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Abstract: Cyber attacks bring key challenges to the system reliability of load frequency control (LFC)
systems. Attackers can compromise the measured data of critical variables of the LFC system, making
the data received by the defender unreliable and resulting in system frequency fluctuation or even
collapse. In this paper, to detect potential attacks on measured data, we propose a novel attack
detection scheme using the dual-source data (DSD) of compromised variables. First, we study the
characteristics of the compromised LFC system considering potentially vulnerable variables and
different types of attack templates. Second, by designing a variable observer, the relationship between
the known security variables and the variables which are at risk of being compromised in the LFC
system is established. The features of the data obtained by the observer can reflect those of the true
data. Third, a Siamese network (SN) is designed to quantify the distance between the characteristics
of measured data and that of observed data. Finally, an attack detection scheme is designed by
analyzing the similarity of the DSD. Simulation results verify the feasibility of the detection scheme
studied in this paper.

Keywords: load frequency control (LFC); cyber attack; Siamese network; attack detection scheme;
unknown input observer

1. Introduction

Power systems with high integration of information technologies are being challenged
by increasing cyberhacking activities [1]. In December 2015, the Ukraine Electric Grid Hack
caused almost 225,000 customers to lose power for at least 6 h [2]. During the incident, vari-
eties of critical data of power systems were compromised by cyber attacks. As an essential
component of the power system, the LFC system needs to utilize varieties of measured
data to maintain the stability of system frequency. Sophisticated attackers can compromise
the measured data by launching cyber attacks to force the load frequency controller to issue
incorrect instructions, which can lead to unpredictable frequency fluctuation. Therefore, it
is necessary to detect the compromised data as a first step to mitigate cyber attacks.

The two main types of cyber attacks against power systems are false data injection
(FDI) attacks and denial of service (DoS) attacks [3]. In [4], Liu first studied false data
injection attacks targeting static state estimation (SE). It is proved that the compromised
data meeting certain rules can bypass bad data detection. It is difficult for defenders to
judge whether the measured data are reliable. To protect power systems from FDI attacks,
the defense strategies are studied from many aspects including impact of cyber attacks,
detection schemes, and mitigation strategies. In [5], attack and defense mechanisms are
discussed using the method of bad data detection. Detection method and mitigation
strategy of cyber attacks on substation automation systems are studied in [6]. The impacts
of cyber attacks on supervisory control and data acquisition (SCADA) systems are studied
by considering different attack scenarios [7]. In [8], a dynamic state dynamics is introduced
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to achieve risk mitigation against FDI attacks. In [9], the isolation of FDI attacks for smart
grids using state observer is studied. In [2], known-secured phasor measurement unit
(PMU) measurement is used to detect malicious attacks on power grids. As for DoS attacks,
the existing literature shows that the opening of communication channels can be used
to achieve attacked targets [10–12]. DoS attacks can disrupt the data exchange in multi-
area power systems and lead to packet losses directly. Compared with FDI attacks, DoS
attacks can achieve the attacked target without maintaining concealment, which makes it
important to study the mitigation strategies for DoS attacks. The strategies to suppress DoS
attacks have been extensively studied. Adopting appropriate communication protocol and
event-triggered control scheme can effectively mitigate the impacts of DoS attacks [13,14].
Compared to DoS attacks, FDI attacks could easily manipulate the normal actions of a
control center by compromising the data of vulnerable variables.

Analysis of cyber attacks on a LFC system is different from that on other systems
in power systems [15]. A LFC system, which depends on the dynamic evolution rather
than general SE, is designed to maintain the active power balance of power system. As is
discussed in [15], unlike static state estimation, which estimate the state of power systems
once every five minutes based on the ISO/RTO standard, the control center of LFC system
should generate command data once every five seconds. As a result, it is difficult for
a detection scheme of cyber attacks on a LFC system to benefit from current SE-based
attack detection schemes. Ref. [15] proposes FDI attack templates matching the features of
load frequency control system and evaluates the attack impact from aspects in frequency
fluctuation and financial settlement. In [16], the model of optimal FDI attacks on the sensors
of a LFC system is proposed to guide the defense of sensor data. In [17], authors introduce
a priori knowledge of FDI attacks for studying more targeted detection methods, by
analyzing four attack strategies targeting frequency collapse. Considering the concealment
of the FDI attack and the accuracy of the attack detection, an optimal defense strategy
is studied using game theory model [18]. Ref. [3] proposes an event-triggering control
strategy to mitigate the impacts of cyber attacks on a LFC. Ref. [19] proposes the resilient
load frequency control considering cyber attacks and communication delay.

