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Abstract: Dependability analyses in the design phase are common in IEC 60300 standards to assess the
reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability
and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis
(FMECA), fault tree analysis (FTA), and event tree analysis (ETA)to identify critical components and
failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved
over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in
ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used
to estimate monitoring priority, and this helps to determine the critical monitoring specifications.
However, FMSA cannot determine the effectiveness of technical specifications that are essential for
predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type,
location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel
predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using
a case study of a centrifugal compressor and validated using empirical data provided by the case
study company. The paper also demonstrates the possible enhancements introduced by Industry
4.0 technologies.

Keywords: predictive maintenance; effectiveness assessment; industry 4.0; oil and gas; centrifugal
compressor; technical safety; reliability analysis

1. Introduction

The centrifugal compressor is a highly complex system, given the nature of its compo-
nents and transient operational behaviors. Despite its complexity, it is widely applied in
the oil and gas (O&G) industry to transport natural gas through subsea pipelines. It plays a
vital role in the operational availability and thereby the revenue of an O&G company, as it
determines whether consumers receive natural gas. Most maintenance activities are based
on recommendations provided by the equipment vendor, and this, in turn, is based on
experience. Hence, the proposed maintenance schedule may be under- or over-predicted.
If the maintenance activities recommended by the generic maintenance schedule do not fit
the actual health of the equipment, the equipment will be maintained either more or less
than necessary, preventing its full utilization and handicapping operations.

The technologies accompanying Industry 4.0 are expected to revolutionize mainte-
nance management by introducing novel ways to analyze big data (characterized by the
5Vs: velocity, variability, veracity, volume, and value). The technologies of Industry 4.0
(cyber-physical systems (CPS), internet of things (IoT), cloud computing, big data, etc.)
have been present in the Industry 3.0 environment for a long time, but their comprehen-
siveness and capabilities are greatly improved in the Industry 4.0 context. For example,
in Industry 3.0, IoT was applied at the enterprise level, while in Industry 4.0, it is ap-
plied at the asset level and between asset and enterprise levels [1]. These improvements
present new ways of analyzing big data: namely, the detection, diagnosis, and prognosis
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of failure. Such analyses were traditionally based on a single parameter, but an Industry
4.0 environment combines several different sensor signals and parameters (i.e., process,
health and performance indicators) with enterprise-level data (e.g., production forecasts,
spare part management, and equipment information), all the way down to the component
level [2]. These novel techniques for data acquisition and analysis require new algorithms
that manage the analysis of multivariate sensor signals (i.e., big data) to perform accurate
and reliable detection, diagnosis, and prognosis of the equipment or component of inter-
est [3]. The use of predictive maintenance (PdM) in Industry 4.0 is expected to yield many
benefits [4], but the extent of the enhancements (i.e., levels of detection, diagnosis, and
prognosis) is not yet known.

Designing for maintenance and maintenance support is already guided by IEC 60706-
2 [5]. In addition, several existing standards provide supportive guidelines for the im-
plementation of different maintenance strategies. For instance, the NORSOK Z-008 stan-
dard [6] has guidelines to implement preventive maintenance, while IEC 60812 [7] demon-
strates the development process of failure mode, effect, and criticality analysis (FMECA) to
support the assessment of component criticality and failures for equipment that is designed-
out or frequently maintained. The ISO 13379-1 [8] and ISO 17359 [9] standards stipulate the
implementation of condition-based maintenance (CBM), showing how to monitor failure
propagation through failure mode and symptom analysis (FMSA). However, no standards
are available to design PdM-ready equipment, despite the promise of PdAM in an Industry
4.0 environment [4].

Certain technical requirements and specifications must be considered to standardize
guidelines to design PdM-ready equipment [10]. First, designing for PdAM-ready equipment
does not solely consider the process of sensor implementation and data acquisition, as
in traditional CBM. However, all the equipment in the physical space (hardware) must
be aligned with the cyberspace equipment (software) to perform the required detection,
diagnosis, and prognosis. Second, PdM in Industry 4.0 requires combining several different
sensor parameters with enterprise-level data of varying quality (i.e., value, resolution, etc.).
The technical requirements include determining the specific failure symptom (tracking
indicator) of the failure mechanisms associated with the system under study [10]. Then,
effective feature extraction procedures and data analysis techniques must be selected to
track the symptom as early as possible over the entire fault evolution process to detect,
diagnose, and predict under different scenarios (e.g., fluctuating operation, change of
loading, multi-faults, and fault interactions).

