
applied
sciences

Article

Flexible Job Shop Scheduling Problem with Sequence
Dependent Setup Time and Job Splitting: Hospital Catering
Case Study

Fatima Abderrabi 1,2,∗, Matthieu Godichaud 1, Alice Yalaoui 1, Farouk Yalaoui 1, Lionel Amodeo 1, Ardian Qerimi 2

and Eric Thivet 3

����������
�������

Citation: Abderrabi, F.; Godichaud,

M.; Yalaoui, A.; Yalaoui, F.; Amodeo,

L.; Qerimi, A.; Thivet, E. Flexible Job

Shop Scheduling Problem with

Sequence Dependent Setup Time and

Job Splitting: Hospital Catering Case

Study. Appl. Sci. 2021, 11, 1504.

https://doi.org/10.3390/app11041504

Received: 23 December 2020

Accepted: 1 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science and Digital Society Laboratory, ICD, University of Technology of Troyes,
10300 Troyes, France; matthieu.godichaud@utt.fr (M.G.); alice.yalaoui@utt.fr (A.Y.);
farouk.yalaoui@utt.fr (F.Y.); lionel.amodeo@utt.fr (L.A.)

2 Hospital Center of Troyes, 10000 Troyes, France; ardian.qerimi@hcs-sante.fr
3 University Hospital Center of Reims, 51100 Reims, France; ethivet@chu-reims.fr
* Correspondence: fatima.abderrabi@utt.fr or fatima.abderrabi@hcs-sante.fr

Abstract: This paper aims to study a real case of an optimization problem derived from a hospital
supply chain. The present work focuses on developing operational decision support models and
algorithms for production process scheduling in hospital catering. The addressed production system
is considered as a flexible job shop system. The objective is to minimize the total flow time. A novel
mathematical model and two metaheuristics for the production scheduling of multi-product and
multi-stage food processes are developed. These methods have proven their effectiveness for the
scheduling of operations of the food production processes and allowed significant improvements in
the performance of the studied production system.

Keywords: hospital catering; production scheduling; flexible job shop problem; mathematical model;
genetic algorithm; local search method; iterated local search algorithm

1. Introduction

Nowadays, hospital logistics has become an essential component of healthcare institu-
tions. It allows the synchronization of all the flows inside a hospital to ensure the efficiency
of the healthcare system. For many years, the management was commonly focused on
improving the quality of medical care, while less attention was usually devoted to opera-
tion management. In recent years, the need for containing the costs while increasing the
competitiveness along with the new national health service policies for hospital financing
forced hospitals to necessarily improve their operational efficiency. It is in this context that
the efficient use of resources and the research on optimal service stimulate logistical think-
ing in hospitals. The difficulties of optimizing flows have led managers to discover new
avenues for rationalizing expenses and seeking refined solutions to these difficulties. In this
context, optimized logistics solutions allow hospitals to improve inventory management,
limit waste, and provide better inventory tracking and traceability of service products. On
the other hand, the supply chain is a major source of costs, and its reorganization would
make it possible to achieve crucial savings on all hospital expenses.

A hospital’s logistics is part of its global performance, where the activities are orga-
nized and structured with the aim of patients’ satisfaction in terms of quality, quantity,
delay, safety, and low cost. The main purpose of this logistics is to control and optimize
physical flows from suppliers to patients at the best cost that respects technical, economic,
and regulatory conditions for optimal dispensing to patients. Hospital logistics is a complex
process characterized by a diversity of needs, users, products, and distribution channels.
The coordination of these activities requires logistical expertise that few institutions will
be able to develop on their own. This has led researchers to focus for some years on the

Appl. Sci. 2021, 11, 1504. https://doi.org/10.3390/app11041504 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11041504
https://doi.org/10.3390/app11041504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041504
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1504?type=check_update&version=3

Appl. Sci. 2021, 11, 1504 2 of 27

management and optimization of the supply chain in hospitals. In this context and in order
to improve the working conditions of the employees and their well-being, the hospital
center of Troyes implements means to improve its daily efficiency. The hospital is carrying
out a revision of its supply chain, which must notably consider the management of food
flows within the hospital. In the present work, we focused particularly on the scheduling
of the food manufacturing process in hospital catering, which is considered as a flexible
job shop scheduling problem with a sequence-dependent setup time and job splitting by
integrating specific industrial constraints.

The remainder of this paper is organized as follows: Section 2 presents the state
of the art regarding the problem of food production process scheduling. The problem
statement is defined in Section 3. In Section 4, the mathematical model developed for the
studied problem is presented. Sections 5 and 6 present the genetic and the iterated local
search algorithms specifically developed for the problem, the different elements of these
metaheuristics, and the computational results. Finally, in the last section, an application to
a real industrial case and the results obtained are presented.

2. Literature Review

The production scheduling problem in food industries belongs to a famous class
of problems referred to as scheduling with sequence-dependent setups, which are well
known to be NP-hard (Sun et al. [1]). In recent years, there has been great interest in the
development of intelligent solutions for this problem in various fields of application. The
promising results of scheduling methods, such as reduction of production costs, increased
throughput and smoother operation of the production equipment, and improvement
of working conditions and the well-being of employees, have stimulated considerable
research efforts. The existing works in the literature are classified according to the number
of products (single products or multiple products), the type of production system, and the
expiration dates of products, which may be known or unknown.

Regarding works dealing with a single product, Entrup et al. [2] proposed three dif-
ferent mixed-integer linear programming for scheduling problems in the packing stage of
stirred yogurt production in the fresh food industry. They accounted for shelf life issues
and fermentation capacity limitations. Doganis and Sarimveis [3] proposed a model that
aims to obtain the optimal production scheduling in a single yogurt production line. The
model takes into account all the standard constraints encountered in production scheduling
(material balances, inventory limitations, machinery capacity). It also considers special fea-
tures that characterize yogurt production and that are limitations in production sequencing,
mainly due to different fat contents and flavors of various products, as well as sequence-
dependent setup times and costs. However, the model is limited to a single production line.
In another study, Doganis and Sarimveis [4] presented a methodology for optimum schedul-
ing of yogurt packaging lines that consist of multiple parallel machines. The methodology
incorporates features that allow one to tackle industry-specific problems, such as multiple
intermediate due dates, job mixing and splitting, product-specific machine speed, minimum
and maximum lot size, and sequence-dependent changeover times and costs. However, the
proposed mathematical model does not incorporate multi-stage production decisions and
ignores some industry-specific characteristics, such as shelf life. Stefansdottir et al. [5] devel-
oped a generic optimization model for lot sizing and scheduling in the typical processing
industry setting of flow shops. Sargut and Isık [6] presented a mathematical model for a
dynamic economic lot sizing problem with a single machine for a single perishable item
under production capacities. They also gave a dynamic programming-based heuristic for
the solution of the overall problem.

Many studies have been carried out in the literature on the production scheduling of
multi-product food processing industries. Akkerman and van Donk [7] developed a method-
ology for the analysis of the scheduling problems in food processing. This helps one to
understand, describe, and structure scheduling problems in food processing and to evaluate
the organizational structures and information flows related to scheduling. Smith, Daniels,

Appl. Sci. 2021, 11, 1504 3 of 27

and Larry [8] developed a general lot-sizing model for processing industries and applied
their method to a representative situation of a food processing facility. Kopanos et al. [9]
offered an efficient mathematical framework for detailed production scheduling in the food
processing industry. Wauters et al. [10] introduced an integrated approach for production
scheduling and demonstrated its applicability to the food processing industry. In this work,
the scheduling had to deal with a combination of discrete, continuous, and batch processes,
and it was complicated by particular characteristics. Acevedo-Ojeda et al. [11] presented a
lot-sizing problem with a single machine that incorporated raw material perishability and
analyzed how these considerations enforced specific constraints on a set of fundamental
decisions, particularly for multi-level structures. Three variants of the two-level lot-sizing
problem incorporating different types of raw-material perishability—fixed shelf life, func-
tionality deterioration, and functionality–volume deterioration—were studied; the authors
proposed mixed-integer programming formulations for each variant and performed com-
putational experiments with sensitivity analyses. Copil et al. [12] considered a capacitated
dynamic lot-sizing problem with parallel machines for the food industry, in which a given
product produced during a specified time period is used to satisfy the related demand.
Niaki et al. [13] addressed the integrated lot-sizing and scheduling problem of food produc-
tion in batch manufacturing systems with multiple shared common resources and proposed
a new mixed-integer linear programming formulation with multiple objective functions.
Wei et al. [14] proposed a classical multi-level lot-sizing and flow-shop scheduling problem
formulation to incorporate perishability issues.

Regarding the shelf life of products, Ahumada and Villalobos [15] reviewed models for
the agri-food business, where products may be perishable or not, but their focus was on
procurement and harvesting planning. The only goods they were interested in were crops.
Sel et al. [16] introduced the planning and scheduling of decisions considering the shelf-
life restrictions, product-dependent machine speeds, demand due dates, and regular and
overtime working hours in the perishable supply chain. Arbib et al. [17] considered a three-
dimensional matching model for perishable production scheduling, which was studied
under two independent aspects: the relative perishability of products and the feasibility
of launching/completion time. Basnet et al. [18] described an exact algorithm to solve a
scheduling and sequencing problem in the same industry. Chen et al. [19] provided a review
of literature on the integration of scheduling and lot sizing for perishable food products,
and they categorized the papers by the characteristics of the lot sizing and scheduling that
were included in their models, as well as the strategies used to model perishability.