Detection methods of cyber attacks against LFC systems should focus on dynamic
features in vulnerable variables. In current literature, designing observers and using
machine learning algorithms are two important methods to extract the dynamic features of
variables [20–22]. In [23], the disturbance of active power is tracked using a second-order
sliding mode in an LFC system. In [24], the fault signals in the LFC system are observed
using the sliding mode observer.

The existing methods for detecting FDI attacks on LFC systems have the following defects:
(1) The current data-driven methods are not sufficient to detect attacks in specific

conditions. The features of historical operation data are exploited based on data in multiple
operating conditions. Attackers can inject false data with the features of historical data in
the LFC system. For example, in one operating condition, attackers can use historical data
to generate attack signals that satisfy the features of the variables in other conditions.

(2) Due to the communication delay and noise, there exists a difference between the
observed data and the true data. Defenders cannot set the reasonable threshold of the
difference. Improper setting of threshold will lead to misjudgment.

Considering that the attacker is compromising the relationship between measured
data and true data, we propose a detection scheme for FDI attacks on a load frequency
control system based on dual-source data of compromised variables. Different from the
methods of learning the features of historical data, we measure the relationship between
observed data and measured data. The relationship between the two includes the difference
caused by communication delay and noise.

The main contributions of the paper are three fold:
(1) The attack detection scheme using dual-source data of compromised variables in

an LFC system is proposed. Dual-source data can be used as a basis for defenders to detect
false data injection attacks.
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(2) Based on known-secure variables in an LFC system, an observer of tie-line power
is designed considering uncertainties parameters in the LFC system. With this observer,
defenders can obtain dual-source data (the observed data and the measured data) to assess
whether the system is compromised.

(3) Considering the communication delay and noise of the dual-source data in the
process of transmission to the defense center, the Siamese network is used to quantify the
similarity of the dual-source data.

The remainder of this paper is organized as follows: in Section 2, the dynamic model-
ing of a compromised load frequency control system is studied. In Section 3, we design an
observer for detecting tie-line power considering uncertainties in an LFC system. The FDI
attack detection for the LFC system is designed in Section 4. In Section 5, simulation and
analysis are carried out. Finally, Section 6 states conclusions.

2. Modeling of Compromised LFC System and False Data Injection Attacks
2.1. Basics of a Compromised LFC System

The diagram of a typical multi-area LFC system is depicted in Figure 1. The system
consists of n areas. The attacker randomly selects one area (Area i ) to launch cyber attacks.
Other normal areas are represented by area (j(j = 1, ..., i− 1, i + 1, ..., n)). The attack target
is the remote terminal unit (RTU) of the compromised area. RTU is used to collect tie-line
power data. Since RTU is compromised, tie-line data cannot be correctly transmitted to the
control center, so that area control error (ACE) cannot be correctly calculated. Through the
proportion integral differential (PID) controller, the wrong ACE signals produce the wrong
control command. Based on the relationships between control command and active power
(the relationships are represented by the transfer functions in Figure 1), incorrect control
command could lead to power imbalance. Then, power imbalance leads to the fluctuation
of system frequency, which endangers the stability of the power system.
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Figure 1. Diagram of the multi-area compromised LFC system.

