0.051 ± 0.002 0.064 ± 0.003 0.076 ± 0.003 0.064 ± 0.003 0.068 ± 0.001 0.057 ± 0.003
corel16k002 0.065 ± 0.002 0.053 ± 0.006 0.069 ± 0.005 0.080 ± 0.008 0.067 ± 0.003 0.076 ± 0.004 0.061 ± 0.001

water-quality 0.472 ± 0.014 0.465 ± 0.024 0.441 ± 0.016 0.460 ± 0.014 0.395 ± 0.014 0.421 ± 0.020 0.362 ± 0.016
flags 0.723 ± 0.043 0.708 ± 0.031 0.724 ± 0.046 0.709 ± 0.039 0.708 ± 0.026 0.699 ± 0.015 0.698 ± 0.031

delicious 0.182 ± 0.005 0.228 ± 0.005 0.216 ± 0.003 0.177 ± 0.004 0.220 ± 0.002 0.116 ± 0.004 0.175 ± 0.033

Table 8. The experimental results (mean ± standard) of all comparison methods in this paper in terms of Example-based F1.
↑means that the larger the value, the better the performance is. The best results in each row are highlighted in bold face.

Data
Example-Based F1 ↑

MLLCE NL-MLLCE ML-LSS JFSC BR Glocal MLL-FLSDR

rcv1subset1 0.262 ± 0.007 0.265 ± 0.008 0.306 ± 0.007 0.271 ± 0.010 0.244 ± 0.008 0.301 ± 0.007 0.279 ± 0.011
rcv1subset2 0.265 ± 0.007 0.262 ± 0.004 0.338 ± 0.013 0.323 ± 0.011 0.284 ± 0.014 0.325 ± 0.007 0.277 ± 0.020

enron 0.486 ± 0.011 0.504 ± 0.021 0.500 ± 0.020 0.534 ± 0.013 0.555 ± 0.007 0.523 ± 0.013 0.563 ± 0.018
recreation 0.299 ± 0.010 0.274 ± 0.010 0.278 ± 0.012 0.265 ± 0.013 0.243 ± 0.009 0.037 ± 0.008 0.275 ± 0.015

stackex-coffee 0.118 ± 0.059 0.119 ± 0.026 0.115 ± 0.017 0.060 ± 0.039 0.009 ± 0.011 0.239 ± 0.041 0.047 ± 0.028
stackex-chess 0.265 ± 0.004 0.196 ± 0.022 0.227 ± 0.010 0.152 ± 0.005 0.196 ± 0.008 0.216 ± 0.016 0.213 ± 0.021

stackex-philosophy 0.230 ± 0.005 0.209 ± 0.004 0.255 ± 0.013 0.175 ± 0.004 0.210 ± 0.005 0.168 ± 0.009 0.205 ± 0.015
stackex-chemistry 0.148 ± 0.005 0.147 ± 0.008 0.146 ± 0.008 0.098 ± 0.006 0.117 ± 0.007 0.160 ± 0.008 0.120 ± 0.005

stackex-cs 0.230 ± 0.005 0.233 ± 0.006 0.236 ± 0.005 0.148 ± 0.005 0.171 ± 0.006 0.239 ± 0.009 0.187 ± 0.012
stackex-cooking 0.233 ± 0.005 0.265 ± 0.007 0.270 ± 0.007 0.186 ± 0.006 0.226 ± 0.006 0.228 ± 0.007 0.247 ± 0.004

corel16k001 0.033 ± 0.002 0.039 ± 0.002 0.048 ± 0.002 0.058 ± 0.002 0.047 ± 0.002 0.052 ± 0.001 0.043 ± 0.003
corel16k002 0.046 ± 0.002 0.038 ± 0.005 0.048 ± 0.003 0.056 ± 0.005 0.046 ± 0.002 0.054 ± 0.003 0.043 ± 0.001

water-quality 0.425 ± 0.012 0.421 ± 0.023 0.401 ± 0.017 0.413 ± 0.015 0.366 ± 0.018 0.385 ± 0.021 0.338 ± 0.016
flags 0.686 ± 0.030 0.685 ± 0.039 0.694 ± 0.044 0.677 ± 0.041 0.685 ± 0.025 0.678 ± 0.023 0.679 ± 0.034

delicious 0.164 ± 0.004 0.206 ± 0.004 0.198 ± 0.003 0.155 ± 0.004 0.201 ± 0.002 0.212 ± 0.002 0.160 ± 0.029

Based on the experimental results, we can observe the following conclusions.

