
applied  
sciences

Article

Constrained Backtracking Matching Pursuit Algorithm for
Image Reconstruction in Compressed Sensing

Xue Bi 1,*, Lu Leng 2,3,*, Cheonshik Kim 4,* , Xinwen Liu 5 , Yajun Du 6 and Feng Liu 5

����������
�������

Citation: Bi, X.; Leng, L.; Kim, C.; Liu,

X.; Du, Y.; Liu, F. Constrained

Backtracking Matching Pursuit

Algorithm for Image Reconstruction

in Compressed Sensing. Appl. Sci.

2021, 11, 1435. https://doi.org/

10.3390/app11041435

Academic Editor: Andrés Márquez

Received: 17 January 2021

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
2 School of Software, Nanchang Hangkong University, Nanchang 330063, China
3 School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul 05006, Korea
4 Department of Computer Engineering, Sejong University, Seoul 05006, Korea
5 School of Information Technology and Electrical Engineering, The University of Queensland,

Brisbane 4072, Australia; xinwen.liu@uq.net.au (X.L.); feng@itee.uq.edu.au (F.L.)
6 Information and Network Center, Xihua University, Chengdu 610039, China; duyajun@mail.xhu.edu.cn
* Correspondence: bixue@mail.xhu.edu.cn (X.B.); leng@nchu.edu.cn (L.L.); mipsan@sejong.ac.kr (C.K.)

Abstract: Image reconstruction based on sparse constraints is an important research topic in com-
pressed sensing. Sparsity adaptive matching pursuit (SAMP) is a greedy pursuit reconstruction
algorithm, which reconstructs signals without prior information of the sparsity level and potentially
presents better reconstruction performance than other greedy pursuit algorithms. However, SAMP
still suffers from being sensitive to the step size selection at high sub-sampling ratios. To solve
this problem, this paper proposes a constrained backtracking matching pursuit (CBMP) algorithm
for image reconstruction. The composite strategy, including two kinds of constraints, effectively
controls the increment of the estimated sparsity level at different stages and accurately estimates
the true support set of images. Based on the relationship analysis between the signal and mea-
surement, an energy criterion is also proposed as a constraint. At the same time, the four-to-one
rule is improved as an extra constraint. Comprehensive experimental results demonstrate that the
proposed CBMP yields better performance and further stability than other greedy pursuit algorithms
for image reconstruction.

Keywords: constrained backtracking matching pursuit; sparse reconstruction; compressed sensing;
greedy pursuit algorithm; image processing

1. Introduction

Image reconstruction is a significant application of multimedia signal processing.
Compressed sensing (CS) is a technique that reconstructs sparse, compressible signals
from under-determined random linear measurements. Over the past few decades, CS
has been widely applied to image processing, including image reconstruction [1–5] and
acquisition [6–8].

Various algorithms have been proposed for CS-based signal reconstruction with sparse
constraints [9], which can be categorized into three classes. The first class is the non-convex
optimization [10], such as re-weighted l1 norm minimization [11] and lq norm minimiza-
tion [12]. However, non-convex optimization is a non-deterministic polynomial (NP)-hard
problem, which is hard to solve. The second class focuses on convex optimization based on
the minimization of the l1 norm. The basis pursuit (BP) algorithm is typically used for con-
vex optimization, but its l1 norm-based cost function is sometimes not differentiable. It also
involves high computational complexity, thus limiting its practical applications [13–15].

The third category includes a set of greedy pursuit algorithms, which are to easy im-
plement and have low computational complexity [13–21]. Specifically, orthogonal matching
pursuit (OMP) [15–17], stage-wise OMP (StOMP) [18], and regularized orthogonal match-
ing pursuit (ROMP) [19,20] have been proposed. The reconstruction complexity of basic
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greedy pursuit algorithms is roughly about O(kMN), which is much lower than that of
BP algorithm.

While the greedy pursuit algorithms show superiority in easy implementation and
computational efficiency, they typically require additional measurements for reconstruction
and lack stable reconstruction capability. The problem is alleviated when backtracking
is introduced. For example, the subspace pursuit (SP) algorithm [21] and compressive
sampling pursuit (CoSaMP) algorithm [22] have been proposed based on the backtracking
scheme. The difference between SP and CoSaMP is that the latter chooses 2k indices to
combine the estimated support set from the previous iteration. However, it is necessary
to estimate the sparsity level of signal k before applying SP and CoSaMP. Indeed, it is
impractical to know the accurate sparsity level k of unknown signals in advance.