The dynamic model of the compromised system is:

ẋi(t) =(Ai + ∆Ai(t))xi(t) + (Bi + ∆Bi(t))ui(t)

+ Eij∆ f j(t) + Fi∆Pd
i

yi(t) =Cixi(t) + Giωi(t)

(1)



Appl. Sci. 2021, 11, 1584 4 of 17

where
xi = [∆Pg
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i ]
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Ci =

[
0 0 βi 0

]
where ∆Pg

i and ∆Pm
i represent the deviation of the governor valve position and the genera-

tor output power, respectively; βi represents the frequency bias coefficient; ∆ fi represents
the deviation of frequency. ∆Pt

i and ∆Pd
i represent the deviation of the tie-line power and

the load fluctuation, respectively; Di, Ri, and Mi represent the generator unit damping
coefficient, the speed drop, and the inertia of the synchronous machine, respectively; Tij

is the synchronizing coefficient between area i and area j; Tt
i and Tg

i represent the time
constants of the turbine and the governor, respectively; Gi is a constant known matrix
representing the distribution matrix of the bounded measurement noise ωi(t). Notice
that the generating units are transformed into an equivalent unit in order to reduce the
model complexity. A model fitting method can be used to transform the multi-unit into an
equivalent unit. The details of the model fitting are given in [25] and omitted here due to
space limitations. The time-varying uncertainties of Ai and Bi satisfy

∆Ai(t) = Φσ(t)Ψa (2)

∆Bi(t) = Φσ(t)Ψb (3)

σ(t)Tσ(t) ≤ I (4)

where Φ, Ψa, and Ψb are the distribution matrix of the variation vector σ(t). In this paper,
we only focus on the situations in which (Ai + ∆Ai(t)) is asymptotically stable.

Based on the area control error (ACE), the commands of the Area i of the LFC system
are generated using the following equation:

ui = −KPi ACEi − KIi

∫
ACEi (5)

ACEi = ∆p f
i + ∆Ptm

i (6)

where KPi and KIi are the proportional and integral gains of the controller, respectively;
∆Ptm

i represents the measured data uploaded by the RTU of tie-line power; and ∆p f
i

represents the data of the equivalent active power deviation caused by fi. Attackers can
mislead the controller by compromising the input data of the ACE. Considering the fact
that the compromised ∆p f

i can be rapidly detected by cross-checking the data with other
normal ones, we only focus on FDI attacks on ∆Ptm

i in this paper.
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2.2. Attack Templates of FDI Attacks on LFC

In this subsection, we discuss different types of false data injection attack on an LFC
system. The typical fixed FDI attacks can be categorized into two types: [17]:

• Exogenous attack:
∆Ptm

i = ∆Pt
i + Dp (7)

where Dp represents the value of the data injection added to the measurements of
tie-line power.

• Scaling attack:
∆Ptm

i = Kp∆Pt
i (8)

where Kp is the scaling attack parameter.

Due to the fixed parameters of typical FDI attacks, the features of compromised data
can be exploited. Based on the classifier, defenders can distinguish the compromised data
from the normal ones. In fact, sophisticated attackers can adjust injection parameters
flexibly to achieve attack targets. In this paper, we further study flexible FDI attacks on
∆Ptm

i , which can be written as:

∆Ptm
i = kp(t)∆Pt

i + dp(t) (9)

where kp(t) and dp(t) are time-varying variables. By launching the proposed FDI attacks,
the attacker can tamper the data of ∆Ptm

i in the current operating condition into the false
data with characteristics of real data in other operating situations. Thus, the controller
can be misled to issue control commands that are not applicable to the current operating
situation. It is necessary to relate the true data of tie-line power to accessible known-secured
variables under the current operating situation.

3. Design of an Observer for Detecting Tie-Line Power Considering Uncertainties

In this section, an observer is designed to detect tie-line power based on accessible
known-secured variables. Since system frequency is a global variable, the frequency
of each position in the area is the same. When the attackers compromise the frequency
measurement device in one place, the defender can cross verify the frequency measurement
value in other places. Therefore, we utilize the system frequency as a known-secured
variable and establish the following observer:{

żi = Wizi + TiBiui + TiEij∆ f j + Yiyi

x̂i = zi + Niyi
(10)

where z represents the state vector of the dynamic system (10); x̂i represents the observation
of xi; and Wi, Ti, Yi and Ni are the gain matrices with appropriate dimensions.