Technical analyses play a decisive role in reaching a detailed understanding of system
criticality and risk assessment. FMECA and FMSA are well-known systematic bottom-up
approaches. Although they have the same objective of providing a holistic risk picture of a
system, they differ to some extent. Briefly, FMECA facilitates examining the effects and
consequences of the occurrence of specific failure modes associated with the specific system
under study. Meanwhile, FMSA considers the detection of the failure modes associated
with the system by connecting the occurrence of failure modes to specific monitorable
symptoms using sensor technology.

The concept of FMSA was first standardized by ISO-13379-1 [8]. In addition, several
big O&G companies developed their own FMSA procedures. The PdM analysis matrix [10]
is the most recent update of FMSA, presented in ISO 13379-1 [8]. It adds prediction through
prognosis to the traditional focus on detection and diagnosis.

Although the authors of this paper consider the PAM analysis matrix [10] to be
the most state-of-the-art risk analysis, it lacks some requirements from an Industry 4.0
perspective. First, it does not address the basic logic connecting sensor technology with
the levels of detection, diagnosis, and prediction of specific failure modes by connecting
failure mechanisms to failure symptoms. Second, it lacks a methodology that would enable
assigning quantitative values to levels of detection, diagnosis (tracking), and prognosis
(prediction) supported by qualitative descriptions.
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The purpose of this paper is to determine these technical specifications and develop
a novel PdM assessment matrix that is demonstrated through a case study—making a
centrifugal compressor PdM-ready. The paper takes an inductive approach to determine
the technical specifications for a PdM-ready compressor based on data extracted from two
sources: (1) a detailed systematic literature review and (2) case study data.

The remainder of this paper is organized as follows. Section 2 introduces the materials
and methods, including state-of-the-art centrifugal compressor monitoring and the novel
PdM assessment matrix design process. Section 3 is divided into two parts. First, the
novel PdM assessment matrix process is demonstrated using a case study. Then, the
enhancements to detection, diagnosis, and prognosis offered by Industry 4.0 technologies
are shown. Section 4 specifies some conclusions.

2. Materials and Methods

This section explains the materials and methods applied in this research. First, Section
2.1 presents a detailed literature review addressing state-of-the-art centrifugal compressor
monitoring. Second, Section 2.2 outlines the development of a novel PAM assessment
matrix that allows the PdM readiness of equipment to be assessed.

2.1. State-of-the-Art Centrifgual Compressor Monitoring

The four-stage process presented by Tranfield [11] is adopted in a detailed systematic
literature review to highlight the information needed to fulfill the requirements of a PAM-
ready centrifugal compressor.

Stage I—Define (identification of need for a literature review and development of protocol)

The literature review was intended to determine the requirements of a PdM-ready
centrifugal compressor. This included highlighting the associated critical components
and failure modes, the failure mechanisms and symptoms of each critical failure mode,
the matching sensor that enables symptoms to be monitored, and the sensor coverage. It
also included determining prioritized techniques for detection, diagnosis, and prognosis.
The literature review protocol comprised data on fault type, measurement type, signal
processing techniques, and diagnosis and prognosis approaches.

Stage II—Collect and select

Relevant papers were identified and collected. This process included a search for
relevant keywords in the Scopus database as depicted in Table 1. As seen in the Table 1, the
number of relevant hits was limited to 64 papers.

Table 1. Search in Scopus showing the number of relevant hits.