Then, sparsity adaptive matching pursuit (SAMP), which can recover signals without
knowing the sparsity level, was proposed by Do et al. [23]. It alternatively estimates
the sparsity level when the residue’s energy increases between two consecutive stages
and updates the support set size of the signal using a fixed and small step size. SAMP
has apparent advantages when processing one-dimensional sparse signals. However,
since one is used as the initial step size, when processing high-dimensional signals, the
small step size significantly affects the result and efficiency of reconstruction. To further
improve the reconstruction performance, an energy-based adaptive matching pursuit
(EAMP) has been proposed [24]. One limitation of EAMP is that it only focuses on the
binary signal reconstruction. Rasha et al. used the structured Wilkinson matrix as the
measurement matrix to improve the efficiency of SAMP [25]. More recently, the improved
generalized sparsity adaptive matching pursuit (IGSAMP) algorithm has been proposed.
This algorithm uses a nonlinear step size to approximate the sparsity level, and only a small
initial step size can be selected. Meanwhile, it requires carefully choosing the parameters
without referring to the sensitivity of a large step size [26].

To improve the reconstruction performance of the sparsity adaptive matching pursuit
algorithm and make it less sensitive to the step size, we propose a compositely constrained
backtracking matching pursuit (CBMP) algorithm for image reconstruction. The main
contributions of this paper are summarized as follows.

(1) The restricted isometry property (RIP) is analyzed, and the relationship between
observed values and signals is derived and demonstrated.

(2) The reconstruction process is divided into three stages, including the large step size
stage, small step size stage, and support set update stage. Different step sizes are used
in these stages.

(3) A backtracking threshold operation is proposed, which adopts a composite strategy
and uses dedicated parameters to control the different step sizes in the reconstruc-
tion process.

(4) The proposed algorithm can achieve satisfactory reconstruction performance and
overcome the sensitivity to step size.

2. Preliminaries
2.1. A Review of Compressed Sensing

CS compresses the signal at the time of sampling while maintaining the ability to
reconstruct the original signal. For a signal x ∈ RN that has at most k terms as nonzero
components in some bases Ψ, the compressed signal y is obtained through the following
linear transform:

y = ΦΨx (1)

where y is an M× 1 vector and Φ denotes an M× N random measurement matrix with
M� N.

In general, M is much larger than N, so the reconstruction x from the measurements
y can be solved by forming an underdetermined set of linear equations. Thus, the CS
reconstruction is generally an ill-posed problem. To guarantee an exact reconstruction
of every k sparse signal, one of the most important assumptions of CS is that the mea-
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surement matrix Φ satisfies the restricted isometry property (RIP) [27,28] with parameters
(k, δ) [29–31].

(1− δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (2)

where δk is the RIP constant and 0 < δk < 1, k < M.
When a matrix satisfies the RIP, the lengths of all sufficiently sparse vectors are approx-

imately preserved under the matrix transformation [29]. In [19,21], it was demonstrated
that if δ2K <

√
2− 1,, then the signal can be exactly reconstructed via a finite number

of iterations.
The CS reconstruction aims to find the sparsest possible solution that satisfies

Equation (1). Then, the CS model [1,31] is represented as:

min ‖Ψx‖0 subject to y = ΦΨx (3)

where ‖Ψx‖0 is the l0 norm and denotes the number of nonzero components in (Ψx).

2.2. A Review of the Greedy Pursuit Algorithms

Among the reconstruction algorithms used in CS, the greedy pursuit algorithms are
the most widely used due to their easy implementation and low computational complexity.

The goal of greedy pursuit algorithms is to find the support set of the unknown signal.
After finding the support set, the signal can be reconstructed by solving a least squares
problem [31–33]. There exit the indices of the optimal support set J ∈ {1, 2, . . . , n}, and z∗

satisfies y = z∗ϕJ . ϕJ is the J-th column (index) of Φ. Then, the error function e(j) is:

e(j) =min
z

∥∥zϕj − y
∥∥2

2 = min
z

[(
ϕT

j ϕj

)
z2 − 2

(
ϕT

j y
)

z + yTy
]

= min
z

(
ϕT

j ϕj

)(
z−

ϕT
j y

ϕT
j ϕj

)2

+ yTy−

(
ϕT

j y
)2

ϕT
j ϕj

Letting e(j) = 0, the optimal solution:

z∗ =


ϕT

j y

‖ϕj‖2 , j = J

0, otherwise.