Let e = xi − x̂i, and using the output equation in (10), we have

e = xi − x̂i

= xi − zi − NiCixi − NiGiωi

= (In − NiCi)xi − zi − NiGiωi

(11)
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Using (1), (10), and (11), we can derive

ė =(In − NiCi)ẋi − żi − NiGiω̇i

=(In − NiCi)(Aixi + Biui + Eij∆ f j + Fi∆Pd
i ) + (In − NiCi)(∆Aixi + ∆Biui)

−
(
Wizi + TiBiui + TiEij∆ f j + (Yi1 + Yi2)yi

)
− NiGiω̇i

=(Ai − NiCi Ai)xi −Yi1Cixi −Wizi −Yi2yi + [(In − NiCi)Bi − TiBi]ui

+
[
(In − NiCi)Eij − TiEij

]
∆ f j + (In − NiCi)Fi∆Pd

i

−Yi1Giωi − NiGiω̇i + (In − NiCi)(∆Aixi + ∆Biui)

(12)

where Yi = Yi1 + Yi2; In is an n-dimensional identity matrix.
Considering that xi = e + x̂i = e + zi + Niyi , (12) can be expressed as

ė =(Ai − NiCi Ai −Yi1Ci)e + (Ai − NiCi Ai −Yi1Ci −Wi)zi

+ [(Ai − NiCi Ai −Yi1Ci)Ni −Yi2]yi + [(In − NiCi)Bi − TiBi]ui

+ [(In − NiCi)Eij − TiEij]∆ f j + (In − NiCi)Fi∆Pd
i

−Yi1Giωi − NiGiω̇i + (In − NiCi)(∆Aixi + ∆Biui)

(13)

If the following relationships can be held:

Ξi = (In − NiCi) (14)

Wi = (In − NiCi)Ai −Yi1Ci (15)

(In − NiCi)Fi = 0 (16)

(In − NiCi) = Ti (17)

Yi2 = ((In − NiCi)Ai −Yi1Ci)Ni (18)

we can derive the following observation error:

ė =((In − NiCi)Ai −Yi1Ci)e + 0 · zi + 0 · yi + 0 · Biui + 0 · Eij∆ f j

+ 0 · ∆Pd
i −Yi1Giωi − NiGiω̇i + (In − NiCi)(∆Aixi + ∆Biui)

=(Ξi Ai −Yi1Ci)e−Yi1Giωi − NGiω̇i + Ξi∆Aix + Ξi∆Biui

(19)

Based on the theory proposed in [26], the necessary and sufficient conditions for the
existence of the observer are as follows: (1) rank (CiFi) = rank(Fi). The special solution is
Ns

i = Fi[(CiFi)
T(CiFi)]

−1(CiFi)
T . (2) (Ci, Ξi Ai) is a detectable pair.

Theorem 1. There exists a sub-optimal robust observer for the LFC system discussed in this paper
when the following two conditions are satisfied:

(1) There exists γ > 0 such that

sup
α 6=0

‖e‖
‖α‖ < γ (20)

where α = [uT
i ωT

i ω̇T
i ∆ f j ∆Pd

i ]
T .
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(2) There exists a positive definite matrix P and Q, such that

Γ11 0 Γ13 0 0 Γ16 Γ17
∗ Γ22 0 Γ24 Γ25 0 0
∗ ∗ Γ33 0 0 0 0
∗ ∗ ∗ Γ44 0 0 0
∗ ∗ ∗ ∗ Γ55 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77


< 0 (21)

where
Γ11 =PAi + AT

i P + 2δaΨT
a Ψa + δ−1

a PΦΦT P

+ δ−1
b PΦΦT P

Γ22 =Q(Ξi Ai −Yi1Ci) + (Ξi Ai −Yi1Ci)
TQ + I

+ δ−1
a Q(ΞiΦ)(ΞiΦ)TQ + δ−1

b Q(ΞiΦ)(ΞiΦ)TQ

Γ33 = −γ2 I + 2δbΨT
b Ψb

Γ44 = Γ55 = Γ66 = Γ77 = −γ2 I

Γ13 = PBi, Γ16 = PEij, Γ17 = PFi

Γ24 = QYi1Gi, Γ25 = QNiGi, δa > 0, δb > 0

Proof. Taking the following Lyapunov function:

V(t) = xT
i (t)Pxi(t) + eT(t)Qe(t) (22)

