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Abstract: In this work, we present the results of two synthesis approaches for mesoporous magnesium
carbonates, that result in mineralization of carbon dioxide, producing carbonate materials without
the use of cosolvents, which makes them more environmentally friendly. In one of our synthesis
methods, we found that we could obtain nonequilibrium crystal structures, with acicular crystals
branching bidirectionally from a denser core. Both Raman spectroscopy and X-ray diffraction showed
these crystals to be a mixture of sulfate and hydrated carbonates. We attribute the nonequilibrium
morphology to coprecipitation of two salts and short synthesis time (25 min). Other aqueous synthesis
conditions produced mixtures of carbonates with different morphologies, which changed depending
on drying temperature (40 or 100 ◦C). In addition to aqueous solution, we used supercritical carbon
dioxide for synthesis, producing a hydrated magnesium carbonate, with a nesquehonite structure,
according to X-ray diffraction. This second material has smaller pores (1.01 nm) and high surface area.
Due to their high surface area, these materials could be used for adsorbents and capillary transport,
in addition to their potential use for carbon capture and sequestration.

Keywords: porous materials; supercritical carbon dioxide; magnesium carbonate; carbon sequestration

1. Introduction

Magnesium carbonates are some of several minerals proposed for “carbon mineraliza-
tion”, one of several approaches to Carbon Capture and Sequestration (CCS) [1]. In situ
mineral carbonation is one of the options, but the need for transport to suitable geological
sites and other factors make it costly, ex situ mineral carbonation, precipitating magnesium
carbonates from solutions containing magnesium ions is another option [2]. Magnesium
carbonates exist in different structures with different thermodynamic stability and different
degrees of hydration. In general, all magnesium carbonates are of interest in CCS since
they have stable and long-lasting forms [3], the most attractive one for CCS is MgCO3,
which has a 1:1 molar ratio of magnesium to CO2, but the hydrated forms are favored
during precipitation [4]. This makes the study of the precipitation of magnesium carbonates
an important field of study. Even if the most desirable forms of anhydrous MgCO3 were
not obtained, hydrated magnesium carbonates such as nesquehonite (MgCO3·3H2O) have
been reported to be useful for construction materials [5], a potential application that may
sequester carbon for long periods of time.

The synthesis of magnesium carbonates by mineral carbonation (i.e., formation of
stable carbonates with minerals) has been studied widely for CCS [2].

Magnesium carbonate is a valuable product by itself, with a price of USD 100–1000/t,
depending on purity, which could offset the cost of carbon capture by ex situ mineralization,
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estimated to be USD 50–300 per tCO2 sequestered [1]. An option to make magnesium
carbonates more valuable would be to create a mesoporous (pore diameters of 2–50 nm)
material [6]. The applications of nanostructured mesoporous magnesium carbonate include
pharmaceutical ones such as drug stabilizer [7,8] and anticoagulant [9]. Additionally,
a mesoporous structure could make these materials suitable as adsorbents for pollutants
and other substances. An interesting example of this is a report on mesoporous magnesium
carbonate, synthesized with methanol, and treated with additives, which showed good
adsorption of CO2, due to the high surface area (over 500 m2/g), with the inorganic
additives increasing CO2 uptake and selectivity [10].

Another potential use of high surface area carbonates is the adsorption of contam-
inants. Shahwan et al. report that MgCO3 is a better adsorbent of Pb2+ and Zn2+ ions
than clay minerals [11]. Mesoporous calcium carbonates have also been reported as good
adsorbents for heavy metal ions (Pb2+ and Cd2+); the removal efficiency depended on the
crystal structure [12]. Shan et al. showed that synthetic nesquehonite is a highly efficient
agent for removing Cu2+, which was precipitated as a mixture of hydroxides and carbon-
ates [13]. A novel application of hydromagnesite is in the directional displacement of fluids
in porous media [14].

This shows the importance of studying the synthesis of magnesium carbonates.
Many of the synthesis methods for magnesium carbonate, including those using super-
critical carbon dioxide (scCO2), with ethanol as a cosolvent [15] and mineral carbonation
in aqueous solution [16] usually do not yield mesoporous materials (pores of 2–50 nm).
Another option for cosolvent is methanol, which can increase the solvation power of the
main solvent, to control the morphology of carbonates and has been used as a control
factor of the pore size according to traditional synthesis works but can result in amorphous
carbonates [17]. Reaction temperature is also an important factor that affects pore size [6,7].
However, organic solvents can contribute to emission of pollutants [18].