Search Keyword (Scopus) No. of Hits Relevant Hits
ALL (compressor AND fault) 104 General hits; not specifically
AND (LIMIT-TO (DOCTYPE, “re”)) for centrifugal compressor
(ALL (compressor))
AND ((centrifugal)) 64 relevant hits regarding

AND (fault AND detection) 323 centrifugal compressor

AND (LIMIT-TO (SUBJAREA,“ENGI"))

Stage III and IV—Analyze (categorization of documents and data extraction) and document results
(document findings)

Relevant papers were studied and the necessary data were extracted according to the
literature review protocol. The results are summarized in Table 2.
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Prognosis

Analysis

Diagnosis

Data Processing

Measurement Type

Data Type

Table 2. A summary of state-of-the-art centrifugal compressor monitoring (i.e., predictive maintenance) and analyses.
Failure Mechanism

Maintainable Item
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To summarize, most of the literature examines the maintainable item in terms of the
overall equipment efficiency of the centrifugal compressor. The failure mechanisms are
surge, fouling, and wear. The literature also demonstrates the usefulness of the application
of various types of measurement, such as the process parameters of pressure and tem-
perature, the performance indicator of flow, and health monitoring using vibration. The
literature review indicates that the maintainable items and the failure modes, mechanisms,
and symptoms are defined interchangeably.

The database of Offshore and Onshore Reliability Data (OREDA) [72] provides solid
and transparent definitions of the critical failure modes, maintainable items, and failure
mechanism of centrifugal compressors operated at the Norwegian continental shelf. There-
fore, as the case study is a centrifugal compressor operating in the O&G industry, the
study adopts the definitions used in the well-known and widely adopted OREDA database.
The categorizations of failure severity levels are critical, degraded, and incipient failures.
Importantly, the failure mechanisms in the OREDA data are interchangeable with those in
the literature review (Table 2). However, there are some differences, as the failure mecha-
nisms in the literature are presented by different researchers with proliferating definitions.
Clearly, researchers do not follow a common standardized definition of failure modes,
failure mechanismes, etc.

The literature review shows several techniques enable the condition monitoring of
failures on centrifugal compressors. But there is no guarantee that all techniques are equally
effective in their detection, diagnosis, and prognosis. Thus, an effectiveness assessment
method [73] for detection, diagnosis, and prediction is needed to determine the associated
priority indexes and a final PdM level.

2.2. PdM Assessment Matrix for Centrfiugal Compressor

In general, PAM comprises the activities of detection, diagnosis, and prognosis. To be
more specific, the first concerns the detection of the presence of a failure, and the second
is about diagnosing the associated symptoms and pinpointing the failure mechanism of
the degraded component. Prognosis aims to estimate the future evolution of this specific
failure mechanism by estimating the component or the equipment’s remaining useful
life (RUL). When they are combined, these activities provide valuable information that
supports opportunistic maintenance.

The requirements of PdM are situation-based, and symptoms of failures may be cate-
gorized as incipient, degraded, and critical [10]. These stages illustrate a qualitative measure
of the symptom propagation that reflects the time until system failure, thus indicating the
opportunity to perform opportunistic maintenance actions and the relative maintenance
intervention required. Hence, the requirements of detection include earliness (incipient,
degraded, or critical) and detectability (coverage), while diagnosis requires the ability to
diagnose a faulty maintainable item along with its associated failure mechanism, cause,
severity, and overall level of damage. The prediction requirements concern the predictive
horizon and the precision of the deterioration prognosis and RUL estimate. Therefore,
the associated requirements of detection, diagnosis, and prognosis for asset failures with
negligible consequences are clearly different from those for failures with unacceptable
consequences (i.e., excessive cost, operational unavailability, or health, safety, and environ-
mental (HSE) dangers). Consider two scenarios. Failure of redundant equipment incurs
little cost because one piece of equipment can be replaced by another. In contrast, failure in
a normally unmanned offshore installation is accompanied by significant consequences
and high cost (i.e., planning and resources).

To summarize, PAM requires a transparent connection between the failure modes,
mechanisms, symptoms, and sensors to enable detection, diagnosis, and prognosis. Effec-
tive PdM has four requirements: (1) the symptoms identified must be clear and easy to
track; (2) the diagnosis technique must involve reliable and accurate algorithms that enable
detection of the failure mechanism at the preferred stage (incipient, degraded, or critical);
(3) the prognosis technique must facilitate reliable and accurate RUL estimation; (4) these
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aforementioned requirements must be able to manage transient operational characteristics
(e.g., fluctuation, change of loading), multiple failures, and failure interactions.

To assess the levels of PAM readiness, the PAM assessment matrix process comprises
seven steps:

Step 1: Determine the system boundary, interfaces, use case scenarios, and architecture.
Step 2: Determine the critical components and failure modes.