Using (1)–(4), (19) and (22), we can derive

V̇ =xT
i (PAi + AT

i P)xi + 2xT
i PBiui

+ 2xT
i PEij∆ f j + 2xT

i PFi∆Pd
i − 2eTQYi1Giωi

− 2eTQNiGiω̇i + eT(Q(Ξi Ai −Yi1Ci)

+ (Ξi Ai −Yi1Ci)
TQ)e + 2xT

i PΦσΨaui

+ 2xT
i PΦσΨbui + 2eTQΞiΦσΨaxi

+ 2eTQΞiΦσΨbui

≤xT
i (PAi + AT

i P)xi + 2xT
i PBiui

+ 2xT
i PEij∆ f j + 2xT

i PFi∆Pd
i − 2eTQYi1Giωi

− 2eTQNiGiω̇i + eT(Q(Ξi Ai −Yi1Ci)

+ (Ξi Ai −Yi1Ci)
TQ)e + δ−1

a xT
i PΦΦT Pxi

+ δ−1
a xT

i ΨT
a Ψaxi + δ−1

b xT
i PΦΦT Pxi

+ δ−1
b uT

i ΨT
b Ψbui + δ−1

a eTQ(ΞΦ)(ΞΦ)TQe

+ δ−1
a xT

i ΨT
a Ψaxi + δ−1

b eTQ(ΞΦ)(ΞΦ)TQe

+ δ−1
b uT

i ΨT
b Ψbui

(23)

where δa and δb are positive scalars.
Letting β = [xi e αT ]T , we can derive:

V̇ ≤ βTΓβ + γ2αTα− eTe (24)
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where

Γ =



Γ11 0 Γ13 0 0 Γ16 Γ17
∗ Γ22 0 Γ24 Γ25 0 0
∗ ∗ Γ33 0 0 0 0
∗ ∗ ∗ Γ44 0 0 0
∗ ∗ ∗ ∗ Γ55 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77


(25)

If the aforementioned two requirements are satisfied, the system satisfies the Lyapunov
stability criteria. The proof is completed.

Based on the proposed observer, we can derive the observation value ∆pto
i of the

tie-line power ∆Pt
i . Considering uncertain communication delay and noise in the process

of transmission to the defense center, there is deviation between the measured data and the
observed data received by the defender, which can be written as

di f f (t) =∆Ptm
i (t)− ∆Ptd

i (t)

=∆Ptm
i (t)− (∆Pto

i (t− τ) + Nd(t− τ))
(26)

where di f f (t) represents the deviation between the measured data and the observed
data; ∆Ptd

i (t) is the observed data received by defender; τ is the communication delay;
and Nd(t) is the communication noise. This deviation also exists when the system is not
compromised. Defenders cannot judge if this deviation is caused by the observer or the
FDI attacks. Therefore, the similarity between the observed and real data should be further
considered before applying the observed data for attack detection. In the next section, the
similarity is studied.

4. Siamese-Network-Based Attack Detection for FDI Attacks on LFC

Considering the communication delay and noise, the proposed attack detection
scheme is realized by comparing the signal similarity between the observed data and
the measured data. In this section, a Siamese network is adopted to extract features for the
similarity between measured data and observed data.

4.1. Network Structure

The structure of the proposed Siamese network for attack detection is depicted in
Figure 2.

Measured

nT

1nT 

Observed 

nT

1nT 

EW

Loss
Layer

FC1 FC2 FCk ReLUReLU ReLU

FC1 FC2 FCk ReLUReLU ReLU

Figure 2. The Siamese network for FDI attack detection.

The Siamese network consists of two symmetrical branches that share equal weights
(EW). Sharing equal weights can effectively reduce the training parameters in the training
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process. The structure of each branch consists of four full connect (FC) layers and rectified
linear units (ReLUs). The function of FC layers is to map the original data to the hidden
layer feature space. The output produced by the FC layer is the hidden feature of the sample
data. We use many neurons to fit the features of the input data. Generally, single-layer FC
does not have the ability of nonlinear expression. Therefore, we increase the number of
layers of FC to enhance its nonlinear expression ability. In each FC layer, the number of
elements is equal to the dimension of sample data. The ReLUs, which can alleviate the
over fitting problem of the Siamese network, are defined as

f (a) = max(0, a) (27)

After that, the input data (measured data and observed data) are transformed into
two sets of feature vectors. Then, the two sets of vectors are transmitted to the loss layer to
quantify the distance.