 (4)

The matching pursuit (MP) algorithm is one of the most classical and primitive greedy
pursuit algorithms. As described in Equation (4), only the column J minimizing the
error function is selected in each iteration of the MP algorithm [32]. Later on, the OMP
algorithm [15] was developed based on the MP algorithm. As stated in OMP, some indices
are searched, corresponding to the most significant correlations between the measurement
matrix and the residual. In each iteration, only one or more coordinates are selected
and added to the support set. These selected coordinates correspond to the columns
(indices) of observation matrices with the largest correlation with the residuals. The
optimization iterates until the termination condition is satisfied. Finally, the pseudo-
inverse of the observation matrix corresponding to the obtained support set is used for
signal reconstruction.

CS-based greedy pursuit algorithms adopted in CS include OMP [15–17], StOMP [18],
ROMP [19,20], SP [21], CoSaMP [22], SAMP [23], EAMP [24], and IGSAMP [26]. Utilizing
some criteria, they can approximate the sparse signals iteratively. Each of the algorithms
iteratively computes the estimated support set of the signals. In each iteration, one or
several coordinates are added to the support set. In particular, in OMP, only one column
of Φ is added to the estimated support set. In StOMP, a hard threshold is used to choose
several columns that are to be added to the support set. Both algorithms have to select
these columns previously. Otherwise, these algorithms cannot be rectified.
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These greedy pursuit algorithms required more measurements for exact reconstruction
and lacked stable reconstruction capability until the backtrackingidea was introduced in
SP [21] and CoSaMP [22]. Refining the last estimated support set, the backtracking scheme
allows eliminating the wrong coordinates, which are selected in the previous iterations.
The candidate set is introduced into the greedy pursuit algorithm, which is the key point of
the backtracking. However, both SP [21] and CoSaMP [22] require prior knowledge about
the sparsity level k, which is impractical to know previously. SAMP [23], on the other hand,
was put forward to gradually approach the sparsity level by accumulation with a step size.
The SAMP algorithm is shown in Figure 1 and Algorithm 1.

Figure 1. The pipeline of sparsity adaptive matching pursuit (SAMP) [23].

Algorithm 1 Sparsity adaptive matching pursuit algorithm

Input:

M× N measurement matrix Φ, measurement vector y, step size s

Initialization:

x̂ = 0 {Trivial Initialization}, r0 = y {Initial residue}, U0 = ∅ {the estimated support set},

L = s {size of the support set}, j = 1 { stage index}, i = 1 { iteration index}.

Repeat:

1. Preliminary test: find the matched L indices from Φ based on the correlation between

Φ and ri−1, that is Di = max(|ΦTri−1|, L).

2. Make the candidate list: Ui = Ti−1 ⋃Di, xUi = Φ†
Ui y.

3. Final test: F = max(|xUi |, L), xF = Φ†
Fy.

4. Compute residual: r = y−ΦFxF.

if the halting condition is true, then quit the iteration;

else if ‖r‖2 ≥ ‖ri−1‖2, then

j = j + 1{update the stage index}, L = j× s {update the size of support set};

else Ti = F{update the support set}, ri = r { update the residual}, i = i + 1.

end if

Until the halting condition is true;

Output: x̂ = Φ†
Ty {update the stage index}, L = j× s {a sparse reconstruction computed

by the least squares algorithm}

SAMP uses the “divide and conquer” principle stage-by-stage to estimate the sparsity
level and the true support set of the target signals. SAMP applies two tests, namely the
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preliminary test and the final test, to estimate the signal’s support set. The preliminary
test is used to implement the selection of the L largest elements corresponding to the most
considerable correlation between the residual and the measurement matrix, denoted by
Di = max

(
ΦTri−1 |, L

)
. After the preliminary test, a candidate list U is created by the

union of the chosen list in the preliminary test and the support set in the previous iteration,
represented by Ui = Ti−1 ∪ Di. The final test firstly solves a least squares problem to
obtain xUi , and then chooses a subset of the L largest elements from xUi . This subset of
coordinates serves as the support set of the current iteration. The residual is finally updated
by subtracting the measured vector y from its projection onto the subspace spanned by the
columns in the support set. The pseudo-code of SAMP is summarized below.