Step 3: Determine failure mechanisms and related symptoms.

Step 4: Determine sensors and coverage index.

Step 5: Determine detection techniques and priority index.

Step 6: Determine diagnosis techniques and priority index.

Step 7: Determine prediction techniques and priority index.

3. Results and Discussion
3.1. PAM Assessment of Case Study

The use of centrifugal compressors became popular in the 1960s, mainly because of
their efficiency and low maintenance cost (compared to reciprocating compressors) [74].
The centrifugal compressor is considered a highly complex rotating system, given its
components and typical transient operational behavior. The basic aim of the system is to
pressurize a fluid to enable transportation or storage.

3.1.1. Step 1: System Boundary, Interfaces, Use Case Scenarios, and Architecture

In the context of the O&G industry, centrifugal compressors are used to enable the
transportation of natural gas through subsea pipelines. An electric motor drives the
centrifugal compressor by rotating the rotor. During operation, the gas is fed to the rotor
and its rotating impellers. When the gas hits the rotating impellers, this accelerates the
velocity of the gas and increases its kinetic energy. Next, the high-velocity gas is discharged
into the diffusor (gas path with increasing radius), reducing its velocity and converting the
recently introduced kinetic energy into static pressure.

3.1.2. Step 2: Critical Components and Failure Modes

The empirical case study data for failures experienced during operation show the
maintainable items of rotor and bearings are two of the most critical components with
associated failure modes of looseness (LOO) and vibration (VIB), respectively.

3.1.3. Step 3: Failure Mechanisms and Related Symptoms

After critical failure modes are identified, the associated symptoms that enable de-
tection, tracking, and prediction of the underlying failure mechanisms (that if allowed
to develop, result in the failure mode) must be determined. This includes identifying
the relevant descriptors measuring the related symptom [75]. Such descriptors can be
unprocessed raw data or processed data in terms of the mean or (exponential) moving
average, etc. [9]. ISO 13379-1 [8] highlights the importance of selecting a good descriptor
for detection purposes.

To give an example, this means the looseness (failure mode) of a rotor caused by a
mechanical failure (failure mechanism) that increases the system’s vibration (measurable
symptom) can be visualized through the average vibration level in the time domain
(descriptor).

3.1.4. Step 4: Sensor and Coverage Index

In this step, the sensors and their coverage index must be identified. The sensor
coverage index highlights the connection between sensor parameters and the failure modes
and mechanisms. It expresses the relative value a specific parameter can detect in terms of
failure mechanisms connected to a certain failure mode. It is estimated by dividing the sum
of failure mechanisms detected by the sensor under study by the total number of failure
mechanisms associated with the specific failure mode.
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The centrifugal compressor under study has sensors monitoring health indicators (i.e.,
vibration and bearing temperature), process indicators (i.e., pressure, temperature, gas
composition), and performance indicators (i.e., speed and polytrophic efficiency).

3.1.5. Step 5: Detection Techniques and Priority Index

The assessment of the detection effectiveness of each monitoring technique is sup-
ported by two measures, detectability percentage and detection earliness, as shown in the
priority index in Table 3. These refer to how many cases were detected compared to all the
cases and their earliness of detection, respectively. The ranking is based on the detection
failure stage (incipient, degraded, or critical) and how easily the specific failure mode is
detected. The detection level is a product of both earliness and detectability.

Table 3. Detection priority index.

Detectability
Earliness Low (1) Medium (2.5) High (5)
Low (1)
Medium (2) . >
(Partially covered)
High (3) 7.5

3.1.6. Step 6: Diagnosis Techniques and Priority Index

The priority index depicted in Table 4 allows the abilities of specific diagnosis tech-
niques to be quantified. This supports identification of the most suitable approach to detect
and diagnose specific failure modes of the system under study. As shown, the priority index
proposes quantifying the diagnosis by the following two attributes: (1) informativeness of
failure mechanism(s) and cause(s) diagnosed, and (2) ability to diagnose the maintainable
item(s) supported by individual qualitative descriptions. Respectively, these quantities
involve ranking the relevant information about the failure mechanism, severity, and overall
level of damage offered by the diagnosis, and the ability to diagnose the maintainable
item(s), whether this concerns normal or abnormal behavior, only damaged components,
or deterioration levels for all components. The diagnosis level for the specific technique
under study is estimated as the product of these two quantities.