In the present work, the studied production system is considered as a flexible job shop
system. Since 1990, the flexible job shop scheduling problem (FJSP) has been extensively
investigated by researchers. Liu and MacCarthy [20] discussed the problem in a flexible
manufacturing system with transportation times and limited buffers. They developed
a mixed-integer linear programming model and heuristics to minimize the makespan,
the mean completion time, and the maximum tardiness. Guimaraes and Fernandes [21]
proposed a genetic algorithm for the FJSP, where the objective function is used to minimize
the makespan and the mean tardiness. Saidi-Mehrabad and Fattahi [22] took into account
a special case of FJSP, where each operation could be assigned to one of two parallel
machines. A tabu search algorithm for solving the sequencing and assignment problems
was developed. The algorithm was compared to a branch and bound algorithm on several
random test instances. Defersha and Chen [23] studied the FJSP with attached and detached
setup times, machine release dates, and technological time lag constraints. For this problem,
a mixed-integer linear programming model was proposed, and a parallel genetic algorithm
using multiple threads was introduced. Mati et al. [24] proposed a genetic algorithm for an
FJSP in which blocking constraints were taken into consideration. Bagheri and Zandieh [25]
developed a variable neighborhood search algorithm. Mousakhani [26] presented a mixed-
integer linear programming model and an iterated local search algorithm that minimize
the total tardiness. Chaudhry and Khan [27] published a literature review on the methods
used to solve the FJSP and the studied objective functions (Figure 1). In this bibliographic

Appl. Sci. 2021, 11, 1504 4 of 27

study, it was found that almost 59% of the papers used hybrid methods (Rajabinasab and
Mansour [28], Geyik and Dosdogru [29], Zhou and Zeng [30]) or evolutionary algorithms.
The minimization of the makespan turned out to be the most widely studied criterion. In
88 research papers (44.67%), the makespan was used as the sole objective function, while
in another 78 papers (39.59%), makespan was used in combination with another objective
function. However, the minimization of the total flow time, which is the target criterion in
this work, has been studied very little in the literature. Table 1 represents some research
works on flexible job shop problems with minimization of flow time. These works are
classified according to the fields of its application in research or an industrial case, the
resolution methods used, some workshop details, and the studied objective functions.

Table 1. Some research works on flexible job shop problems with flow time minimization.

Author Year Application Algorithm and Workshop Details Objective Function

The problem
considered in
this paper

2021 Research and
industry

Mathematical model and metaheuristics for a
flexible job shop problem with
sequence-dependent setup time and job splitting

Minimum of total flow time

Gao et al. 2018 Research Mathematical model and discrete Jaya algorithm
Minimum of makespan, total flow
time, machine workload, and total
machine workload

Gao et al. 2017 Research
Resolution approaches for uncertain resource
assignment and job sequence in an automated
flexible job shop

Minimum of makespan, number
of late jobs, total flow time, and
total weighted flow time

Nie et al. 2013 Research Gene expression programming, dynamic flexible
job shop problem with job release dates

Minimum of makespan, mean
flow time, and mean tardiness

Doh et al. 2013 Research Heuristic with priority rules
Minimum of makespan, total flow
time, mean tardiness, number of
tardy jobs, and max tardiness

Lee et al. 2012 Research Heuristic Minimum of makespan and mean
flow time

Liu et al. 2009 Research Multi-swarm particle swarm optimization Minimum makespan of total flow
time

Tanev et al. 2004 Industry Genetic algorithm and prioritydispatching rules

Minimum ratio of tardy jobs,
variance of the flow time, amount
of mold changes, and maximum
efficiency of machines

Finally, it is worth mentioning that, to the best of our knowledge, there are almost
no studies addressing the problem of scheduling food production processes in hospital or
collective catering. Most existing works in the literature on scheduling food production
processes are from the food and dairy industries, where the production systems are parallel
machine, flow shop, and single machine, in most cases. Moreover, in the majority of these
works, the expiration date of products is unknown, while in this study, it is known. The
works found in the literature cannot be adapted to the problem addressed in this study,
since the production systems are different. In addition, several constraints specific to the
considered problem have not been taken into account in the existing works, and they do
not have the same objective of optimization.

Appl. Sci. 2021, 11, 1504 5 of 27

Figure 1. Bibliographical summary of the resolution methods used for flexible job shop problems
and the objective functions studied in the literature: 191 papers between 1990 and 2014 (Chaudhry
and Khan [27]).

3. Problem Description

The problem of food production process scheduling considered in this study aims to
schedule the operations from the pre-treatment of raw materials to the stock of finished
products of a meal manufacturing process in hospital catering or, more generally, in collec-
tive catering. Figure 2 represents the typical production areas and the different material
resources available for realizing the operations of the meal-making process. This problem
is considered as a flexible job shop problem with sequence-dependent setup time and job
splitting by integrating specific industrial constraints, such as the days of pre-treatment
and production of products, the product delivery times, and the amounts of human and
material resources available, in addition to the different constraints described below.

The addressed problem is considered as a flexible job shop scheduling problem with
sequence-dependent setup time, since each job has its own order of operations and each
operation has to be assigned to one among a set of possible machines. This problem can
be described by a set of N jobs, where each job i corresponds to the preparation of a dish
characterized by a number of portions Qi (quantity) and a set of operations Ji for the
preparation of the dish (from raw material to finished product). It is worth highlighting that
the dishes to be prepared do not have the same order of operating ranges (set of operations
necessary for the preparation of the dish). For each job, there is a due date Di to respect.

For each operation of an operating range, there is a set of material resources that are
used to realize it, such as ovens, cooking pots, cookers, induction hobs, packaging machines,
cooling cells (Figure 2). These material resources can be classified into three categories: M1,
M2, and M3. M1 ⊂ M is composed of material resources with a capacity of one portion

Appl. Sci. 2021, 11, 1504 6 of 27

and that can not process several jobs at the same time (material resources that can perform
preprocessing and cold production operations). The set M2 ⊂ M represents the material
resources with a capacity greater than one portion and that cannot process several jobs at the
same time (ovens, etc.). M3 ⊂ M correspond to the set of material resources with a capacity
greater than one portion and that can process several jobs at the same time (cooling cells).

Figure 2. Representative scheme of the meal production process.

For each material resource, there is a setup time to take into account, which corre-
sponds to the preparation time of the machine before carrying out an operation and the
cleaning time of the machine between two consecutive operations. A time window of
availability is known for each material resource.

Note that the corresponding machines may not be identical, involving different pro-
cessing times according to the chosen machine. The setup times of machines are sequence
dependent because they depends on the preceding operation on the same machine. The
food production process scheduling involves two steps: (i) assignment of operations to
machines and (ii) sequencing of operations on machines.

As mentioned previously, in order to respect the production capacities of material
resources, a job can be split into smaller sub-lots in such a way that the operations of
sub-lots of a job can be performed simultaneously on different machines. This strategy,
which is useful when machine capacity does not allow the treatment of the whole job, also
enables a more efficient processing scheme.

The criterion to minimize in the present study is the total flow time of jobs in the
production system. The choice of this criterion is based on the fact that the respect of the
cold chain at each stage of the product life cycle must be ensured. The aim is to constantly
maintain a low temperature (positive or negative, depending on the product) to ensure the
maintenance of all the food qualities (hygienic, nutritional, and gustatory).

4. Mathematical Model

In this section, a mixed-integer linear programming model is presented. This model
formalizes and solves small-sized instances of the studied problem by using the Cplex
solver. The solutions of the small-sized instances can be used to validate the efficiency of
the developed metaheuristic methods.

Appl. Sci. 2021, 11, 1504 7 of 27

4.1. Assumptions

The mathematical model for the scheduling of the food production process inherits its
main assumptions from the standard flexible job shop scheduling problem with sequence-
dependent setup times and additional features due to the job splitting:

• Jobs are independent of each other,
• A job can be split into sub-lots,
• The sub-lots of a job can be grouped on the machines to be treated at the same time,
• Each sub-lot of a job consists of a set of operations that must be processed consecutively

(precedence constraints between operations of sub-lots of jobs),
• Each operation of a sub-lot has a given processing time,
• The preemption of operations of sub-lots of jobs is not allowed, i.e., operation process-

ing on a machine cannot be interrupted,
• Each job has a given due date (finish date of production at latest),
• Sub-lot sizes (number of portions) are discrete,
• Sub-lots creation is consistent throughout the processing sequence, meaning that job

splitting and sub-lot sizes remain constant for all operations,
• Machines are independent,
• A machine can process, at most, one operation of a job at the same time,
• The setup times of machines are dependent on the sequence of operations of sub-lots

of jobs,
• Material resources have given availability time windows that must be taken into ac-

count.

Taking these assumptions into account, the objective is to find a schedule involving
sub-lot assignments to machines and sub-lot sequencing for each machine in such a way
that each job’s demand is fulfilled, different constraints of the problem are respected, and
the total flow time of jobs in the production system is minimized.

4.2. Notations

The definition of the developed mathematical model’s parameters relies on the follow-
ing sets and indexes:

• M: set of all material resources, where m = |M|.
• N: set of jobs (dishes to prepare), where n = |N| and {0, n + 1} are two dummy jobs.
• Ji: set of operations of job i ∈ N, such that the operation j ∈ Ji is done before the

operation j + 1 ∈ Ji and |J0| = |Jn+1| = 1.
• Qi: number of portions (quantity) of job i ∈ N.
• qi: number of portions in each sub-lot of job i ∈ N.
• Li: set of sub-lots of job i ∈ N, with |L0| = |Ln+1| = 1 and li = |Li| such that

li = d
Qi
qi
e.

• di: due date of job i ∈ N.
• Mij ⊂ M: set of material resources that can perform the operation j ∈ Ji of job i ∈ N.
• Rk: maximum capacity in number of portions of the material resource k ∈ M.
• P

′
ijk: unit processing time of operation j ∈ Ji of job i ∈ N on the material resource

k ∈ M1.
• Pijk: processing time of operation j ∈ Ji of job i ∈ N on the material resource

k ∈ M2 ∪M3.
• sijhgk: setup time of material resource k ∈ Mij ∩ Mhg if the operation j ∈ Ji of job

i ∈ N directly precedes the operation g ∈ Jh of job h ∈ N on the material resource
k ∈ Mij ∩Mhg.

• Tk: preparation time of the material resource k at the beginning of scheduling.
• Ek: cleaning time of the material resource k at the end of scheduling.
• [Ak, Yk]: time window of availability of the material resource k ∈ M.
• B: big integer.

Appl. Sci. 2021, 11, 1504 8 of 27

4.3. Decision Variables

• Xil jk: binary variable that equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N is
assigned to the material resource k ∈ Mij, and 0 otherwise.

• Fil jhl′gk: binary variable that is equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job
i ∈ N directly precedes operation g ∈ Jh of sub-lot l′ ∈ Lh of job h ∈ N on the material
resource k ∈ Mij ∩Mhg, and 0 otherwise.