Φ† =
(
ΦTΦ

)−1ΦT represents the pseudo-inverse of Φ, in which ΦT denotes the
transposition of Φ. The main innovation of SAMP is that the increment of the residual is
used as the criterion to judge the sparsity level by accumulating with the step size. As
previously mentioned, SAMP uses a fixed step size that is sensitive to the reconstruction
performance [23]. Specifically, when SAMP is applied to two-dimensional images, the
selection of the step size seriously affects the image reconstruction performance due to the
lack of flexibility and adaptation in the sparsity level update stage. As shown in Figure 2,
the reconstruction performance is affected by the step size. When the step size s = 64, the
peak signal-to-noise ratio (PSNR) is 24.04 dB, whereas when s = 512, the PSNR is 28.44 dB.

(a) s = 64, PSNR = 24.04 dB (b) s = 512, PSNR = 28.44 dB

Figure 2. Performance of SAMP vs. different step sizes.

Then, a variable step size was proposed in EAMP [24], but it focuses on one-dimensional
sparse binary signal reconstruction. Recently, IGSAMP [26] was proposed to improve
SAMP. Furthermore, it requires one to carefully choose the parameters and control the vari-
able nonlinear step size in the reconstruction process and does not refer to the sensitivity to
the step size. In this paper, we propose an improved adaptive greedy algorithm, whose
signal reconstruction performance is relatively insensitive to the step size.

3. The Constrained Backtracking Matching Pursuit Algorithm for
Image Reconstruction

To overcome the sensitivity to the step size and improve the reconstruction perfor-
mance of greedy pursuit algorithms, we propose the CBMP algorithm, which introduces
restrictions to the backtracking stage, which provides more flexibility as the algorithm
gradually approaches the true sparsity level of the unknown signal. The main steps of
CBMP are described as follows:

Considering the signal to be reconstructed is a two-dimensional image, the sparsity
level is relatively large; the process of sparsity level estimation is divided into large and
small step size estimation stages. In the large step size stage, the increment of the step size
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is sj = 2× sj−1. j denotes the stage iteration index. The increment of the sparsity level in
the stage of the small step size is fixed and equals the step size of the previous stage.

Due to the advantages of combing information and improving accuracy [34,35], a com-
posite strategy is proposed to effectively control the increment of the estimated sparsity
level in the two stages. It includes two constraints controlled by parameters a and b, which
are required in the backtracking threshold operation of CBMP, as described in Algorithm 2.
The theoretical support for the composite strategy is clarified as follows:

Theorem 1. Let x ∈ RN be a sparse signal and y be a measurement vector. If the measurement
matrix Φ satisfies the RIP, then ‖x‖2

2 > 1√
2
‖y‖2

2. The proof is presented in Appendix A.

Algorithm 2 The proposed CBMP algorithm

Input:

M× N measurement matrix Φ, measurement vector y, step size s0

Initialization:

x = 0{trivial Initialization }; y0
r = y{initial residue }; T0 = ∅{the estimated support set

}; L0 = s0{size of the support set (sparsity level)}; j = 1{stage index};

i=1{iterationindex} ; U0 = ∅{ union set }

Repeat the following steps until the stopping condition holds:

1. Preliminary test: v = ΦTyi−1
r , find the matched set Di =

{
Lj−1 indices corresponding

to the largest absolute values of v}, that is Di = max
(
|ΦTyi−1

r
∣∣, Lj−1).

2. Union operation: to broaden the selection space and make candidate list Ui : Ui =

Ti−1 ∪ Di, xUi = Φ†
Ui y.

3. Final test: to obtain the vector xi
F : find the matched indices Fi based on the largest

absolute values of xUi , that is Fi = max
(
|xUi |, Lj−1), xi

F = Φ†
Fi y.

4. Compute residual: ri
F = y−ΦFxi

F.