We input the observed data and the true data into the Siamese network as the input
pair. When it is a positive sample, the calculated distance of the input pair should be smaller
than that of the negative input pair. Due to the equal weights and ReLUs, the features
caused by communication delay and noise can be mitigated during the training process.

4.2. Cluster-Based Loss Function

The loss function in the loss layer is designed to calculate the distance between the
features of the observed data and that of the measured data. The distance can be further
output as positive label or negative label through binary constraints. The distance with a
positive label represents the similarity of the positive pairs (observed data and normal data).
The distance with negative label represents the similarity of the negative pairs (observed
data and compromised data). The distance between observed data and normal data should
be less than that between observed data and compromised data, which can be written as:

d(ao, an) ≤ d(ao, ac) (28)

where ao is the observed data; an is the normal data; and ac is the compromised data.
Therefore, differences lie in the positive pairs and the negative pairs should be fully
exploited in the loss function.

Therefore, differences lie in the positive pairs (observed data and normal data) and
the negative pairs (observed data and compromised data) should be fully exploited in the
loss function. Notice that the observed data and normal data are usually highly correlated
when the load disturbance occurs, which makes it possible to cluster the positive pairs. In
this paper, we focus on the cluster of positive pairs when designing the loss function. The
proposed cluster-based loss function aims to encourage the features in positive pairs to be
close and push the ones in negative pairs far away. The cluster center of the positive data
can be defined as:

Cc =
1
M

M

∑
m=1

f (an
m) (29)

where M is the number of the normal samples; f (an
m) is the vector output from the FC layers.

Considering that the parameters of the injection data are flexible, it is difficult for the
input samples to cover the characteristics of all types of injection data. In the proposed
cluster-based loss function, a concentric-circles model is used to improve the ability to
detect the unknown type of injection data. Two margins between positive pairs and
negative pairs are used: ξmin is used to increase the distance between different types of
pairs, and ξmax is used to make positive pairs more compact. The loss function can be
defined as:

L =
M

∑
m=1

(L1 + L2) (30)
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where
L1 =

1
2

max{0, ‖ f (an
F)− Cc‖2

2 − ‖ f (ac
m)− Cc‖2

2 + ξmax} (31)

L2 =
1
2

max{0, ‖ f (an
m)− Cc‖2

2 − ξmin} (32)

where f (an
F) represents the farthest normal data of tie-line power. It can be learned that L1

is used to measure the distance of negative pairs and positive pairs. If L1 ≤ 0, the distance
of negative pairs is far enough to positive pairs. L2 is used to measure the distance of
positive pairs and the cluster center. If L2 ≤ 0, the distance of positive pairs is close enough
to the cluster center. When L1 ≤ 0, L2 ≤ 0, negative pairs can be effectively separated from
positive pairs.

Intuitively, L1 > 0 or L2 > 0 means that the function (28) is not satisfied and a positive
loss value is generated. Then, the following gradient equations are used to guide the
training direction in the process of training. That is to say, these equations are used to
guide L1, L2 from (L1 > 0 or L2 > 0) to (L1 ≤ 0, L2 ≤ 0). The gradient of the positive
pairs Gn can be expressed as

Gn =
∂L2

∂ f (an
m)

= f (an
m)− Cc (33)

The gradient of the positive pairs Gc can be expressed as

Gc =
∂L1

∂ f (ac
m)

= Cc − f (an
F) (34)

The gradient of the positive pairs GF can be expressed as

GF =
∂L1

∂ f (an
F)

= f (an
F)− Cc (35)

4.3. Attack Detection Scheme for FDI Attacks on LFC

The procedures of the attack detection scheme are as follows:

• Step 1: Generate the training data set. Load the historical tie-line power data under
different operating conditions as the normal data. Based on (7)–(9), the data set of
compromised tie-line power data can be generated using the method proposed in
Section 3.