• Zill′ jk: binary variable that is equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N
starts and finishes at the same time as the operation j ∈ Ji of sub-lot l′ ∈ Li of job
i ∈ N on the material resource k ∈ Mij, and 0 otherwise.

• Sil jk: starting time of operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N on the material
resource k ∈ Mij.

• Cil jk: completion time of operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N on the material
resource k ∈ Mij.

• Ci: completion time of job i ∈ N.

4.4. Mathematical Model

In the literature, there exist different mathematical model formulations for the standard
flexible job shop scheduling problem. The mathematical model proposed by Buddala and
Mahapatra [31] takes into account constraints on processing times, precedence between
operations, and machine capacity in number of operations processed at the same time,
which corresponds with the studied problem. However, this model does not take into
consideration the constraints on machine capacity in the number of portions, machine
availability time windows, sequence-dependent setup time, due dates of jobs, splitting of
jobs, and batching of sub-lots.

The developed mathematical model that integrates all these constraints is formulated
as indicated through Equations (1) to (22):

Min ∑
i∈N

Ci (1)

Ci ≥ ∑
k∈Mij

Cil jk, ∀ i ∈ N, l ∈ Li, j ∈ Ji (2)

Sil jk + Cil jk ≤ B ∗ Xil jk, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (3)

Cil jk − Sil jk ≥ Pijk − B ∗ (1− Xil jk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ M2 ∪M3 (4)

Cil jk − Sil jk ≥ P′ijk ∗Qi − B ∗ (1− Xil jk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ M1 (5)

Shl′gk ≥ Cil jk + sijhgk − B ∗ (1− Fil jhl′gk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, h ∈ N, l′ ∈ Lh, g ∈ Jh,

k ∈ Mij ∩Mhg\M3
(6)

Sil′ jk ≥ Cil jk + sijijk − B ∗ (1− Fil jil′ jk)− B ∗ Zill′ jk, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ Mij ∩Mhg (7)

Sil jk − Sil′ jk ≤ B ∗ (1− Zill′ jk), ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M2 ∪M3 (8)

Appl. Sci. 2021, 11, 1504 9 of 27

Cil jk − Cil′ jk ≤ B ∗ (1− Zill′ jk), ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M2 ∪M3 (9)

∑
h∈N\{0}

∑
l′∈Lh

∑
g∈Jh

Fil jhl′gk = 1, ∀ i ∈ N\{n + 1}, l ∈ Li, j ∈ Ji, k ∈ Mij ∩Mhg (10)

∑
i∈N\{n+1}

∑
l∈Li

∑
j∈Ji

Fil jhl′gk = 1, ∀ h ∈ N\{0}, l′ ∈ Lh, g ∈ Jh, k ∈ Mij ∩Mhg (11)

∑
k∈Mij

Sil jk − ∑
k∈Mij−1

Cil j−1k ≥ 0, ∀ i ∈ N, l ∈ Li, j ∈ Ji (12)

∑
k∈Mij

Xil jk = 1, ∀ i ∈ N, l ∈ Li, j ∈ Ji (13)

Ci ≤ di, ∀ i ∈ N (14)

∑
l,l′∈Li

qi ∗ Zill′ jk ≤ Rk, ∀ i ∈ N, j ∈ Ji, k ∈ M2 ∪M3 (15)

Sil jk ≥ Ak, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (16)

Cil jk ≤ Yk, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (17)

Zill′ jk = 0, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M1 (18)

Xil jk ∈ {0, 1}, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (19)

Zill′ jk ∈ {0, 1}, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ Mij (20)

Sil jk ≥ 0, Cil jk ≥ 0, Ci ≥ 0, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (21)

Fil jhl′gk ∈ {0, 1}, ∀ i ∈ N, l ∈ Li, j ∈ Ji, h ∈ N, l′ ∈ Lh, g ∈ Jh, k ∈ Mij ∩Mhg. (22)

In the mathematical model presented previously, Equation (1) represents the objective
function, which consists in minimizing the total flow time of jobs in the production system.
It is defined as the sum of the completion times of all jobs since the release dates are equal to
zero. The completion times of jobs are computed as the completion time of the last sub-lot
derived from the considered job, as indicated in Equation (2). Note that, due to Equation (3),
for given i ∈ N, l ∈ Li, and j ∈ Ji, variables Sil jk and Cil jk are equal to zero if the machine
k ∈ Mij is not chosen to realize the operation of the considered sub-lot. On the other hand,
when Xil jk is equal to 1, Equations (4) and (5) activate the relationship between the starting
time and completion time of an operation of a sub-lot. In this case, the processing time does
not depend on the quantity of jobs for the material resources M2 ∪M3 (Equation 4), but it
depends on the quantity of jobs for the material resources M1 Equations (5) and (6) consider
sequence-dependent setup times between the completion time and starting time of two

Appl. Sci. 2021, 11, 1504 10 of 27

operations of sub-lots that are processed on a machine one after another. Equation (7)
disable Equation (6) if two different sub-lots of the same job are performed at the same
time by the same material resource. Equations (8) and (9) require that if two operations
of two different sub-lots of the same job are assigned at the same time to a material
resource M2 or M3, they must have the same respective starting time and completion time.
Equation (10) ensure that only one operation immediately follows the jth operation of
sub-lot l ∈ Li of job i ∈ N on machine k ∈ Mij ∩Mhg, and Equation (11) guarantee that
only one operation immediately precedes the gth operation of sub-lot l′ ∈ Lh of job h ∈ N
on machine k ∈ Mij ∩Mhg. Equation (12) establishes the precedence constraints between
two consecutive operations of the same sub-lot. Equation (13) enforce that each operation
of each sub-lot should be assigned to exactly one machine among the possible ones. The
respect for the due dates of jobs is modeled by Equation (14). Equation (15) ensure that the
capacities of material resources in the number of portions are respected. The respect for
time windows of availability of material resources is modeled by Equations (16) and (17).
Finally, Equations (19)–(22) define the domain of the decision variables.

4.5. Computational Results of the Mathematical Model

The mathematical model presented previously was implemented in the Java program-
ming language using the Cplex library. This mathematical model was tested on 150 instances
of different types: real instances of the hospital center of Troyes (HCT), randomly generated
instances of the HCT type, randomly generated instances, and instances adapted from the
literature (Sriboonchandr et al. [32], Nouri et al. [33], Azzouz et al. [34], Mousakhani [26],
Lee et al. [35], Bagheri and Zandieh [25], Pezzella et al. [36]). The details of the results of
these different types of instances are presented in Section 6. The mathematical model was
able to find solutions in less than three hours of execution for the small instances with less
than eight jobs, 10 sub-lots, 39 operations, and 29 machines. The execution times of the
mathematical model for these instances varied according to the number of jobs, sub-lots,
and operations. The computational results of the proposed mathematical model for different
types of instances and, specifically, for real instances of HCT show the limits of an exact
resolution for the problem of scheduling of the food production process.

5. Resolution Methods
5.1. Genetic Algorithm

Solving the flexible job shop problem is known to be strongly NP-hard (Xia and
Wu [37], Fattahi et al. [38]). The introduction of sequence-dependent setup time and job
splitting complicates the already difficult flexible job shop problem. In order to solve this
problem efficiently, we developed a hybrid method that combines a genetic algorithm and
three local research methods. The elements of this hybrid method are presented in the
following subsections.

5.1.1. Solution Representation

By solving a flexible job shop scheduling problem using a genetic algorithm, Kacem [39]
used a solution representation by coding both the assignment and the sequencing of oper-
ations on different machines. A similar representation is used in this paper to solve the
flexible job shop scheduling problem with job splitting by considering each sub-lot as a job.
To illustrate this representation, let us consider a small example with three jobs and four
machines. The numbers of operations of sub-lots for each job and all the machines eligible
for each operation are given in Figure 3. A representation of the assignment of operations
to machines and their sequencing is coded in a chromosome, as shown in Figure 3. In this
chromosome, each gene is represented by a quadruple (i, l, j, k), designating the assignment
of operation j of sub-lot l of job i to machine k. The sequence of genes in the chromosome
represents the sequence of operations on machines. The chromosome decoding procedure
is carried out by reading it from left to right. For example, the assignment and sequencing
of operations on machine 1 can be decoded as follows: (1, 1, 1, 1)→ (1, 2, 1, 1)→ (3, 1, 3, 1)

Appl. Sci. 2021, 11, 1504 11 of 27

→ (3, 2, 3, 1)→ (3, 3, 3, 1). This information is obtained from genes 3, 8, 10, 16, and 17 in
the chromosome, where k = 1. In this chromosome, for a given i and l, the gene (i, l, j, k) is
always located on the right of all the other genes (i, l, j, k′) with j′ < j. This ensures that the
precedence requirements of the operations of a particular sub-lot are not violated.

Appl. Sci. 2021, 1, 0 10 of 27

operations on machines. The chromosome decoding procedure is carried out by reading it from left to
right. For example, the assignment and sequencing of operations on machine 1 can be decoded as follows
: (1, 1, 1, 1)→ (1, 2, 1, 1)→ (3, 1, 3, 1)→ (3, 2, 3, 1)→ (3, 3, 3, 1). This information is obtained from genes
3, 8, 10, 16 and 17 in the chromosome, where k = 1. In this chromosome, for a given i and l, the gene
(i, l, j, k) is always located on the right of all the other genes (i, l, j, k′) with j′ < j. This ensures that the
precedence requirement of the operations of a particular sub-lot are not violated.

Figure 3. Representation of the assignment of operations to machines and their sequencing.

5.1.2. Initial population

The initial population plays an important role in the performance of genetic algorithms. An initial
population with great diversity between solutions can avoid falling into a premature convergence or a
local minimum. Different assignment and sequencing rules have been used to achieve the diversity of
solutions :

• Random assignment (RA) : the operations are randomly assigned to machines.

• SPT assignment (SPTA) : for each operation, the machine with a smaller processing time is selected
to perform this operation.

• LPT assignment (LPTA) : for each operation, the machine with a longer processing time is selected
to perform this operation.