5. Backtracking threshold operation:

if
∥∥xi

F
∥∥2

2 ≤ a‖y‖2
2 and size(Ui) < b×M, then shift into the large step size estimation

stage: sj = 2× sj−1, Lj = Lj−1 + sj, yi
r = yi−1

r , j = j + 1, i = i + 1, then shift into 1.

if
∥∥ri

F
∥∥

2 >
∥∥yi−1

r
∥∥

2 , then shift into the small step size estimation

stage: sj = sj−1, Lj = Lj−1 + sj, yi
r = yi−1

r , j = j + 1, i = i + 1, then shift into 1.

Otherwise, shift into the stage that updates the support set based on the current

estimated sparsity level: yi
r = ri

F, Lj = Lj−1, Ti = Fi, i = i + 1, then shift into 1.

Output: x = Φ†
Ty { a sparse reconstruction computed by the least squares algorithm }

According to Theorem 1, the energy of the original signal x is greater than the square
root of one half of that of the measurement vector y, that is ‖x‖2

2 > 1√
2
‖y‖2

2. Different step
sizes are used in CBMP. Specifically, the estimated sparsity level is far smaller than the
true one at the early stage. Based on this theorem, the energy criterion can be improved by
introducing a parameter a to constrain the reconstruction stages.

Inspired by the “four-to-one” practical rule proposed in [27], the measurement number
should be four-times the signal sparsity level for signal reconstruction. In CBMP, Ui is the
union of a new matched set and the estimated support set of the previous iteration. M is



Appl. Sci. 2021, 11, 1435 7 of 14

the row number of the measurement matrix. We introduce the “four-to-one” rule to CBMP
and use the parameter b to constrain the estimation stage. The relationship between the
parameters a and b is analyzed in Section 4.

Figure 3 shows the flowchart of the CBMP algorithm. The reconstruction process is
divided into the sparsity level update stage and the support set update stage. As for the
details, the sparsity level update stage includes both the large and small step size update
stages. In the early stage of reconstruction, the estimated sparsity level is far less than the
true one, so large step sizes are adopted to estimate the sparsity level. As the iteration goes
on, after the threshold condition is satisfied, it enters a small step size stage. The reason
why CBMP can achieve better reconstruction performance than SAMP is attributed to its
superior capability in handling the wrong indices (atoms). When the current obtained
sparsity level is far less than the true one, those false indices can be easily added into the
candidate support set. However, these false indices are difficult to eliminate in the later
iteration. Therefore, at the beginning of the iteration, a large step size allows those false
indices to be filtered out.

Figure 3. The flowchart of the constrained backtracking matching pursuit (CBMP) algorithm.

4. Experimental Results

Several experiments were conducted to illustrate the performance of the CBMP algo-
rithm. The proposed CBMP was compared with SAMP [23] and IGSAMP [26]. The halting
condition used by these algorithms was ‖yr‖ 6 10−5. For a fair comparison, the same
initial step size was used by CBMP, SAMP, and IGSAMP. It should be noted that in SAMP
and IGSAMP, the reconstruction results shown in their simulation experiments [23,26]
are obtained by a small step size (s = 1). In practical applications, when two-dimensional
images are stacked into long one-dimensional vectors, the sparsity level in the transform
domain is far greater than one. Correspondingly, the step sizes of the proposed algorithm
were relatively large. The step sizes used in the experiment were 64, 128, 256, and 512,
respectively. Different sampling rates were used to demonstrate the reconstruction perfor-
mance of CBMP. The wavelet transform was chosen as the sparse basis to represent images.
The quality of recovered images was measured by the peak signal-to-noise ratio (PSNR),
which is expressed as:

MSE =
1

M× N

M−1

∑
i=0

N−1

∑
j=0
|I(i, j)− Î(i, j)|2 (5)

PSNR(I, Î) = 10 log10

(
MAX
MSE

)
(6)
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where M = N = 512, I(i, j) denotes the original value of the test image at the position
(i, j) and Î(i, j) denotes the reconstructed value at the position (i, j). The maximum pixel
intensity is given as MAX. All images here are expressed using 8 bit intensity values
per pixel, so the peak intensity is 255. The experiment configuration is as follows: the
CPU was an Intel R© CoreTM i5-7200U at 2.50 GHz, and the size of the RAM was 8 GB.
The programming language used to perform the experiments was MATLAB. Several
experiments were conducted to validate the advantages of CBMP.

According to Theorem 1, ‖x‖2
2 > 1√

2
‖y‖2

2. In CBMP, xF should gradually approach
the true one and xF is much smaller than x at the beginning. Simultaneously, there are two
update stages, and then, the threshold parameter a is contracted within 1

4
√

2

(
1
2 ×

1
2 ×

1√
2

)
.