Table 4. Diagnosis priority index.

Ability to Diagnose the Maintainable Item(s)

Informativeness of
Failure Mechanism(s) and Low (1) Medium (2.5) High (5)
Cause(s) Diagnosed

Low (1)
Medium (2)

High (3)

3.1.7. Step 7: Prediction Techniques and Priority Index

The last step of the PAM assessment matrix is to determine the most suitable prediction
technique using the priority index. First, prognosis is all about predicting the future
behavior of the component under study by estimating its RUL [75]. To determine the best
out of several possible prediction techniques, we propose using the priority index shown
in Table 5. As seen, the table scores each specific prediction technique in two categories:
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predictive horizon and precision of deterioration prognosis and RUL prediction. More specifically,
these refer to the time horizon within which the specific prognosis technique is able to
predict the RUL (week, month, or months ahead), and the associated precision and accuracy
of this prognosis and RUL estimate (variation in months, month, or week), respectively.
The specific prognosis level is estimated by multiplying the quantitative rankings of the
predictive horizon by the precision of deterioration prognosis and RUL prediction.

Table 5. Prognosis priority index.

Precision of Deterioration Prognosis and RUL Prediction

Predictive Horizon Low (1) Medium (2.5) High (5)
Low() [ 5
Medium (2) 5
High (3) 3 7.5

The PdM index at the component level can be estimated as the product of the coverage
and levels of detection, diagnosis, and prognosis. Furthermore, underlining the most
suitable condition parameters and analyses enables detection, diagnosis, and prognosis.

The final PAM assessment matrix covering the entire seven-step process is presented in
Figure 1. In this case, the assigned values of the sensor coverage and the levels of detection,
diagnosis, and prognosis are based on the literature review (Section 2.1) and the empirical
case study data.

The final PAM assessment matrix for the case study clearly shows the connection
between the coverage indexes of different failure symptoms associated with failure mecha-
nisms and failure modes. It also shows the opportunities and limitations associated with
the trending of one monitoring parameter at a time to detect, diagnose, and predict the
equipment’s state. Finally, the PAM index level demonstrates that the trending of the
vibration signal has the ability to enable the detection, diagnosis, and prediction of the
failure modes studied: rotor looseness and bearing vibration.

The PdM assessment matrix process above is generalized in the following six steps:

Step 1: Fill the first matrix that includes failure mechanism and failure symptoms. Then,
determine the potential symptoms for each failure mechanism. In this case, 1 is
assigned if the symptom is valid for the failure mechanism, and 0 is given if the
symptom is not valid.

Step 2: Estimate the coverage index for each failure symptom (sensor) by dividing the
sum of failure mechanisms detected by the specific symptom under study by the
total number of failure mechanisms associated with the specific failure mode. For
example, the symptom of vibration can detect 11 out of 13 failure mechanisms
associated with looseness (failure mode) of rotor (component), which offers a
coverage index of 92% (12/13 = 0.92).

Step 3: Estimate the effectiveness of the detection technique, which covers detectability
(how accurate) and detection earliness (how early). In this step, the detection
priority index in Table 3 is used to assign the relevant category based on technician
experience and sensor manufacturer. For example, vibration sensor provides
medium detectability (score 2.5) and medium earliness (score 2), which results in a
total detection level of 5 (2.5 x 2 =5).

Step 4: Estimate the effectiveness of the diagnosis technique, which covers the diagnostic
ability and diagnostic informativeness. In this step, the diagnosis priority index in
Table 4 is used to assign the relevant category based on technician experience and
diagnosis solution providers. For example, the studied compressor is monitored by
a vibration sensor that is tracked over time to identify deviations in sensor output.
Thus, this diagnosis technique is assigned to offer a medium level of diagnosis
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ability (score 2.5) and a medium level of diagnostic informativeness (score 2), which
results in a total diagnosis level of 5 (2.5 x 2 =5).