There are some examples of works exploring mineral carbonation with magnesium,
such as that of Yoo et al. [19] in which magnesium comes from seawater desalination waste
and is precipitated as carbonates using alkanolamines.

In CCS, CO2 is usually delivered and transported in supercritical state for geological
storage [20]. Therefore, it is important to study mineral carbonation by reaction with scCO2,
which is by itself a solvent as well as a reactant, therefore, these reactions may not require
the use of organic solvents such as methanol and ethanol, making it a greener method.

Here we compare scCO2 and aqueous synthesis methods with the objective of produc-
ing mesoporous magnesium carbonates, via environmentally friendly methods.

2. Materials and Methods

Aqueous synthesis by CO2 sequestration was based on the method of de Vito et al. [16].
We bubbled CO2 through a Pasteur pipette into magnesium solutions in deionized water
in a stoppered flask, with a flow rate equivalent to 1.1 g/min (Figure 1a).
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Three precursors salts (all reactive grade, CTR Scientific, Monterrey, México) were
used for both routes: MgCl2·6H2O (10 mL, 6.07 M), Mg(NO3)2·6H2O (10 mL, 6.07 M),
MgSO4·7H2O (20 mL, 3.036 M). The pH was adjusted to 8–9 with NH4OH and reactions
were carried out for 25 and 60 min at 5, 21, and 70 ◦C, as shown in Table 1.

Table 1. Design of experiments.

Experimental
Method Precursors Salts Reaction Time Reaction

Temperature
Drying

Temperature

Aqueous
Synthesis

MgCl2·6H2O

25 and 60 min 5, 21, and 70 ◦C 40 ◦CMg(NO3)2·6H2O

MgSO4·7H2O

scCO2 Synthesis Mg(NO3)2·6H2O 12 h 35–40 ◦C
40 ◦C

100 ◦C

In the supercritical synthesis, we added 60 g of CO2 (enough to reach a pressure
>74 bar) in a custom-made reactor, with a volume of 240 mL (Figure 1b), containing 10 mL
of 6.07 M Mg(NO3)2·6H2O (pH adjusted to 8–9 with NH4OH). The reactor was hermetically
closed and placed in a water bath at 35–40 ◦C to reach and maintain supercritical conditions,
monitored by observation of the phase change through a window. After 12 h of reaction,
the reactor was depressurized. Solid products were collected and washed five times with
5 mL of distilled water, then oven-dried for 12 h at 100 ◦C (scCO2-od). To analyze the effect
of the drying temperature on the material structure, the same synthesis procedure was
carried out, and the sample was dried over a hot plate at 40 ◦C for 12 h (scCO2-hpd).

Morphology was observed with a Zeiss EVO MA scanning electron microscope (SEM),
from Carl Zeiss AG (Oberkoche, Germany). Some samples were sputter coated with 5 nm
of Au, to prevent charging.

Diffraction patterns of selected products were obtained with a Siemens/Bruker
D5000 diffractometer from Bruker AXS (Karlsruhe, Germany), using Cu Kα radiation
(λ = 1.54184 Å), 2θ angle from 5◦ to 70◦ with a scan rate of 5 ◦/min. Profex, an open
source program by Nicola Döbelin (www.profex-xrd.org), was used for Rietveld refine-
ment. Raman spectroscopy for the samples scCO2-od and aqueous route was performed in
an OceanOptics (Orlando, FL, USA) QE65000 equipment (785.0 nm laser, 5 s acquisition
time). Raman spectroscopy for the scCO2-hpd samples was performed in a Jasco NRS-5100
equipment (785.0 nm laser, 60 s acquisition time), from JASCO Corporation (Hachioji,
Japan). BET analysis was performed in a Quantachrome Autosorb iQ®, from Anton Paar
Instrumentsn (Boynton Beach, FL, USA), in a 6 mm cell, samples were previously degassed
for 2 h at 80 ◦C followed by 10 h at 100 ◦C.