• Minimum machine workload assignment (MMWA) : the operations are iteratively assigned to
machines based on their processing times and machine workloads. The workload of a machine
depends on its type. For the set of machines M1, the workload is the sum of processing times of
operations assigned to the machine. For the set of machines M2 and M3, the workload is the total
machine occupation time. The procedure consists in finding, for each operation, the machine with
the minimum workload.

• Random sequence (RS) : this heuristic randomly orders the operations on each machine.

• SPT sequence (SPTS) : operations with the shortest processing time will be firstly processed.

• Most Number of Operations Remaining (MNOR) : this heuristic consists of processing as a priority,
the operations of sub-lot of job that has the most operations remaining.

• Most Work Remaining (MWR) : the operations that have the most remaining processing time will
be processed in priority.

For the construction of the initial population using the heuristics described above, the procedure consists
in randomly choosing an assignment and sequencing heuristics and building solutions such as the
constraints of precedence between the operations of sub-lots of jobs, the due dates of jobs, the time
windows of availability of material resources and the production capacities of machines are respected.

Figure 3. Representation of the assignment of operations to machines and their sequencing.

5.1.2. Initial Population

The initial population plays an important role in the performance of genetic algorithms.
An initial population with great diversity between solutions can avoid falling into a
premature convergence or a local minimum. Different assignment and sequencing rules
were used to achieve the diversity of solutions:

• Random assignment (RA): The operations are randomly assigned to machines.
• SPT assignment (SPTA): For each operation, the machine with a smaller processing

time is selected to perform this operation.
• LPT assignment (LPTA): For each operation, the machine with a longer processing

time is selected to perform this operation.
• Minimum machine workload assignment (MMWA): The operations are iteratively

assigned to machines based on their processing times and machine workloads. The
workload of a machine depends on its type. For the set of machines M1, the workload
is the sum of processing times of operations assigned to the machine. For the set of ma-
chines M2 and M3, the workload is the total machine occupation time. The procedure
consists in finding the machine with the minimum workload for each operation.

• Random sequence (RS): This heuristic randomly orders the operations on each machine.
• SPT sequence (SPTS): Operations with the shortest processing time will be pro-

cessed first.
• Most number of operations Remaining (MNOR): This heuristic consists of processing

the operations of the sub-lot of the job that has the most operations remaining as
a priority.

• Most work remaining (MWR): The operations that have the most remaining processing
time will be prioritized for processed.

For the construction of the initial population using the heuristics described above, the
procedure consists of randomly choosing an assignment and a sequencing heuristic and
building solutions, such as the constraints of precedence between the operations of sub-lots
of jobs, the due dates of jobs, the time windows of availability of material resources, and
the respect for the production capacities of machines.

Appl. Sci. 2021, 11, 1504 12 of 27

5.1.3. Fitness Evaluation

Algorithm 1 decodes the chromosomes to obtain the objective function value and a
workable representation of the solutions.

Algorithm 1: Evaluation steps of the fitness function of a chromosome

• Step 01: Set p = 1.
• Step 02: Set i, l, j, k, the index values of the gene located at the P position of the chromosome.
• Step 03: Calculate the completion time Cil jk.

• If operation j of sub-lot l of job i is the first operation assigned to the machine k and j = 1,

Sil jk = Ak + Tk; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If operation j of sub-lot l of job i is the first operation assigned to the machine k, j > 1, and the operation
j− 1 is assigned to the machine k′,

Sil jk = Max{Ak + Tk, Cil j−1k′}; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If operation j′ of sub-lot l′ of job i′ is the operation to be processed immediately before the operation j of
sub-lot l of job i on the machine k and j = 1,

Sil jk = si′ j′ijk + Ci′ l′ j′k; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If operation j of sub-lot l of job i and the operation j of sub-lot l′ of job i are assigned to the machine k
and j = 1,

• If (k ∈ M2 ∪M3 and 2 ∗ qi <= Rk)

Sil jk = Sil′ jk; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If (k ∈ M2 ∪M3 et 2 ∗ qi > Rk) ou (k ∈ M1)

Sil jk = Fil′ jk; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If operation j′ of sub-lot l′ of job i′ is the operation to be processed immediately before the operation
j of sub-lot l of job i on the machine k, j > 1, and the operation j− 1 is assigned to the machine k′,

Sil jk = Max{si′ j′ijk + Ci′ l′ j′k, Cil j−1k′}; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If operation j of sub-lot l of job i and the operation j of sub-lot l′ of job i are assigned to the machine
k, j > 1, and the operation j− 1 is assigned to the machine k′,

• If (k ∈ M2 ∪M3 and 2 ∗ qi <= Rk)

Sil jk = Sil′ jk; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• If (k ∈ M2 ∪M3 and 2 ∗ qi > Rk) or (k ∈ M1)

Sil jk = Max{Cil′ jk, Cil j−1k′}; Cil jk = Sil jk + Pijk; Ci = Max{Ci, Cil jk}

• Step 04: If p is less than the total number of operations of sub-lots of jobs, increment its value by 1
and go to Step 2; otherwise, go to Step 05.

• Step 05: Calculate the fitness function of the solution by using the equation ∑i Ci.

It is worth noting that for a given i and l, the gene (i, l, j, k) is always located on
the right of all the other genes (i, l, j′, k′) with j′ < j. Based on this property, when the
completion time of operation (i, l, j, k) on machine k is to be calculated, the completion time

Appl. Sci. 2021, 11, 1504 13 of 27

of operation (i, l, j− 1, k′) is already calculated and available, regardless of the machine to
which this preceding operation is assigned. Moreover, the completion time of the operation
(i′, l′, j′, k) to be processed on machine k immediately before operation (i, l, j, k) is also
calculated and available.

Genetic operators evolve the population to promising regions of the research space.
The convergence behavior of the algorithm depends largely on them. These operators are
generally categorized as selection, crossover, and mutation operators.

5.1.4. Selection Operator

The process of selecting two parents from the population for reproduction is called
selection. The aim of the selection operator is to highlight individuals with the best fitness
in hopes that their resulting offspring are more fit individuals. In the proposed genetic
algorithm, we used the two-way tournament selection operator introduced in [40]. The
selection operator is involved in holding competitions among randomly selected individuals
and choosing the one with the best fitness (smallest total flow time). This individual is added
to a mating population, which is used to form the next generation. Then, the individuals in
the tournament are placed back in the current population, and the process is repeated until
the number of individuals added to the mating population is equal to the population size.

5.1.5. Crossover Operator

After the selection of chromosomes for reproduction, a crossover operator is applied
to combine the features of the parent chromosomes in order to produce a new child. The
individuals in the mating population are randomly paired to create child individuals.
For two parents, the algorithm arbitrarily selects one of the available crossover operators
and applies it with a certain probability to create two child individuals by exchanging
information contained in the parent chromosomes.

Different crossover operators are proposed and can be categorized as assignment or
sequence crossover operators. The assignment crossover operators consist of generating
offsprings by exchanging the assignment of operations to machines in the parent chro-
mosomes. The role of sequence crossover operators is to produce two new offspring by
exchanging partial information of the sequences of operations on machines in the par-
ent chromosomes. The assignment and sequence crossover operators developed in the
proposed genetic algorithm are: OMAC (operation to machine assignment crossover),
JLOSC (job-level operation sequence crossover), and SLOSC (sub-lot-level operation se-
quence crossover).

From a given pair of parent chromosomes, OMAC creates two child chromosomes,
preserving the sequence of operations in each parent chromosome and modifying the
machines’ affectation. The creation of a child chromosome using an OMAC crossover
operator is illustrated in Figure 4. We assume that in the first step, the operations located
in genes 1, 3, 4, 7, 12, 13, 14, and 15 are selected from parent 1 to change their assignments.
Then, the second step is to copy all the genetic information of parent 1 to the offspring,
except for the assignment information of the selected operations. The final step is to obtain
the assignment information of the selected operations from parent 2 and then copy them
to the corresponding genes in the offspring to produce a new child chromosome. The
same process is repeated to create child 2 by starting to select the operations from the
chromosome parent 2. Three versions of OMAC were developed to correspond to different
ways of selecting the operations for which the assignment will be modified:

• OMAC 1: A set of operations of a sub-lot of jobs is chosen randomly.
• OMAC 2: A set of operations of sub-lots assigned to the loaded machines is selected.
• OMAC 3: A set of operations of sub-lots of jobs with larger completion times is chosen.

The objective of the crossover operator OMAC 2 is to balance the workload between
the machines, whereas the goal of the crossover operator OMAC 3 is to reduce the ending
dates of jobs with longer completion times.

Appl. Sci. 2021, 11, 1504 14 of 27

Figure 4. OMAC (operation to machine assignment crossover) operator.

The crossover sequencing operators JLOSC and SLOSC produce two new offspring
by exchanging the sequencing information of parent chromosomes while keeping the
assignment of machines in a gene unmodified. They are applied with given probabilities.
The creation of the child chromosome by JLOSC and SLOSC with the preservation of the
assignment information of parent chromosomes is illustrated in Figures 5 and 6. In the
JLOSC crossover operator, the first step is to select a set of operations from parent 1. The
next step is to copy all of the genetic information of the genes that are associated with the
chosen operations to the offspring. The final step is to fill the empty genes in the offspring
chromosome, while the machine assignment information of the empty genes is preserved
from parent 1. This is done by copying the remaining operations from parent 2 to the
empty genes, while the operations retain their appearance order from the second parent.
The same procedure is repeated to create child 2 by starting to select the operations from
parent 2. SLOSC is identical to JLOSC, with a difference in the second step of SLOSC: Only
the genetic information of the chosen genes with the same sub-lot and job indexes is copied
to the offspring. Two operators of each kind were developed (JLOSC1, JLOSC2, SLOSC1,
and SLOSC2):

• JLOSC1 and SLOSC1: The operations are chosen randomly.
• JLOSC2 and SLOSC2: The operations are chosen according to specific rules that consist

of choosing the operations of jobs with smaller completion times.

The SLOSC1 operator is similar to the JLOSC1 operator, but instead of keeping the
unmodified operations of all the sub-lots, only the information from the sub-lot of the
selected operation is kept and copied to the child chromosome.