Step 5: Estimate the effectiveness of the prognosis technique, which covers the prediction
precision and predictive horizon. In this step, the prognosis priority index in
Table 5 is used to assign the relevant category based on technician experience and
prognosis solution providers. For example, the studied compressor is monitored
by a vibration sensor, and two prognosis methods are used (regression and expert
knowledge). Thus, this prognosis technique combination is assigned to offer a low
level of prediction precision (score 1) and a medium level of predictive horizon
(score 2), which results in a total prediction level of 2 (1 x 2 =2).

Step 6: Estimate the overall predictive maintenance effectiveness index by multiplying the
coverage index (i.e., relative value) with the detection level (0-15), diagnosis level
(0-15), and prognosis level (0-15). For example, the designed PdM specifications
for the studied compressor scores 46 (0.92 x 5 x 5 x 2 = 46) out of 3375 (1 x 15 x
15 x 15 = 3375). Therefore, the PdM effectiveness percentage for the studied case is
assigned a value of 1.37% (46/3375 = 0.0137).

3.2. PAM Assessment of Centrifugal Compressor in Industry 4.0

The expected enhancements in terms of detection, diagnosis, and prognosis offered
by Industry 4.0 and its emerging technologies (CPS, IoT, big data, cloud computing) are
already highlighted in this paper. Nevertheless, since the case study examines a single
parameter, these possible enhancements have not been demonstrated. Therefore, a final
PdM assessment matrix for centrifugal compressors in Industry 4.0, based on the detailed
literature review in Section 2.1, is depicted in Figure 2.

As the Figure 2 shows, the final PAM assessment matrix for centrifugal compressors
in Industry 4.0 highlights the connection between combining several sensor signals (i.e.,
multivariate analysis) and the ability to detect, diagnose, and predict the future evolution of
failures. It also addresses the different levels of diagnosis and prognosis offered by specific
applicable data analysis techniques. Finally, it demonstrates that the symptom combination
of pressure, speed, flow, and vibration modelled using a model-based approach is the
best approach to detect, diagnose, and predict rotor looseness, while the combination of
symptoms for speed and vibration analyzed using a model-based approach is most suitable
to detect, diagnose, and predict bearing vibration.



11 of 17

Appl. Sci. 2021, 11,1527

PdM LEVEL

[%] 12821
juauodwo) je xapu| NP

»

)

)

)
11,11
0,99
0,01
0,01

(L)
juauodwo) je xapu] Wpd

375,00
33,33
033
033

PROGNOSIS

|ona7 sisouSoud

a4
1]
0
0
2]
1]
1]
0
0

UOZIIOH 3AIPIPald

uoIsIIAld UoNIPaLd

suojjeuiqwo) s3sousold

1]
1
3

1B
1 12
1l
1
1R 2
1]
1]

2,

a8pajmouy Jiadx3

@®1pal
P5
P6
@12 |
@1 pr3 |
@®1pal
P5
P6

R

CREZE
@1r2 |

PLGAH

|apow paseq-saisAyq

uoIssai8al 10323A Jioddng

uolssaiday

DIAGNOSIS

|2n@7 sisouseiq

adewep Jo |9A3] pue AJlIaAas
asouselp 03 Ajljiqede)

wayl 3|qeulejuiew
asouselp 0y Ajljiqede)

suopeuiquio) an3souselq

Vd

auiyde| 10329 yoddng

uoissai8ai onsido

NNX

1Inem

uonpajaq dojanug

WJOJSue ]| J31IN0H Jsey

sisopny

aienbg ueay jooy

uoneinaq

DETECTION

|9Aa] uoipa3eq

1|@1
1|@1
@1
()
1@1
1@1

1]
0

ssaul|e3

Aujqepaiag

uojjeulquio) uojpaleq

1l
1l
1l
1l

1]
1

13
E |3

1l
1l
1l
1l
1l
1l

Del
De5 |
De6

xapuj a8esan0))|

92 |perl 25/ | 2

92 | De2 |

,54 | De3 ||

' 046 |Ded |
033 |De3 ||
0,33 | Ded |

I 1038 |De6 [ 038 [041| 0,16

swoldwAg ainjiey

Failure Mechanism

Bunpns

umowjun

uoIs01I0)

0,
Bearing Temperature .:b,44 De2

Pressure (Pr)
Temperature (Tp)