• Step 2: Transfer the training data in the form of data pairs to the Siamese network for
training.

• Step 3: Using the high dimensional features obtained by FC layers to calculate the
similarity between observed data and measured data. Loss function is used to make
positive pairs compact and negative pairs far away from the positive pairs.

• Step 4: Sample the incoming data pair, which could be compromised potentially or
normal load disturbance. By checking the high dimensional features of the data pairs,
the status of the RTU for tie-line power can be identified.

5. Simulations and Analysis

In this section, simulations are implemented to illustrate the feasibility of the proposed
detection scheme on the LFC system. As is shown in Figure 3, an IEEE 39-bus 10-unit
power system is used as the tested system. The data of the system can be found in [27,28].
The red block represents the compromised area (Area i).
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Figure 3. Interconnected power system.

Based on the Formulas (2)–(4), it is assumed that the uncertainties of the system
studied in this simulation environment are as follows:

∆Ai(t) =


−0.065 0 −0.065 0
0.043 −0.043 0 0

0 0.012 −0.012 −0.012
0 0 0.0025 0

 · sin(t)

∆Bi(t) =
[
−0.065 0 0 0

]T · sin(t),

5.1. Performance of the Observer for the Compromised LFC System

Based on the method studied in Section 3 and the parameters of the system, the
observer gains for the tie-line power of the compromised area i can be calculated as follows:

Wi =


−6.6667 0 0.0031 0
3.2258 −3.2258 0.0003 0

0 0 −9.053 0
0 0 0.0001 0

, Ni =


0
0
1
0


Yi =

[
−6.6635 − 0.0003 9.053 0.1884

]T

In this case, we make τ = 1 s. The signal-to-noise ratio (SNR) of the white Gaussian
noise is chosen as 30 dB. Systems compromised of different attack templates are simulated,
and the simulation results are shown in Figures 4–6.

It can be learned that the dynamic features of real data can be reflected by that of
observed data when the system is compromised by the aforementioned types of FDI
attacks. The defender can detect attacks based on the dynamic feature similarity between
the observed data and the true data. Although the characteristics of the observation error
are different when the system is under different attacks, the observation error tends to be
small in the long-term range, which means that the observed data are closer to the true
data in the case of a long sample time.
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Figure 4. Different data sources of tie-line power and observation error under exogenous attack.
(a) different data sources of tie-line power; (b) observation error.
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Figure 5. Different data sources of tie-line power and observation error under scaling attack. (a) dif-
ferent data sources of tie-line power; (b) observation error.
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Figure 6. Different data sources of tie-line power and observation error under flexible attack. (a) dif-
ferent data sources of tie-line power; (b) observation error.

5.2. Performance of the Proposed Attack Detection Scheme

In this subsection, we evaluate the performance of the Siamese network used to detect
FDI attacks. The batch size of the Siamese network is chosen as 20. Let ξmax = 2 and
ξmin = 1. Training samples contain 900 historical normal sample data and 300 compromised
data. As for the compromised data, we set the value templates of the exogeneous attacks
from 0.01 p.u. to 5 p.u. and set the value templates of the scaling attacks from 0.01 to
5. Each sample contains 60 s of tie-line power data. In addition, 3000 observed sample
data including 1500 samples of the aforementioned three types of FDI attack templates are
generated as test samples.

To illustrate the advantages of the FDI attack detection scheme studied in this paper,
we choose the following five methods for comparison: (1) The proposed attack detection
scheme using a cluster-based loss function (Method-A); (2) the proposed attack detec-
tion scheme using triplet loss function (Method-B) [29]; (3) the detection method using
multilayer perception (Method-C) [17]; (4) the detection method using clustering-particle
swarm optimization (clustering-PSO) (Method-D) [30]; and (5) the ACE forecasting method
(Method-E) [15].

True positive rate (TPR) and true negative rate (TNR) are utilized to evaluate the
performance of these five methods:

TPR =
TP

TP + FP
(36)

TNR =
TN

TN + FN
(37)

where TP, FP, TN, and FN are the correctly detected positive samples, incorrectly detected
positive samples, correctly detected negative samples, and incorrectly detected negative
samples, respectively.