The SLOSC2 crossover operator is similar to the JLOSC2 crossover operator except
that in the first step, a set of sub-lots of jobs with smaller completion times is chosen.
The goal of the JLOSC2 and SLOSC2 crossover operators is to keep the sequencing of
operations of jobs and the sequencing of operations of sub-lots of jobs, respectively, with
smaller completion times.

Appl. Sci. 2021, 11, 1504 15 of 27

Figure 5. JLOSC2 (job-level operation sequence crossover 2) operator.

Figure 6. SLOSC2 (sub-lot-level operation sequence crossover 2) operator.

It is important to note that, after the application of any crossover operator, in the
child chromosome, for a given i and l, the gene (i, l, j, k) is located after any gene (i, l, j′, k′),
where j′ < j. This ensures that precedence constraints between operations of a particular
sub-lot are not violated in the new created child chromosome.

Appl. Sci. 2021, 11, 1504 16 of 27

5.1.6. Mutation Operator

The role of mutation operators is to prevent the algorithm from being trapped in a
local optimum and to maintain genetic diversity in the population. The mutation operators
are usually applied on chromosomes with given probabilities. Assignment and sequence
operators also exist amongst the mutation operators. Assignment mutation operators
change the assignment of operations to machines without changing the sequencing of
these operations, and sequence operators only change the sequencing property of the
chromosome undergoing the mutation, while the assignment property is preserved. The
mutation operators used in the developed genetic algorithm are:

• ROAM (random operation assignment mutation): This operator is applied with a given
probability on a set of operations of a given individual chromosome and randomly
changes the assignment property of these operations to another machine.

• OSSM (operation sequence shift mutation): Whenever OSSM is applied on an individ-
ual, a set of operations is selected. Then, these operations are moved to other positions
on the chromosome in such a way that no precedence constraint is violated.

5.1.7. Local Search Methods
Local Search through Gene Movement

This local search method improves the quality of any solution built after the application
of the crossover and mutation operators. It is repeated as long as the quality of solutions
obtained is not improved. The procedure for this method is illustrated through an example
in Figure 7. The first step is to choose a set of operations of jobs with longer completion times;
the goal is to reduce these completion times. In the second step, the procedure performs a
search in the neighborhood of a solution by changing the positions of the operations chosen
on the machines in order to improve the quality of this solution. This process is repeated
until the iteration criteria are met. The steps of this local search method are as follows:

• Step 01: Choose a set of operations of jobs with larger completion times in the current
chromosome.

• Step 02: Each operation chosen in Step 01 is positioned just before the previous
operation assigned to the same machine (left movement) or just after (right movement)
the following operation assigned to the same machine, while respecting the constraints
of precedence between operations of sub-lots of jobs. This process allows one to lead
research in the neighborhood of a solution by changing the sequencing of operations
on the machines.

• Step 03: This process is repeated until the maximum number of iterations is not reached.

Figure 7. Local search procedure through gene movement.

Appl. Sci. 2021, 11, 1504 17 of 27

Local Search by Grouping Sub-Lots

This local search method consists of grouping the operations of sub-lots of jobs on
machines if the capacities of the machines allow the processing of several operations at the
same time. This method can only be applied for machines such as ovens and cooling cells.
The procedure for this local search method is illustrated through an example in Figure 8.
For each gene, the sub-lot grouping procedure consists of browsing the chromosome from
left to right. If the sub-lots of the same job as the considered gene are assigned to the same
machine and the latter can process several sub-lots at the same time, all the genes of these
sub-lots are repositioned one next to the other in the chromosome, which means that these
sub-lots are treated at the same time by the same machine. The grouping of operations of
sub-lots of jobs on machines must take into account the precedence between operations of
these sub-lots.

Figure 8. Local search procedure by grouping sub-lots.

Local Search through Intelligent Assignment of Operations

In this local search approach, a set of operations assigned to the most loaded machines
is reassigned to the least loaded compatible ones.

Table 2 gives the common and different elements between the two developed algo-
rithms. In this table, the heuristics for the generation of the initial population, crossover,
and mutation operators of the two genetic algorithms are given. The two algorithms differ
in the generation methods of the initial population and in the crossover operators. In both
algorithms, several affectation and sequence heuristics were tested for the generation of
the initial population. In Table 2, the heuristics allowing one to obtain the best solutions
are given. The crossover operators of the first genetic algorithm are based on random
choices of operations, while in the second algorithm, different operators that are specific
and more adapted to the studied problem have been developed. Regarding the mutation
operators, they are common between the two algorithms. The pseudocode of the generic
genetic algorithm is given in Algorithm 2.

Table 2. Common and different elements between the two genetic algorithms.

Initial Population Crossover Operators Mutation Operators

GA1 MMWA, SPT OMAC1, JLOSC1, SLOSC1 ROAM, IOAM, OSSM

GA2 MMWA, MNOR OMAC2, OMAC3, JLOSC2, SLOSC2 ROAM, IOAM, OSSM

Appl. Sci. 2021, 11, 1504 18 of 27

Algorithm 2: Genetic algorithm

1. Initialization: The initial solutions are chosen using the heuristics described above ;
2. Evaluation: Evaluation of the initial solutions using the procedure of fitness function computation; ;
1. nbIterations← 0; nbIndividuals← 0 ;
3. Application of the selection operator to choose the parent chromosomes to cross and mutate;
4. Randomly choose one of the crossover operators;
5. Application of the crossover operator chosen in 4;
6. Randomly choose one of the mutation operators ;
7. Application of the mutation operator chosen in 6;
8. Application of the local search by grouping sub-lots on child chromosomes obtained after crossover and
mutation;

9. nbIndividuals← nbIndividuals + 1 ;
10. If the population size is reached, then go to 11, else go to 3 ;
11. Sorting solutions of the current population in ascending order of fitness functions ;
12. Construction of the new population with solutions of the previous population;
13. Application of the local search methods through gene movement and intelligent assignment of operations on

the α best solutions of the new population;
14. nbIterations← nbIterations + 1 ;
15. If the maximum number of iterations is not reached, then go to 3, else go to 16 ;
16. End of algorithm

5.2. Iterated Local Search Algorithm

This section describes an iterated local search (ILS) algorithm for solving the studied
problem. ILS is a simple, robust, and highly effective local search procedure that explores
local optima in a given neighborhood (Lourenço et al. [41]).

The iterated local search algorithm starts from an initial solution and obtains a local
optimum in its neighborhood through a local search procedure. To improve upon the
current local optimum, ILS applies perturbation operators to this solution in order to move
away from the current local optimum. An acceptance criterion is employed to determine
which local optimum will become the current local optimum in the next iteration. The
above process is repeated until a termination criterion is satisfied.

To generate the initial solutions of the iterative local search algorithms, the affectation
and sequence heuristics for the generation of the initial population of the genetic algorithm
are used, except that in the ILS algorithm, only one solution is generated.

The local search procedure is based on two operators: the affectation operator (AO)
and sequence operator (SO). The affectation operator changes the assignment of a set of
operations to the machines without changing their sequencing on the machines, while the
sequence operator changes the sequencing of operations without changing their affectation
to to machines.

Three affectation operators, AO1, AO2, and AO3, and three sequence operators, SO1,
SO2, and SO3, were developed:

• AO1 and SO1: The operations are chosen randomly.
• AO2, AO3, SO2, and SO3: The operations are chosen according to rules developed to

be specific to the studied problem.

The goal of the AO2 operator is to balance the workload between the machines, while
AO3, SO2, and SO3 operators allow the reduction of the ending dates of jobs with larger
completion times. The difference between these operators is in the choice of operations to
change their assignments and sequences.

The first step of the SO operator consists of randomly choosing one of the sequence
operators. Then, a set of operations in the current solution to be improved is chosen. The
second step is to shift the selected operations to the left until the permutation of these
operations with the previous operations assigned to the same machines is effective. If the
left shift is blocked (precedence constraints are violated), then, from the solution obtained

Appl. Sci. 2021, 11, 1504 19 of 27

in the second step, the selected operations are shifted to the right until the permutation of
these operations with the next operations assigned to the same machines is effective. This
process is repeated until the maximum number of iterations is not reached.

In the AO operator, the first step is to choose one of the assignment operators. Then, a
set of operations in the current solution to be improved is chosen. In the second step, the
selected operations are assigned to another machine among a set of alternative machines.
If the solution obtained after the reassignment of operations is not better than the current
solution, then an SO sequence operator is applied on the selected operations with the new
machine assignments obtained in the second step. This process is repeated for a given
number of iterations.

The local search method can get stuck in a local optimum if the solution space is
reduced. To fix this problem, a number of insertion moves to the current local optimum
to obtain a perturbation solution are carried out. To determine the appropriate number
of perturbations, different strategies have been tested. The best strategy, and that which
is used in the algorithm, consists of performing a perturbation if the degree of similarity
between the solutions is lower than a given threshold defined beforehand, which ensures a
sufficient distance between solutions. The evaluation of the degree of similarity is based on
the gaps between solutions. The similarity measures between solutions are evaluated to
ensure the stability in the proposed solutions for the production scheduling.

The different steps of the iterative local search method in one iteration are illustrated
through an example in Figure 9. The algorithm begins by generating an initial solution using
one of the assignments and sequencing heuristics. Then, one of the SO sequence operators
is applied. If no improvement of the solution is obtained after the application of the SO
operator, the next step consists of applying an AO assignment operator on the operation
chosen beforehand. If the application of the AO operator does not improve the initially
generated solution, an SO operator with the new affectation obtained after the application of
the AO operator is applied. If the solution is still not improved, a perturbation operator is
applied on this solution, and the algorithm moves on to the next loop iteration. This operator
consists of applying one of the randomly chosen sequencing or assignment operators. This
process is repeated until the maximum number of perturbations is not reached.

Figure 9. Steps of the iterative local search algorithm for one iteration.

Appl. Sci. 2021, 11, 1504 20 of 27

Table 3 gives the common and different elements between the two developed algo-
rithms. In this table, the heuristics for the generation of initial population, affectation, and
sequence operators of the two iterated local search algorithms are given. The difference
between the two algorithms lies in the heuristics used for the generation of initial solutions.
In Table 3, the heuristics allowing one to find the best solutions are given. The affectation
and sequence operators of the first iterated local search algorithm are based on random
choices of operations, while in the second algorithm, the choice of these operations is based
on specific rules more suited to the considered problem. The pseudocode of the generic
iterated local search algorithm is given in Algorithm 3.