• The linear and the nonlinear versions of the method MLLCE have comparable per-
formance. In addition, the nonlinear MLLCE is better than the MLLCE method in
terms of average precision, ranking loss, one error, and AUC, which indicates that the
proposed nonlinear method can improve classification performance to some extent.

• Compared to the the five comparison methods, MLLCE achieves competitive per-
formance in terms of ranking loss, Micro F1, AUC, one error, average precision,
Example-based F1 on the 15 data sets, and these results clearly show the effectiveness
of MLLCE in multi-label learning.

• In Hamming loss, the performance of all the comparing algorithms are not significantly
different. However, according to Table 2, it is noted that MLLCE still achieves a
relatively good performance.

• MLLCE outperforms ML-LSS and Glocal on all evaluation metrics except hamming
loss, Micro F1 and Example-based F1 Since ML-LSS adds sample similarity to the
model, ML-LSS has better performance in Micro F1 and Example-based F1 metrics.
These results verify the feasibility of our proposed method MLLCE through graph
embedding to model label correlation.
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Table 9. Probabilities for the six comparisons of classifiers in terms of Hamming Loss and Average
Precision. Left and right refer to the columns Classif. 1 (left) and Classif. 2 (right).

Hamming Loss Average Precision

Classif. 1 Classif. 2 Left Rope Right Classif. 1 Classif. 2 Left Rope Right

MLLCE NL-MLLCE 0.006 0.994 0.000 MLLCE NL-MLLCE 0.000 0.984 0.016
MLLCE ML-LSS 0.000 1.000 0.000 MLLCE ML-LSS 0.227 0.771 0.002
MLLCE JFSC 0.000 1.000 0.000 MLLCE JFSC 0.993 0.007 0.000
MLLCE BR 0.003 0.997 0.000 MLLCE BR 0.832 0.002 0.167
MLLCE Glocal 0.995 0.005 0.000 MLLCE Glocal 1.000 0.000 0.000
MLLCE MLL-FLSDR 0.039 0.961 0.000 MLLCE MLL-FLSDR 0.999 0.001 0.000

Table 10. Probabilities for the six comparisons of classifiers in terms of One Error and Ranking Loss.
Left and right refer to the columns Classif. 1 (left) and Classif. 2 (right).

One Error Ranking Loss

Classif. 1 Classif. 2 Left Rope Right Classif. 1 Classif. 2 Left Rope Right

MLLCE NL-MLLCE 0.081 0.626 0.293 MLLCE NL-MLLCE 0.000 0.479 0.521
MLLCE ML-LSS 0.628 0.362 0.010 MLLCE ML-LSS 0.372 0.503 0.125
MLLCE JFSC 0.999 0.001 0.000 MLLCE JFSC 0.773 0.167 0.061
MLLCE BR 0.999 0.000 0.000 MLLCE BR 0.063 0.398 0.538
MLLCE Glocal 0.998 0.002 0.000 MLLCE Glocal 1.000 0.000 0.000
MLLCE MLL-FLSDR 0.992 0.008 0.000 MLLCE MLL-FLSDR 0.536 0.455 0.009

Table 11. Probabilities for the six comparisons of classifiers in terms of AUC and Micro F1. Left and
right refer to the columns Classif. 1 (left) and Classif. 2 (right).