Our experiments demonstrate that the threshold parameters a and b do not distinctively
affect the reconstruction performance if the parameter satisfies a ≤ 1

4
√

2
. In CBMP, the

support set of the signal obtained by the current iteration is constrained by the parameter
a in the step size update stage, while Ui is the union of the estimated support set of
the previous iteration and the currently selected support set. Therefore, the relationship
between these two parameters is set as b = 2a. These two parameters play different
roles, as a is used after the final test, while b corresponds to the union operation after the
preliminary test.

The relationship between the threshold parameters and reconstruction performance is
shown in Figures 4 and 5. Meanwhile, SAMP and IGSAMP are both tested. Two standard
images, “Lena” and “Peppers”, were reconstructed to test the reconstruction performance
of different parameter pairs (a, b). For a fair comparison, the sampling rate was 0.4, and the
same initial step sizes were used. The initial step sizes were chosen from 64 to 512. From
Figure 4, we can see that the reconstruction performance of CBMP with different threshold
parameters is better than that of SAMP and IGSAMP. For example, when a = 1

16
√

2
, all

the PSNR values of CBMP with different initial step sizes are greater than 33.5. While the
initial step size is 512, SAMP achieves the maximum PSNR value, which is less than 32, and
IGSAMP offers the maximum PSNR value, which is less than 32.5. Therefore, CBMP offers
better reconstruction performance than SAMP and IGSAMP. From Figure 5, it is noticed
that if a ≤ 1

4
√

2
, all the PSNR values of CBMP with different step sizes are greater than 31.

Therefore, the introduction of the threshold operation is necessary for the improvement of
greedy pursuit algorithms. At the same time, threshold parameters do not distinctively
affect the reconstruction performance if they are satisfied with the constrained condition in
CBMP. Meanwhile, the reconstruction performance of CBMP with a = 1

16
√

2
is better than

the others; thus, this a value is regarded as the optimal value in the CBMP.
Tables 1 and 2 compare CBMP, SAMP, and IGSAMP in terms of the reconstruction

performance (PSNR) on the Lena image with different sampling ratios and initial step
sizes. Tables 3 and 4 compare CBMP, SAMP, and IGSAMP in terms of the reconstruction
performance (PSNR) on the Peppers image with different sampling ratios and initial
step sizes.

In Table 1, when the sampling ratio is 0.3, each PSNR value of the CBMP algorithm is
greater than that of SAMP and IGSAMP. For example, with the initial step size of 64, the
PSNR value of SAMP and IGSAMP is 25.45 dB and 26.23 dB, respectively, but the PSNR
value of CBMP is 32.13 dB. Table 2 shows the PSNR values of SAMP, IGSAMP, and CBMP
with the same sampling ratio of 0.4. Different step sizes are used. The PSNR values of
SAMP with different initial step sizes range from 26.99 dB to 31.60 dB. The PSNR values of
IGSAMP are increased from 27.32 dB to 32.46 dB. However, the PSNR values of CBMP are
greater than those of SAMP and IGSAMP, achieving 33.9675 dB as the average value.

Similarly, Table 3 shows the PSNR values of the Peppers image by SAMP, IGSAMP,
and CBMP when the sampling ratio is 0.3. Each PSNR value of the CBMP algorithm is
greater than that of SAMP and IGSAMP. Table 4 shows the PSNR values of the Peppers
image by SAMP, IGSAMP, and CBMP when the sampling ratio is 0.4. Different step sizes
are used. For example, as the initial step size is 512, the PSNR value of SAMP and IGSAMP
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is 30.67 dB and 32.75 dB, respectively, while the PSNR value of CBMP is 32.84 dB.Therefore,
CBMP can achieve better reconstruction performance with different sampling ratios and
initial step sizes.

Figure 4. PSNR (dB) under different initial step sizes of the Lena image.