Algorithm 3: Iterative local search algorithm
1. Initialization: The initial solution is generated by using the previously described assignment and sequencing

heuristics ;
1. current solution← initial solution ;
2. Evaluation: Evaluation of the initial solution ;
1. SimilarDegree← 0 ;
3. Application of the SO sequence operator;
4. If the solution is improved in 3, then ;
1. current solution← solution obtained in 3, else go to 5;
5. Application of the AO affectation operator ;
6. If the solution is improved in 5, then;
1. current solution← solution obtained in 5, else go to 7;
7. Application of the PO operator on the current solution ;
8. Update SimilarDegree by calculating the distance between the current solution and the improved one;
9. If the degree of similarity between the solutions obtained in 8 is less than a predefined threshold,;
then go to 3, else go to 10 ;
10. End of algorithm

Table 3. Common and different elements between the two iterated local search algorithms.

Initial Solution Sequence Operators Affectation Operators

ILS1 SPT, MNOR SO1 AO1

ILS2 MMWA, MNOR SO2, SO3 AO2, AO3

6. Computational Results of the Developed Algorithms
6.1. Data Generation

The genetic algorithms presented above were implemented using the Java program-
ming language and were tested on 150 instances of different types: real instances of the
HCT, randomly generated instances of the HCT type, randomly generated instances, and
instances adapted from the literature (Sriboonchandr et al. [32], Nouri et al. [33], Azzouz
et al. [34], Mousakhani [26], Lee et al. [35], Bagheri and Zandieh [25], Pezzella et al. [36]).

The real instances were built after collecting data for some examples of production
days. The randomly generated instances of the HCT type were built using data (such as the
number of machines, due dates of jobs, and time window of availability of machines) from
the real instances of HCT. The other parameters were generated from uniform distributions,
such as the parameters of the randomly generated instances. To adapt the instances from
the literature to the studied problem, the missing data, such as the quantities of dishes,
due dates of jobs, machine capacities, and time windows of availability of machines, were
randomly generated according to uniform distributions and by taking into account the
data on the processing times of operations and the setup times of machines given in these
instances. The results of the developed resolution methods for these different categories of
instances are presented below.

Appl. Sci. 2021, 11, 1504 21 of 27

6.2. Optimization of the Metaheuristics’ Parameters

To optimize the parameter values of the developed metaheuristics, the Taguchi method
was used. The choice of these parameters has a significant effect on the efficiency of the
metaheuristic algorithms. The parameter values that are needed for optimization act like
controllable factors in the design of experiments. The aim is to find an optimal combination
of the parameters such that the total flow time is minimized. To employ the Taguchi
method, Minitab 19 was used; under the menu options, Stat-DOE-Taguchi Design Create
Design was selected. For five levels of six factors, an L25 orthogonal array is used. This
orthogonal array lists the different combinations of factors at different levels at which the
response values of experiments have to be determined.

The parameters of the genetic algorithm are: population size (PS), maximum number
of generations (MNG), crossover probability (Pc), mutation probability (Pm), number of
elite individuals (NEI), and the number of individuals on which local research is applied
(NILS). The parameters of the iterated local search algorithm are: maximum number of
iterations of the sequence operator (MISO), maximum number of iterations of the affectation
operator (MIAO), maximum number of perturbations of the perturbation operator (MPPO),
and threshold distance between solutions to reiterate the steps of the iterative local search
algorithm (DOS). The optimum values of the genetic algorithm and the iterated local search
algorithm parameters are given in Table 4.

Table 4. Optimal parameters of the genetic and iterated local search algorithms.

PSG MNG NEIi NILS Pc G Pm G

GA 1 500 1000 50 50 0.8 0.2

GA 2 800 1200 80 80 0.8 0.2

DOSG MISOG MIAOG MPPOG

ILS 1 0.05 100 100 50

ILS 2 0.07 200 200 100

6.3. Discussion of the Experimental Results

The optimization criteria of the developed metaheuristics are based on the quality of
the solutions and rapidity. The quality and efficiency of the metaheuristics were proven
by comparing the solutions obtained with these algorithms and the optimal solutions of
the mathematical model. Regarding the rapidity, the computation times of the algorithms
were compared with those of the mathematical model. From the results presented above
(Tables 5–9), we remark that the two genetic algorithms are efficient in terms of quality and
rapidity. The performance of the developed resolution methods depends on the types of
instances and their sizes, and it also depends on the choice of heuristics for the generation
of initial solutions. The first genetic algorithm is more efficient in terms of quality with
the MMWA assignment heuristic and the SPT sequence heuristic, while the second genetic
algorithm is more efficient with the MMWA and MNOR heuristics. For the iterated local
search algorithms, the first algorithm gives better solutions with the SPT assignment heuristic
and the MNOR sequence heuristic, while the second algorithm finds good solutions with
the MMWA and MNOR heuristics. Regarding the rapidity, the four metaheuristics are more
faster with the RA assignment heuristic and the RS sequence heuristic.

The results of the genetic algorithms for different types of instances (Tables 5–9) show
that the developed metaheuristics are efficient relative to the quality of solutions. Table 5
represents the results of the different methods developed on a real instance with 82 jobs,
92 sub-lots, 370 operations, and 29 machines. From these instances, several sub-instances
were built by increasing the number of jobs, sub-lots, and operations each time to see
from what number of jobs, sub-lots, and operations the model is not able to find solutions.
From Table 5, we observe that for the real instances of the HCT, the mathematical model
quickly found solutions for the small instances with less than five dishes, five sub-lots,
24 operations, and 29 machines. It took a little longer for the instances with more than
six dishes, six sub-lots, 29 operations, and 29 machines. However, for the instances with
more than nine jobs, 44 operations, and 29 machines, after more than 3 h of execution, the

Appl. Sci. 2021, 11, 1504 22 of 27

mathematical model did not find solutions. For these instances, the two genetic algorithms
succeeded in finding feasible solutions in very short computation times. For example,
for the large instance with 82 jobs, 92 sub-lots, 370 operations, and 29 machines, the first
genetic algorithm found a feasible solution that respected all the constraints after 5 min
of execution.

Table 5. Computational results of the developed resolution methods for real instances of the hospital center of Troyes (HCT).

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

2 2 10 29 15.3 2 15.3 0.1 15.3 0.3 15.3 0.01 15.3 0.08
3 3 15 29 24.4 4 24.4 0.2 24.4 0.5 24.4 0.04 24.4 0.14
4 4 20 29 32.8 120 32.8 0.3 32.8 0.8 32.8 0.06 32.8 0.18
5 5 24 29 39.9 240 39.9 0.4 39.9 1 39.9 0.1 39.9 0.28
6 6 29 29 49.2 1200 49.2 0.6 49.2 1.4 49.2 0.16 49.2 0.40
7 7 34 29 57.6 2700 57.6 0.8 57.6 1.8 57.6 0.26 57.6 0.54
8 10 39 29 69.4 9000 69.4 1 69.4 2 69.4 0.46 69.4 0.3
9 11 44 29 - >10,800 77.7 1.5 77.7 3 77.7 0.71 77.7 1.2

10 12 48 29 - >10,800 85.0 2 85.0 4 86.4 0.96 85.9 1.4
20 22 93 29 - >10,800 162.4 30 162.4 60 166.5 5 165.8 11
30 32 138 29 - >10,800 252.9 60 252.9 120 262.3 15 260.6 31
40 42 179 29 - >10,800 339.7 90 339.7 180 354.9 23 352.3 49
50 58 227 29 - >10,800 471.6 138 478.6 276 490.6 30 485.6 60
60 68 271 29 - >10,800 590.4 180 593.9 360 624.4 43 616.7 87
70 78 315 29 - >10,800 682.8 228 677.6 468 720.7 51 715.2 103
82 92 370 29 - >10,800 798.3 300 788.6 600 846.5 70 840.8 141

J: number of jobs, SL: number of sub-lots, O: number of operations, M: number of machines, F0: total flow time of the mathematical
model, T0: computational time of the mathematical model, F1: total flow time of GA 1, T1: computational time of GA 1, F2: total flow
time of GA 2, T2: computational time of GA 2, F3: total flow time of ILS 1, T3: computational time of ILS 1, F4: total flow time of ILS
2, T4: computational time of ILS 2.

Tables 6–8 present the performances of the resolution methods in terms of quality
and rapidity for randomly generated instances and a comparison between the solutions
obtained by these different methods. From the results presented in these tables, we remark
that the genetic algorithms found feasible solutions for the large-size instances in reasonable
resolution times.

In Table 9, we observe that for the instances adapted from the literature, the genetic
algorithms make it possible to improve the solutions of the instances adapted from the
literature. For example, for the instance from Lee et al. [35], the genetic algorithms brought
about an improvement of 3.92% over the solutions obtained with the methods proposed by
Lee et al. [35].