Appl. Sci. 2021, 11, 1584 14 of 17

The simulation results considering different types of FDI attacks are shown in
Figures 7 and 8.
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Figure 7. TP rate of the attack detection scheme.
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Figure 8. TN rate of the attack detection scheme.

From Figures 7 and 8, it can be learned that the proposed attack detection scheme
achieves higher TP rate and TN rate than the detection method using multilayer perception
and that using clustering-PSO. In particular, when the system is compromised by flexible
attacks, the proposed detection scheme has more prominent advantages than these two
methods. This is because the proposed scheme is trained based on the relationship between
observed data and true data. The detection method using multilayer perception and
that using clustering-PSO are trained based on features of true data, which can be easily
imitated by flexible attack. The lower TP rate of the ACE-forecasting method stems from
the prediction errors.

5.3. Reliability of the Proposed Attack Detection Scheme

In this subsection, we evaluate the reliability of the proposed attack detection scheme
by considering four safe factors: safe SNR, safe delay, safe number of training samples, and
safe margin difference. To quantify reasonable safe levels which could guarantee certain
detection performance, we establish the relationship between the minimum of the safe
factors and threshold for detection performance. Sr is used to represent the threshold for
detection performance, which can be expressed as:

Sr = min{TP, TN} (38)

Safe SNR considering different Sr and different attack templates are In Table 1. It can
be learned that the safe SNR increases with the increase of Sr. The impact of attack type
on safe SNR is less than that of Sr. When Sr is at a high level, the safe SNR is basically the
same. When Sr is at a low level, the safe SNR under different attacks begin to differ.
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Table 1. Safe SNR considering different Sr and different attack templates.

Sr = 80% Sr = 85% Sr = 90%

Exogenous attack 9.3 dB 10.9 dB 13.1 dB
Scaling attack 9.5 dB 11.2 dB 13.1 dB
Flexible attack 9.8 dB 11.2 dB 13.1 dB

Safe delay considering different Sr and different attack templates are In Table 2.
Different attack types perform almost the same under different Sr. This is because, when
the time span of the data sample is long, the short time delay is difficult to change the main
characteristics of the data.

Table 2. Safe delay considering different Sr and different attack templates.

Sr = 80% Sr = 85% Sr = 90%

Exogenous attack 6.7 s 5.1 s 3.2 s
Scaling attack 7.0 s 4.9 s 3.2 s
Flexible attack 6.9 s 5.0 s 3.1 s

A safe number of training samples considering different Sr and different attack tem-
plates are in Table 3. It can be seen that the proposed detection scheme does not require
a high number of data samples considering the scale of historical data of power systems.
Among them, the proposed flexible attack requires a little higher data size. This is because
it is more diverse, and a small number of samples can not effectively cover all cases.

Table 3. Safe number of training samples considering different Sr and different attack templates.

Sr = 80% Sr = 85% Sr = 90%

Exogenous attack 45 55 70
Scaling attack 45 55 70
Flexible attack 60 65 75

A safe margin difference considering different Sr and different attack templates is
in Table 4. As the margin difference increases, Sr increases. The marginal benefit of the
method of increasing Sr by increasing the margin difference is reduced. This is because the
test data outside the margin are limited. Different attack types perform almost the same
under different Sr. This is because the probability of testing data outside the margin is
almost the same for different attack types.

Table 4. Safe margin difference considering different Sr and different attack templates.

Sr = 80% Sr = 85% Sr = 90%

Exogenous attack 0.6 0.8 0.9
Scaling attack 0.6 0.8 0.9
Flexible attack 0.6 0.8 0.9

6. Conclusions

A novel detection scheme of cyber attacks on a load frequency control system is
studied in this paper. We design an observer of the tie-line power based on known-secured
variables to track the dynamic features of the tie-line power. The designed observer can
achieve the observation tie-line power when the system is under different types of FDI
attacks. The observed data and the measured data of tie-line power are combined into
the input pairs of the Siamese network to achieve attack detection. The simulation results
illustrate that the proposed attack detection scheme is feasible under mid or little SNRs.
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