For comparison, another magnesium carbonate sample was prepared by aqueous
route by reaction of magnesium chloride, MgCl2·6H2O [Productos Químicos Monterrey
S.A. de C.V., Monterrey, México, ACS grade], with potassium hydroxide [KOH, Produc-
tos Químicos Monterrey S.A. de C.V., ACS grade] and sodium bicarbonate [NaHCO3,
CTR Scientific, Monterrey, México, ACS grade], by dissolving 0.1 mole of each in 100 mL
of water.

A commercial magnesium carbonate (Gym Chalk, Gibson Gym Chalk, Gibson Athletic,
Denver, CO, USA, purchased at Amazon.com) was also characterized by XRD and BET
for comparison.

3. Results

The net chemical reaction for the synthesis of magnesium carbonate is shown in
Equations (1) and (2): a Mg2+ precursor (MgX, X represents the anion) reacts in an alkaline

www.profex-xrd.org


Appl. Sci. 2021, 11, 1141 4 of 10

medium to form Mg(OH)2, followed by a carbonation reaction producing MgCO3. At the
lowest temperature (5 ◦C), due to slow kinetics, no precipitate was formed.

MgX + 2OH−(aq.)→ Mg(OH)2 (1)

Mg(OH)2 + HCO3
−(aq.)→ MgCO3 + H2O + OH−(aq.) (2)

Different MgCO3 structures were obtained, including hydromagnesite
(Mg5(CO3)4(OH)2·4H2O), dypingite (Mg5(CO3)4(OH)2·5H2O), lansfordite (MgCO3·5H2O),
magnesite (MgCO3), and nesquehonite (MgCO3·3H2O) according to XRD analysis. The den-
sity of these hydrated magnesium carbonates depends on their structure, hydromagnesite
usually is 2–2.5 times denser than dypingite [3], therefore, it would present less specific
surface area.

For the reaction with Mg(NO3)2·6H2O as precursor at 70 ◦C, spherical nanoparticles
were observed (Figure 2a), these are hydromagnesite according to XRD results (shown
below). Unluer et al. [3] have reported similar hydromagnesite spherical structures. The car-
bonate yields at 70 ◦C were higher than at 21 ◦C, which is expected, since the solubility
of CO2 decreases at higher temperatures, and the formation of hydromagnesite is not
thermodynamically favorable below 55 ◦C [21].
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Figure 2. Scanning electron micrographs of carbonate products (acquired in variable pressure mode), showing representative
morphologies from aqueous syntheses (a–c), from scCO2-od (d) scCO2-hpd (e).

With MgSO4 as precursor (25 min reaction, 21 ◦C), we obtained a product with
a morphology of rods of ca. 20 µm, conjoined and extending from a compact center
(Figure 2b). This morphology is usually known as dumbbell-shaped aggregates (DSA) [22].
This type of morphology can appear as an intermediate state of spherulitic growth of many
minerals. However, we should remark that in our material we did not observe spherulitic
crystals, which may indicate that this nonequilibrium morphology could have been favored
under our synthesis conditions. One way this might have happened is by the appearance
of a large number of nuclei at the beginning, which then grow and deplete precursors
before crystals can achieve the spherulitic morphology.

Using magnesium chloride and nitrate as precursors, at the same reaction temperature,
we obtained products with two different morphologies (Figure 2c), containing magnesium
hydroxide [23] in addition to the carbonate. The synthesis with scCO2 generated acicular
crystals exclusively, ca 10 µm long (Figure 2d). Our results show that carbonate crystal sizes
changed with synthesis temperature, in a matter consistent with the reported trend [23]
that smaller crystals are favored at higher temperature. Additionally, the drying process
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applied to the samples influenced the surface appearance, given that the sample dried over
a hot plate has a rougher surface (Figure 2e). Considering the morphology observed by
SEM, the DSA product and the supercritical products were characterized further.

The diffractogram of the scCO2-od carbonate product (Figure 3a) matches the diffrac-
tion pattern of nesquehonite, (MgCO3·3H2O). These crystals look similar to those found
by Hänchen et al. [24] using CO2 at a pressure of 1 bar, using sodium carbonate as the
base, and CO2 at temperatures and pressures above the critical point (120 ◦C, 100 bar)
but they found precipitation of hydromagnesite and magnesite exclusively. The latter
was favored by longer reaction times. By contrast, Yoo et al. found mostly nesquehonite
when using supercritical CO2 at moderate temperatures (≤60 ◦C), and when using short
chain alkanolamines as the base, with hydromagnesite favored at higher temperatures
(70 ◦C) [19].
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Figure 3. X-ray diffraction patterns of (a) DSA (dumbbell-shaped aggregates) product, (b) magnesium
carbonate, from supercritical synthesis, hot plate dried, scCO2-hpd, and (c) magnesium carbonate
from supercritical synthesis, oven dried, scCO2-od. Reference peaks of crystalline structures with the
highest correlation are shown as determined by Rietveld refinement.