Table 6. Computational results of the developed resolution methods for randomly generated instances of the HCT type.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

110 110 402 29 - >10,800 986.7 480 986.2 720 1030.5 115 1018.4 225
100 100 342 29 - >10,800 696.5 270 696.5 480 732.3 65 723.5 126
90 90 324 29 - >10,800 704.7 240 705.1 360 740.2 58 732.5 112
80 80 286 29 - >10,800 525.6 205 525.5 356 556.7 48 548.7 94
60 60 200 29 - >10,800 248.8 140 248.5 210 262.4 34 258.6 65
50 50 173 29 - >10,800 318.9 110 318.3 198 336.9 28 331.5 54
20 20 74 29 - >10,800 158.6 60 158.2 108 165.3 15 163.9 28
15 15 59 29 - > 10,800 421.5 52 421.1 92 432.1 12 428.8 22
10 10 31 29 - >10,800 215.4 20 215.1 34 219.8 4 217.9 7
9 9 34 29 - >10,800 368.8 15 368.1 25 376.5 3 374.1 5

Appl. Sci. 2021, 11, 1504 23 of 27

Table 7. Computational results of the developed resolution methods for small randomly generated instances.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

3 12 11 6 117 16 117 3 117 6 123 0.1 122 0.4
3 8 13 6 85 24 85 5 85 10 89 0.2 88 0.8
3 10 8 6 45 10 45 1.5 45 3 47 0.06 47 0.1
3 11 11 6 55 20 55 4 55 8 58 0.2 57 1.0
3 12 12 6 117 104 117 24 117 48 120 1.6 119 3.8
3 11 13 6 78 30 78 6 78 12 81 0.4 80 1.2
3 10 12 6 88 172 88 42 88 82 92 3.6 91 8.8
3 10 13 6 103 240 103 56 103 112 106 7.6 105 13.6
3 10 10 6 76 28 76 6 76 12 80 0.5 79 1.7
3 8 9 6 44 24 44 5 44 10 45 0.3 45 1.4

Table 8. Computational results of the developed resolution methods for large randomly generated instances.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

10 10 132 6 - >10,800 285.8 20 285.2 30 298.2 5 294.1 8
15 15 168 7 - >10,800 302.4 24 302.0 35 312.5 7 308.7 12
20 20 146 8 - >10,800 320.5 30 320.1 45 332.8 9 328.5 16
25 25 154 9 - >10,800 332.6 35 332.0 52 345.0 11 340.2 20
30 30 151 10 - >10,800 338.2 42 337.8 60 350.8 13 346.6 24
35 35 149 11 - >10,800 354.3 50 353.8 75 368.4 15 363.1 28
40 40 179 12 - >10,800 365.1 58 364.6 86 378.9 18 375.2 34
45 45 221 13 - >10,800 381.8 70 381.0 102 396.3 22 392.7 42
50 50 191 14 - >10,800 395.0 85 398.5 124 410.1 28 406.4 54
55 55 205 15 - >10,800 412.7 108 418.2 158 428.6 34 424.5 65
60 60 195 16 - >10,800 434.2 120 439.0 178 448.0 40 446.3 76
65 65 201 17 - >10,800 454.3 138 448.5 202 472.1 46 468.9 88
70 70 256 18 - >10,800 468.5 160 460.8 235 486.8 52 482.7 95
75 75 258 19 - >10,800 485.6 184 492.1 272 504.6 60 501.4 116
80 80 300 20 - >10,800 498.0 215 510.3 318 516.5 68 512.1 128

Table 9. Computational results of the developed resolution methods for instances adapted from the literature.

J SL O M F0 T0 F1 T1 F2 T2 F3 T3 F4 T4
(h) (s) (h) (s) (h) (s) (h) (s) (h) (s)

Azzouz et al. 3 3 11 3 74 8 74 2 74 4.2 78 0.5 76 1.05
Bagheri et al. 3 3 11 3 68 6 68 1.5 68 3.1 72 0.38 70 0.78
Pezzella et al. 3 3 10 4 33 7 33 1.8 33 3.8 35 0.46 34 0.95
Nouri et al. 3 3 9 5 31 10 31 2.8 31 5.6 33 0.82 32 1.42

Lee et al. 3 3 22 5 102 92 102 0.2 102 0.6 104 0.04 103 0.13
Mousakhani 4 4 12 3 101 9 101 2.5 101 5.2 106 0.64 104 1.35

Sriboonchandr et al. 4 4 14 5 53 12 53 3.2 53 6.5 56 1.2 55 1.48

By comparing the different resolution methods for all the tested instances, we observe
that for some instances, the two genetic algorithms found the optimal solutions in a
very short computation time compared to the mathematical model. For the instances for
which the optimality was not reached, the gaps between the solutions obtained with the
algorithms and the optimal solutions were very small. For the large instances for which
the mathematical model failed to find solutions after more than three hours of execution,
the genetic algorithms found feasible solutions within reasonable computation times.

Appl. Sci. 2021, 11, 1504 24 of 27

Comparing the two genetic algorithms in terms of rapidity, the first algorithm is faster
than the second algorithm, while comparing them in terms of stability both algorithms
are stable for the real instances of HCT and randomly generated instances, while for the
randomly generated instances of the HCT type, the second algorithm is more stable than
the first algorithm. Comparing the two algorithms in terms of quality of solutions, the
performance of the algorithms depends on the types of instances. For some instances, the
first algorithm is better than the second algorithm, while for other instances, the second
algorithm is more efficient than the first algorithm.

By comparing the results obtained with the genetic algorithms and the iterated local
search methods for all the tested instances, we find that the ILSs are worse than the GAs in
terms of the quality of solutions obtained. However, in terms of rapidity, the ILS methods
are faster compared to the GAs.

7. Application to an Industrial Case

This work was carried out in collaboration with the hospital center of Troyes (HCT). To
effectively meet the needs of patients and to improve working conditions and employees’
well-being, the hospital center of Troyes implements important measures to improve its
daily efficiency. It is in this context that this study of hospital catering activity optimization
takes place.

The HCT is carrying out a project to revise its supply chain, which must, in partic-
ular, consider the management of food flows. The contribution of the present work is
to determine the best plan for meeting customers’ demands in terms of food flows and
to propose ways to improve the well-being and working conditions of employees of the
catering service of the hospital center of Troyes. The aim is to provide methods and tools
for scheduling meal-making processes throughout the day.

The hospital center of Troyes is the main member of the South Champagne Hospitals
group. Its logistic network (Figure 10) is composed of a set of customers whose meal
needs are met from a warehouse, which is the central kitchen and a set of suppliers. These
customers are hospitals, nursing homes, and psychiatric clinics. The central food production
kitchen of the HCT produces, on average, 4800 meals per day. Its maximum daily production
capacity is 5000 meals per day. The HCT catering service includes a production unit divided
into several sectors, from the reception of raw materials to the dispatch of finished products
and a coordination unit for menu management. In this study, we are particularly interested
in the sectors from the pre-treatment of raw materials to the stock of finished products
(Figure 11). This figure represents the production areas of the studied system and the
different machines available for carrying out the operations of the meal-production process.

Figure 10. Logistics network of the hospital center of Troyes.

Appl. Sci. 2021, 11, 1504 25 of 27

Figure 11. Representation of the studied production system.

Table 10 represents the results of the genetic algorithm for some examples of real
production days with a comparison between the real solutions, as these production days
were organized and the solutions were proposed by the genetic algorithm. In this table, for
each instance, the number of dishes, the number of sub-lots of dishes, the total number of
operations, the number of machines available, and the average number of meals produced
per day are given. The performance indicators between solutions are based on the total
flow time and the gaps between them. From these results, we remark that the gaps between
the real solutions and those of the genetic algorithm are very important and significant. The
performance of the genetic algorithm for these instances depends on their types and sizes.
For example, for the instance with 62 dishes, 68 sub-lots, 218 operations, and 29 machines,
we brought about a considerable improvement of 18.72% over the real solution, which
shows the quality and performance of the developed algorithms.

Table 10. Comparison between the real and genetic algorithm solutions for some examples of production days.

Instance 1 Instance 2 Instance 3 Instance 4

- Number of dishes 82 110 62 72
- Number of sub-lots of dishes 92 115 68 80
- Number of operations 370 392 218 328
- Number of material resources 29 29 29 29
- Average number of meals produced 4800 4800 4800 4800

- Real solutions 901.97 h 1062.66 h 278.23 h 784.84 h
- Genetic algorithm solutions 788.64 h 952.48 h 226.12 h 705.96 h
- Gaps between real and genetic algorithm solutions −12.56% −10.36% −18.72% −11.18%

8. Conclusions

The present article deals with the study of a new industrial problem. Different res-
olution methods for the scheduling of production processes in hospital catering were
developed. A mathematical model integrating all the constraints of the studied problem
was proposed. This model is an improvement of the standard flexible job shop scheduling

Appl. Sci. 2021, 11, 1504 26 of 27

problem with sequence-dependent setup times by integrating specific industrial constraints.
An extensive study confirming the effectiveness of the developed model is presented. The
computational results of the mathematical model for different types of instances show the
limits of an exact resolution for the problem of scheduling production processes. To solve
the large instances of the addressed problem, different metaheuristics were developed and
tested on several types of instances. The computational results of these metaheuristics
have proven their effectiveness and reliability for the scheduling of operations of the food
production process and allowed significant improvements in the real current organization
and system performance. As regards future research, this work is limited by the number of
human resources available and does not take into account the possible hazards, such as the
absence of staff, machinery breakdowns, and the unavailability of raw materials. Further
research can be extended by considering these constraints. The present work also opens
the way to other perspectives, such as the study of the production planning problem over
several days, and our future work will focus on the development of resolution methods for
this problem.

Author Contributions: Conceptualization, F.A., M.G. and A.Y.; Data curation, F.A.; Formal analysis,
F.A.; Funding acquisition, F.Y. and L.A.; Investigation, F.A., M.G. and A.Y.; Methodology, F.A., M.G.
and A.Y.; Project administration, M.G., A.Y., F.Y., L.A., A.Q. and E.T.; Software, F.A.; Supervision,
M.G., A.Y. and A.Q.; Validation, M.G., A.Y., F.Y., L.A., A.Q. and E.T.; Visualization, F.A.; Writing—
original draft, F.A.; Writing—review & editing, F.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Hospital Center of Troyes.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to confidentiality of the company.

Acknowledgments: The authors wish to thank the anonymous reviewers and the editorial board of
the journal.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, X.; Noble, J.S.; Klein, C.M. Single-machine scheduling with sequence dependent setup to minimize total weighted squared

tardiness. IIE Trans. 1999, 31, 113–124. [CrossRef]
2. Lütkeentrup, M.; Günther, H.O.; Van Beek, P.; Grunow, M.; Seiler, T. Mixed-Integer Linear Programming approaches to shelf-life-

integrated planning and scheduling in yoghurt production. Int. J. Prod. Res. 2005, 43, 5071–5100. [CrossRef]
3. Doganis, P.; Sarimveis, H. Optimal scheduling in a yogurt production line based on mixed integer linear programming. J. Food

Eng. 2007, 80, 445–453. [CrossRef]
4. Doganis, P.; Sarimveis, H. Optimal production scheduling for the dairy industry. Ann. Oper. Res. 2008, 159, 315–331. [CrossRef]
5. Stefansdottir, B.; Grunow, M.; Akkerman, R. Classifying and modeling setups and cleanings in lot sizing and scheduling. Eur. J.