Vibration (V)
Flow (Fl)

Speed (Sp)

1 Bearing Temperature
1|Pressure (Pr)

1|Vibration (V)
1|Flow (Fl)

1|Speed (Sp)

-- Temperature (Tp)

-

JEETY

uonelqi|

$SaUas00]

Buneaysang|

ain|iey (el

ainjiej [ed1ueYIBN

juawusily /acuesea|)

adeyealg

juauisnipy joIno

a8eyea

UONEUIWEIUOD)

@ualayey uoneuquwio)

apouw ainjiey

way a|qeurejule|p

waysAs

- N Mo - NSy o

Bearing VIB

1ossaidwo) |eSnyuua)

1. Snapshot of final PAM assessment matrix based on the case study.
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Figure 2. Snapshot of PAM assessment matrix for centrifugal compressors in Industry 4.0.
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4. Conclusions

PdM needs to be incorporated with opportunistic maintenance to avoid shutdowns
due to failures, unintended maintenance events, and high levels of service (repair or
replacement due to damage spread from the faulty unit to the entire system). Knowing
the failure symptoms, measuring techniques, and diagnostic analytics is not sufficient to
determine the required technical specifications, even though monitoring technology has
evolved over time, and a new method of FMSA was introduced by ISO 13379-1 [8] to
identify both the critical symptoms and descriptors of failure mechanisms. FMSA is used
to estimate the monitoring priority, and this helps to determine the critical monitoring
specification. However, current FMSA cannot determine the effectiveness of technical
specifications that are essential for predictive maintenance such as detection techniques
(capability and coverage), diagnosis (fault type, location, and severity), or prognosis
(precision and predictive horizon).

This paper proposes a novel PAM assessment matrix to cover these gaps. This in-
cludes priority indexes that enable the efficiency of detection, diagnosis, and prognosis
techniques to be compared using qualitative descriptions with quantitative values. The
PdM assessment matrix enables (1) identification of the most suitable PAM solution for the
generic system under study, (2) assessment of the levels of the existing monitoring solution,
and (3) determination of how an existing monitoring solution can achieve higher levels
of PdAM.

The proposed PdM assessment matrix is demonstrated in the case study of a centrifu-
gal compressor and validated using empirical data provided by the case study company.
The example highlights the entire process from the identification of critical components
and failure modes to the incorporation of PdM to detect, diagnose, and predict the failure
modes under study. It also highlights gaps in sensor coverage, potential superfluous
sensors, and the optimal monitoring solution (i.e., sensor combinations and techniques
for detection, diagnosis, and prognosis). The results clearly demonstrate the limitations
of simple data analysis and the trending of single parameters, especially considering the
levels of detection, diagnosis, and prognosis of failure mechanisms and failure modes.

As a supplement, the paper develops a PAM assessment matrix based on the literature
and considering Industry 4.0 technologies. It reinforces industrial expectations about
the potential to improve current levels of detection, diagnosis, and prognosis and shows
improvements may occur with the application of multivariate analysis.

Several advanced diagnosis and prognosis techniques are not yet utilized in this
industrial case, which shows a gap between what is available in literature and what is
applied in industry, specifically, in this case study. Therefore, more case studies shall be
conducted to study if the gap is case-specific or exists at the sector level. However, the
proposed PdM assessment matrix can clearly help maintenance engineers at the design
phase to determine and assess their selected technical solutions (combination of sensors,
detection, and diagnosis and prognosis techniques).

The developed PdM assessment matrix is generalizable due to several considerations:
(1) standardized and industrially well-known definitions are used, e.g., failure modes,
mechanisms, and symptoms, (2) it adopts the maintenance data definitions of ISO 14224,
(3) it involves well-known stakeholders and their opinion in deciding about monitoring
technique effectiveness, and (4) it includes well-known techniques presented in literature.
However, it is important to highlight that since humans are involved in the PAM assessment
matrix process (e.g., the categorization matrices in Tables 3-5), the assigned values are
somewhat subjective, case-specific, and based on human experience. Therefore, it is
recommended that testing and validation be conducted for all these advance diagnosis and
prognosis techniques to determine their diagnostic and prognosis probabilities based on
an objective experimental approach.
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