XRD of commercial carbonate showed that it was hydromagnesite, which is typically
the more stable hydrated phase of magnesium carbonate [25].

The diffractogram of the DSA material (Figure 3b) corresponds to a mixture of crystalline
structures. Rietveld refinement was used to correlate those peaks to four structures: mag-
nesite (MgCO3), nesquehonite (MgCO3·3H2O), hydromagnesite (Mg5(CO3)4(OH)2·4H2O),
and lansfordite (MgCO3·5H2O), with a good match found only for the last three. For the
carbonate obtained with the MgSO4·7H2O precursor, the DSA morphology with elongated
crystals was favored over regular spherulitic growth as previously reported [3].

The diffractogram of the scCO2 carbonate product with hot plate drying (Figure 3c)
shows a mixture of crystalline structures of hydrated magnesium carbonate. According to
the Rietveld refinement the identified structures correspond to magnesite, hydromagnesite,
nesquehonite, and lansfordite.

The proportion of each of the phases is shown in Table 2. The difference between
the composition of both scCO2 products was expected since magnesium carbonate is sen-
sitive to temperature and dehydrates when heated at moderately high temperatures [3].
The scCO2-hpd product contains a higher percentage of a more hydrated phase, lans-
fordite and hydromagnesite, compared with the scCO2-od for which the main component
is nesquehonite.
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Table 2. Magnesium carbonates phase composition determined by Rietveld refinement for products
from scCO2 synthesis (oven dried and hot plate dried), and dumbbell-shaped structures from aqueous
synthesis.

Phase scCO2-od scCO2-hpd DSA

Magnesite 0% 20% 0%
Nesquehonite 65% 0% 54%

Lansfordite 27% 60% 40%
Hydromagnesite 8% 20% 6%

The structures of the carbonates produced by the aqueous route changed depending
on the precursor. For nitrate, the dried product showed a mixture of dypingite and
hydromagnesite (Figure 4a). With sulfate as precursor, in samples that did not show the
DSA morphology, the peaks correspond to a mixture of nesquehonite and hydromagnesite
(Figure 4b), without peaks for magnesium sulfates. We note that since we dried these
products at relatively high temperatures there may have been partial dehydration of
the precipitate.
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Figure 4. X-ray diffraction patterns (blue lines) of (a) magnesium carbonate, from aqueous route synthesis with nitrate
as precursor, showing a mixture of dypingite and hydromagnesite, according to Rietveld refinement. (b) Magnesium
carbonate, from aqueous route synthesis with sulfate as precursor, showing a mixture of nesquehonite and hydromagnesite,
according to Rietveld refinement.

Raman spectra of the DSA product and scCO2-od nesquehonite (Figure 5) show peaks
characteristic of the carbonate ion (CO2−

3 ) at 1107 and 1400–1500 cm–1 [26]. For the DSA
product, the wide Raman peak at 1014 cm–1 indicates that it is formed by a mixture of
sulfate and carbonate. Magnesium sulfates present Raman peaks that depend on the degree
of hydration, going from a peak at 983.6 cm–1, for hexahydrite, and changing to higher
wavenumbers as the degree of hydration decreases, up to 1046.1 cm–1 for the monohydrate
(kieserite, MgSO4·H2O) [27]. The observed peak is centered between those corresponding
to the tetrahydrate (MgSO4·4H2O, Starkeyite, 1000.3 cm–1) and the trihydrate (1023.8 cm–1),
suggesting that these two components are present in the DSA product, in addition to
hexahydrate. The sulfate does not show in the corresponding diffractogram (Figure 3) but
we suspect that low intensity sulfate peaks may be among the several broad peaks observed.
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Figure 5. Raman spectra of the DSA product (aqueous route, blue curve, above) and scCO2-od
(nesquehonite, supercritical route, red curve), acquired with a 785 nm laser, 5 s acquisition time.