Oper. Res. 2016, 261, 849–865. [CrossRef]
6. Sargut, F.Z.; Işık, G. Dynamic economic lot size model with perishable inventory and capacity constraints. Appl. Math. Model.

2017, 48, 806–820. [CrossRef]
7. Akkerman, R.; van Donk, D.P. Analyzing scheduling in the food-processing industry: Structure and tasks. Cogn. Technol. Work.

2009, 11, 215–226. [CrossRef]
8. Smith, Daniels, V.L.; Larry, P. A Model for Lot Sizing and Sequencing in Process Industries. J. Prod. Res. 1988, 26, 647–674.

[CrossRef]
9. Kopanos, G.M.; Puigjaner, L.; Georgiadis, M.C. Efficient mathematical frameworks for detailed production scheduling in food

processing industries. Comput. Chem. Eng. 2012, 42, 206–216. [CrossRef]
10. Wauters, T.; Verbeeck, K.; Verstraete, P.V.; Berghe, G.; De Causmaecker, P. Real-world production scheduling for the food industry:

An integrated approach. Eng. Appl. Artif. Intell. 2012, 25, 222–228. [CrossRef]
11. Acevedo-Ojeda, A.; Contrerasa, I.; Chenb, M. Two-level lot-sizing with raw-material perishability and deterioration. J. Oper. Res.

Soc. 2015, 71, 417–432. [CrossRef]

http://doi.org/10.1080/07408179908969810
http://dx.doi.org/10.1080/00207540500161068
http://dx.doi.org/10.1016/j.jfoodeng.2006.04.062
http://dx.doi.org/10.1007/s10479-007-0285-y
http://dx.doi.org/10.1016/j.ejor.2017.03.023
http://dx.doi.org/10.1016/j.apm.2017.02.024
http://dx.doi.org/10.1007/s10111-007-0107-7
http://dx.doi.org/10.1080/00207548808947890
http://dx.doi.org/10.1016/j.compchemeng.2011.12.015
http://dx.doi.org/10.1016/j.engappai.2011.05.002
http://dx.doi.org/10.1080/01605682.2018.1558942

Appl. Sci. 2021, 11, 1504 27 of 27

12. Copil, K.; Wörbelauer, M.; Meyr, H.; Tempelmeier, H. Simultaneous lotsizing and scheduling problems: A classification and
review of models. OR Spectr. 2016, 39, 1–64. [CrossRef]

13. Niaki, M.K.; Nonino, F.; Komijan, A.R.; Dehghani, M. Food production in batch manufacturing systems with multiple shared-
common resources: A scheduling model and its application in the yoghurt industry. Int. J. Serv. Oper. Manag. 2017, 27, 345.
[CrossRef]

14. Wei, W.; Amorim, P.; Guimarães, L.; Almada-Lobo, B. Tackling perishability in multi-level process industries. Int. J. Prod. Res.
2018, 57, 5604–5623. [CrossRef]

15. Ahumada, O.; Villalobos, J.R. Application of planning models in the agri-food supply chain: A review. Eur. J. Oper. Res. 2009, 196,
1–20. [CrossRef]

16. Sel, C.; Bilgen, B.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G.A.J. Multi-bucket optimization for integrated planning and
scheduling in the perishable dairy supply chain. Comput. Chem. Eng. 2015, 77, 59–73. [CrossRef]

17. Arbib, C.; Pacciarelli, D.; Smriglio, S. A three-dimensional matching model for perishable production scheduling. Discret. Appl.
Math. 1999, 92, 1–15. [CrossRef]

18. Basnet, C.; Foulds, L.R.; Wilson, J.M. An exact algorithm for a milk tanker scheduling and sequencing problem. Ann. Oper. Res.
1999, 86, 559–568. [CrossRef]

19. Chen, S.; Berretta, R.; Clark, A.; Moscato, P. Lot Sizing and Scheduling for Perishable Food Products: A Review. Ref. Modul. Food
Sci. 2019. [CrossRef]

20. Liu, J.; MacCarthy, B.L. A global milp model for fms scheduling. Eur. J. Oper. Res. 1997, 100, 441–453. [CrossRef]
21. Guimaraes, K.F.; Fernes, M.A. An approach for flexible job-shop scheduling with separable sequence-dependent setup time. Int.

Conf. Syst. 2006, 5, 3727–3731.
22. Saidi-Mehrabad, M.; Fattahi, P. Flexible job shop scheduling with tabu search algorithms. Int. J. Adv. Manuf. Technol. 2007, 32,

563–570. [CrossRef]
23. Defersha, F.M.; Chen, M. A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups.

Int. J. Adv. Manuf. Technol. 2010, 49, 263–279. [CrossRef]
24. Mati, Y.; Lahlou, C.; Dauzère-Pérès, S. Modelling and solving a practical flexible job-shop scheduling problem with blocking

constraints. Int. J. Prod. Res. 2011, 49, 2169–2182. [CrossRef]
25. Bagheri, A.; Zandieh, M. Bi-criteria flexible job-shop scheduling with sequence-dependent setup times Variable neighborhood

search approach. J. Manuf. Syst. 2011, 30, 8–15. [CrossRef]
26. Mousakhani, M. Sequence-dependent setup time flexible job shop scheduling problem to minimize total tardiness. Int. J. Prod.

Res. 2013, 51, 3476–3487. [CrossRef]
27. Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2015, 23,

551–591. [CrossRef]
28. Rajabinasab, A.; Mansour, S. Dynamic flexible job shop scheduling with alternative process plans: An agent-based approach. Int.

J. Adv. Manuf. Technol. 2010, 54, 1091–1107. [CrossRef]
29. Geyik, F.; Dosdogru, A. Process plan and part routing optimization in a dynamic flexible job shop scheduling environment: An

optimization via simulation approach. Neural Comput. Appl. 2013, 23, 1631–1641. [CrossRef]
30. Zhou, D.; Zeng, L. A flexible job-shop scheduling method based on hybrid genetic annealing algorithm. J. Inf. Comput. Sci. 2013,

10, 5541–5549. [CrossRef]
31. Buddala, R.; Mahapatra, S.S. An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization

method. J. Ind. Eng. Int. 2018, 15, 181–192. [CrossRef]
32. Sriboonchandr, P.; Kriengkorakot, N.; Kriengkorakot, P. Improved Differential Evolution Algorithm for Flexible Job Shop

Scheduling Problems. Math. Comput. Appl. 2019, 24, 80. [CrossRef]
33. Nouri, H.E.; Belkahla, D.O.; Ghédira, K. Solving the flexible job shop problem by hybrid metaheuristics-based multi-agent model.

J. Ind. Eng. Int. 2018, 14, 1–14. [CrossRef]
34. Azzouz, A.; Ennigrou, M.; Ben Said, L. A hybrid algorithm for flexible job-shop scheduling problem with setup times. Int. J. Prod.

Manag. Eng. 2017, 5, 23–30. [CrossRef]
35. Lee, S.; Moon, I.; Bae, H.; Kim, J. Flexible job-shop scheduling problems with ‘AND’/‘OR’ precedence constraints. Int. J. Prod. Res.

2012, 50, 1979–2001. [CrossRef]
36. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the Flexible Job-shop Scheduling Problem. Comput. Oper. Res.

2008, 35, 3202–3212. [CrossRef]
37. Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind.

Eng. 2005, 48, 409–425. [CrossRef]
38. Fattahi, P.; Saidi Mehrabad, M.; Jolai, F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems.

J. Intell. Manuf. 2007, 18, 331–342. [CrossRef]
39. Kacem, I. Genetic algorithm for the flexible jobshop scheduling problem. In Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance, Washington, DC, USA, 8 October 2003.
40. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning. Addion Wesley 1989, 1989, 36.
41. Lourenço, H.R; Martin, O.C; Stutzle, T. Iterated local search. In Handbook of Metaheuristics; International Series in Operations

Research & Management Science; Springer: Boston, MA, USA, 2003; Volume 57, pp. 320–353.

http://dx.doi.org/10.1007/s00291-015-0429-4
http://dx.doi.org/10.1504/IJSOM.2017.084442
http://dx.doi.org/10.1080/00207543.2018.1554916
http://dx.doi.org/10.1016/j.ejor.2008.02.014
http://dx.doi.org/10.1016/j.compchemeng.2015.03.020
http://dx.doi.org/10.1016/S0166-218X(98)00148-6
http://dx.doi.org/10.1023/A:1018943910798
http://dx.doi.org/10.1016/b978-0-08-100596-5.21444-3
http://dx.doi.org/10.1016/S0377-2217(96)00055-0
http://dx.doi.org/10.1007/s00170-005-0375-4
http://dx.doi.org/10.1007/s00170-009-2388-x
http://dx.doi.org/10.1080/00207541003733775
http://dx.doi.org/10.1016/j.jmsy.2011.02.004
http://dx.doi.org/10.1080/00207543.2012.746480
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1007/s00170-010-2986-7
http://dx.doi.org/10.1007/s00521-012-1119-7
http://dx.doi.org/10.12733/jics20102429
http://dx.doi.org/10.1007/s40092-018-0280-8
http://dx.doi.org/10.3390/mca24030080
http://dx.doi.org/10.1007/s40092-017-0204-z
http://dx.doi.org/10.4995/ijpme.2017.6618
http://dx.doi.org/10.1080/00207543.2011.561375
http://dx.doi.org/10.1016/j.cor.2007.02.014
http://dx.doi.org/10.1016/j.cie.2005.01.018
http://dx.doi.org/10.1007/s10845-007-0026-8

	Introduction
	Literature Review
	Problem Description
	Mathematical Model
	Assumptions
	Notations
	Decision Variables
	Mathematical Model
	Computational Results of the Mathematical Model

	Resolution Methods
	Genetic Algorithm
	Solution Representation
	Initial Population
	Fitness Evaluation
	Selection Operator
	Crossover Operator
	Mutation Operator
	Local Search Methods

	Iterated Local Search Algorithm

	Computational Results of the Developed Algorithms
	Data Generation
	Optimization of the Metaheuristics' Parameters
	Discussion of the Experimental Results

	Application to an Industrial Case
	Conclusions
	References