Table 1. PSNR (dB) comparison of the Lena image when the sampling ratio is 0.3.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 25.45 26.23 32.13
128 26.41 28.45 31.91
256 27.62 29.89 31.87
512 28.98 31.76 31.83

Table 2. PSNR (dB) comparison of the Lena image when the sampling ratio is 0.4.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 26.99 27.32 33.85
128 28.59 28.86 34.01
256 30.31 31.07 33.99
512 31.60 32.46 34.02

Table 3. PSNR (dB) comparison of the Peppers image when the sampling ratio is 0.3.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 24.04 25.33 31.46
128 25.19 27.85 31.42
256 26.87 30.54 31.40
512 28.44 31.10 31.38
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Figure 5. PSNR (dB) under different initial step sizes of the Peppers image.

Table 4. PSNR (dB) comparison of the Peppers image when the sampling ratio is 0.4.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 26.30 25.37 32.80
128 28.00 27.96 32.81
256 28.87 30.79 32.81
512 30.67 32.75 32.84

Finally, the reconstructed results of the Lena image using SAMP, IGSAMP, and CBMP
are shown in Figures 6 and 7. The sampling rate is 0.3; different step sizes are used. The
reconstructed results of the Peppers image using SAMP, IGSAMP, and CBMP are shown in
Figures 8 and 9.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 6. Reconstructed results of the Lena image by SAMP, IGSAMP, and CBMP with the initial
step size of 64.
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(a) SAMP (b) IGSAMP (c) CBMP

Figure 7. Reconstructed results of the Lena image by SAMP, IGSAMP, and CBMP with the initial
step size of 512.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 8. Reconstructed results of the Peppers image by SAMP, IGSAMP, and CBMP with the initial
step size of 64.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 9. Reconstructed results of the Peppers image by SAMP, IGSAMP, and CBMP with the initial
step size of 512.

In our test, CBMP outperforms SAMP and IGSAMP in terms of visual effect and
PSNR, which is irrelevant to the setup of the initial step size value. At the same time,
with different step sizes, the reconstruction performance of CBMP is stable. For example,
Figures 8a and 9a show different visual reconstruction effects when the initial step size is 64
and 512, individually, and the same conclusion can be made from Figures 8b and 9b. It is
noted that the visualization effect is not obvious in Figures 8c and 9c when the initial step
size is 64 and 512, respectively. Therefore, it can be concluded that the CBMP algorithm is
relatively insensitive to the step size.

5. Conclusions

In this paper, a constrained backtracking matching pursuit algorithm is proposed
for image reconstruction using compressed sensing. A composite strategy, including two
constraints, is adopted to effectively control the estimated sparsity level’s increment at
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different stages and accurately estimate the true support set of the image to be recon-
structed. On the one hand, the energy criterion between the estimated signal and the
measurement is used as a constraint. On the other hand, the four-to-one practical rule is
considered and improved as another control. Due to the introduction of these composite
mechanisms, the reconstruction performance of the proposed algorithm outperforms the
greedy pursuit algorithms, including SAMP and IGSAMP. In particular, CBMP offers a
stable reconstruction performance, which is insensitive to the initial step size. In our future
works, the CBMP algorithm will be applied to neural network framework-based signal
reconstruction, including medical image reconstruction.
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Appendix A

Let x ∈ RN be a sparse signal and y be a measurement vector. If the measurement
matrix Φ satisfies the RIP, then ‖x‖2

2 > 1√
2
‖y‖2

2.

Proof. From the right-hand side of the RIP, one has:

‖Φx‖2
2 ≤ (1 + δk)‖x‖2

2 (A1)

Furthermore, ‖y‖2
2 ≤ (1 + δk)‖x‖2

2. and:

‖y‖2
2

(1 + δk)
≤ ‖x‖2

2 (A2)

According to the monotonicity of δk [21], for two integers k < k′:

δk < δk′

Furthermore, δk < δ2k:
1 + δk < 1 + δ2k

and:
1

1 + δ2k
<

1
1 + δk

Then:
‖y‖2

2
1 + δ2k

<
‖y‖2

2
1 + δk

(A3)

Combining (A2) with (A3):
‖y‖2

2
1 + δ2k

<
‖y‖2

2
1 + δk

≤ ‖x‖2
2 (A4)

Based on the demonstration in SP [21] and RIP [30], 0 < δ2k <
√

2− 1 is the sufficient
condition for signal reconstruction in CS.
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Then:
1 < 1 + δ2k <

√
2

‖y‖2
2√

2
<
‖y‖2

2
1+δ2k

< ‖x‖2
2

Therefore:
‖x‖2

2 >
1√
2
‖y‖2

2.
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