For comparison, Figure 6 shows the Raman spectrum of the scCO2-hpd material,
which only shows the characteristic peak of the symmetric stretching of the carbonate ion
at 1100 cm−1 [26].
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Figure 6. Raman spectrum of the scCO2-hpd, acquired with a 785 nm laser, 60 s acquisition time.

BET isotherms (measured with adsorption of N2 at 77.35 K) are shown in Figure 7a,
these results show specific surface areas of 39.1 m2g−1 for the DSA product, 70.4 m2g−1 for
the scCO2-od nesquehonite product, and a lower value of 19.8m2g−1 for the scCO2-hpd
product. The average pore sizes were 1.02 nm for nesquehonite, 3.78 nm for the DSA
product, and 5.48 nm for the scCO2 product dried on a hot plate, according to density
functional theory (DFT) modeling (Figure 7b,c) and in both cases the pore size distribution is
relatively wide. These results are better than the surface area of carbonate made by reaction
with bicarbonate, and that of commercial carbonate, as shown in Table 3. According to the
IUPAC classification of adsorption isotherms [28,29], the scCO2 -hpd carbonate isotherm
shows an H3 behavior which is characterized by slit-shaped pores, additionally it behaves
as type IV isotherm which corresponds to a micro-mesoporous material with an average
pore size of 5.48 nm. We should warn the reader that the heat treatment at 80 ◦C prior to
BET measurements may have altered the hydration state of the carbonates, however this
is a necessary step to ensure complete degassing, which otherwise would give inaccurate
readings. By using the same pretreatment for the oven-dried and hot-plate dried materials
we aimed to make both sets of results comparable.
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Figure 7. (a) BET adsorption isotherms (adsorbed amount cm3 g−1 vs. relative pressure) of the DSA product, scCO2-hpd,
and scCO2-od. (b) Pore volume cm3 g–1 vs. pore width (nm) of DSA and nesquehonite product (scCO2-od) calculated by
density functional theory (DFT). The apparent pores of ≈50 µm are considered a result of experimental noise, since no
pores of these sizes were observed in the SEM (c) Cumulative specific pore volume cm3g−1 vs. pore width (nm) of the
scCO2-hpd product.

Table 3. Specific surface areas and average pore sizes for different magnesium carbonates.

Sample Specific Surface Area (m2g−1) Average Pore Size (nm)

scCO2-od nesquehonite 70.4 1.02
DSA 39.1 3.78

MgCl2 + NaHCO3 + KOH 11.8 50
Commercial carbonate 18.1 4.89

scCO2 -hpd 19.8 5.48

We should note that nesquehonite has been reported to form in a matter of minutes [30],
suggesting that our supercritical synthesis route may not require reaction times as long as
12 h, and we intend to explore what is the shortest time for full precipitation.

4. Conclusions

We presented two synthesis methods for mesoporous magnesium carbonates from
CO2 that avoid the use of organic cosolvents, which may be useful in green synthesis
routes. Moreover, the capture of CO2 achieved through these routes may potentially
contribute to reduce atmospheric CO2 concentration by mineralization. We used solid
CO2 for convenience, but supercritical conditions also could be reached by syphoning
liquid CO2 into the reactor, which should not change the results and would be more
environmentally friendly.

Due to the relatively high surface area and small pore sizes of these materials, we ex-
pect that they may be useful as adsorbents and in other applications, including capillary
transport and in pharmaceutical and drug delivery applications, if their surface area could
be increased further by fine tuning the synthesis parameters.

We found conditions for aqueous synthesis that allow isolating the morphology called
dumbbell shaped aggregates which showed a large specific surface area and mesopores
according to BET measurements. These crystals appear to be an intermediate step of
growth of spherulitic crystals and were formed by a combination of carbonate and sulfate
according to XRD and Raman characterization.

Carbonate synthesized in supercritical CO2 and oven dried had a larger specific
surface area and smaller pores than the DSA material. This material had a nesquehonite
crystal structure, according to XRD, and was composed solely of magnesium carbonate.
Carbonates synthesized in scCO2 and hot plate dried resulted in a micro-mesoporous
material with a smaller surface area. Both carbonates synthesized in scCO2 had a larger
area compared with commercial magnesium carbonate and they provide a simple synthesis
method that could be implemented in existing CCS facilities during the process where the
CO2 is compressed to obtain scCO2 for transportation to geological storage.
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