AUC Micro F1

Classif. 1 Classif. 2 Left Rope Right Classif. 1 Classif. 2 Left Rope Right

MLLCE NL-MLLCE 0.000 0.555 0.445 MLLCE NL-MLLCE 0.581 0.301 0.118
MLLCE ML-LSS 0.395 0.470 0.135 MLLCE ML-LSS 0.110 0.072 0.818
MLLCE JFSC 0.729 0.148 0.123 MLLCE JFSC 0.967 0.000 0.033
MLLCE BR 0.999 0.001 0.001 MLLCE BR 0.882 0.000 0.117
MLLCE Glocal 1.000 0.000 0.000 MLLCE Glocal 0.982 0.000 0.018
MLLCE MLL-FLSDR 0.602 0.387 0.011 MLLCE MLL-FLSDR 0.980 0.001 0.019

Table 12. Probabilities for the six comparisons of classifiers in terms of Example-based F1. Left and
right refer to the columns Classif. 1 (left) and Classif. 2 (right).

Classif. 1 Classif. 2 Left Rope Right

MLLCE NL-MLLCE 0.295 0.443 0.261
MLLCE ML-LSS 0.053 0.007 0.939
MLLCE JFSC 0.945 0.000 0.056
MLLCE BR 0.945 0.001 0.055
MLLCE Glocal 0.313 0.001 0.686
MLLCE MLL-FLSDR 0.942 0.002 0.056

4.5. Sensitivity Analysis

There are three parameters λ1, λ2 and d1 in our paper, where parameter λ1 con-
trols the loss of matrix embedding of label correlation C. The parameter λ2 controls the
sparsity of the model coefficient matrix W. Parameter d1 indicates the reduced feature
space dimension.

The search range of parameter λ1 and λ2 regarding the linear and nonlinear MLLCE
methods proposed in the paper are both {10i|i = −3 : 2}. The variation range value of
low-dimensional feature dimension d1 is {15%d, 19%d . . . 15%d}, d is the dimension of the
original feature space on each data set. We perform the experiment on stackex-chess data set
by dividing the 80% training and 20% test part of data set five times randomly. Figure 2a–d
shows the average experimental results of parameters λ1 and λ2 with different values
in terms of the evaluation metric ranking loss and AUC. Figure 2e,f shows the average
experimental results of MLLCE with different values of d1 in terms of the evaluation metric
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ranking loss and AUC. We can note that the performance of MLLCE is not so sensitive to
the value of d1.
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Figure 2. Parameter analysis of MLLCE and NL-MLLCE over Stackex-chess data sets. For AUC
(Ranking Loss ), the bigger (smaller) the value, the better the performance of a classifier. (a) Result
of MLLCE with different values of λ1. (b) Result of MLLCE with different values of λ2. (c) Result
of NL-MLLCE with different values of λ1. (d) Result of NL-MLLCE with different values of λ2.
(e) Result of MLLCE with different values of p. (f) Result of NL-MLLCE with different values of p.

4.6. Convergence

To illustrate the convergence of the proposed method, Figure 3 shows the change
curve of the total loss of the objective function of the linear and nonlinear MLLCE as the
number of iteration increases on data set corel16k001. In the experiment, we set that if
the total loss of the objective function decreases less than 10−4 after an alternate iteration,
the iterative optimization process will be terminated. As shown in Figure 3, the total loss
value is rapidly reduced in the initial iteration and gradually converges with the iterative
optimization process.
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Figure 3. Convergence analysis of MLLCE and NL-MLLCE over corel16k001 data set. (a) Linear
MLLCE; (b) Nonlinear MLLCE.

5. Conclusions

In this paper, we propose a new multi-label learning method by correlation embedding.
First, we project the original high-dimensional feature space to a low-dimensional latent
space by a mapping matrix. Then we learn an embedding matrix from the pre-defined
label correlation graph by graph embedding, where the embedding matrix is utilized as the
model coefficients. By learning such a classifier, the structure of the correlation matrix can
be kept. In addition, the constraint of `21 norm regularization on the W can further reduce
the size of the model. The experimental results show the effectiveness of our proposed
linear and nonlinear MLLCE. Finally, the model of our proposed method is not complicated,
and future work will focus on adding some constraints to improve this model.
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