friried applied
b sciences

Article

Intelligent Cyber Attack Detection and Classification for
Network-Based Intrusion Detection Systems

Nuno Oliveira *', Isabel Praca */, Eva Maia

check for

updates
Citation: Oliveira, N.; Praga, I.; Maia,
E.; Sousa, O. Intelligent Cyber Attack
Detection and Classification for
Network-Based Intrusion Detection
Systems. Appl. Sci. 2021, 11, 1674.
https:/ /doi.org/10.3390/app11041674

Academic Editor: Eui-Nam Huh

Received: 23 November 2020
Accepted: 8 February 2021
Published: 13 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Orlando Sousa *

Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development
(GECAD), Porto School of Engineering (ISEP), 4200-072 Porto, Portugal; egm®@isep.ipp.pt
* Correspondence: nunal@isep.ipp.pt (N.O.); icp@isep.ipp.pt (I.P.); oms@isep.ipp.pt (O.S.)

Abstract: With the latest advances in information and communication technologies, greater amounts
of sensitive user and corporate information are shared continuously across the network, making it
susceptible to an attack that can compromise data confidentiality, integrity, and availability. Intrusion
Detection Systems (IDS) are important security mechanisms that can perform the timely detection
of malicious events through the inspection of network traffic or host-based logs. Many machine
learning techniques have proven to be successful at conducting anomaly detection throughout the
years, but only a few considered the sequential nature of data. This work proposes a sequential
approach and evaluates the performance of a Random Forest (RF), a Multi-Layer Perceptron (MLP),
and a Long-Short Term Memory (LSTM) on the CIDDS-001 dataset. The resulting performance
measures of this particular approach are compared with the ones obtained from a more traditional
one, which only considers individual flow information, in order to determine which methodology
best suits the concerned scenario. The experimental outcomes suggest that anomaly detection can be
better addressed from a sequential perspective. The LSTM is a highly reliable model for acquiring
sequential patterns in network traffic data, achieving an accuracy of 99.94% and an f1-score of 91.66%.

Keywords: intrusion detection systems; machine learning; anomaly detection; sequential analysis;
random forest; multi-layer perceptron; long-short term memory

1. Introduction

At present, information and communication technology plays a vital role in the life of
modern organizations. Its development has opened a wide range of new communication
methods that allow faster and cheaper ways to access and share information. Modern
companies increasingly rely on these technologies to provide greater availability for their
clients and for managing their businesses. This dependency on information systems
causes a substantial amount of sensitive user and corporate information to be shared
across the network, making it more susceptible to cyber attacks that can compromise data
confidentiality, integrity and availability.

An Intrusion Detection System (IDS) dynamically monitors the actions of a specific
environment, for example, the network traffic, syslog records or system calls of a given
operating system, in order to determine if those actions are a legitimate use or a symptom
related to a given attack [1]. These systems are usually classified into Network-based
Intrusion Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS).
An NIDS works on feature vectors that comprise summarized information related to
network traffic within a specified time interval while a HIDS is located on a specific host
and monitors information related to the system [2].

Intrusion detection can be performed in several ways, and they usually are described
as Anomaly-based Intrusion Detection or Signature-based Intrusion Detection. The latter,
also known as misuse detection, attempts to detect and classify attacks by matching
predefined patterns. Although maintaining reasonable levels of false alarm rates, this

Appl. Sci. 2021, 11, 1674. https:/ /doi.org/10.3390/app11041674

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5030-7751
https://orcid.org/0000-0002-2519-9859
https://orcid.org/0000-0002-8075-531X
https://orcid.org/0000-0003-0779-3480
https://doi.org/10.3390/app11041674
https://doi.org/10.3390/app11041674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041674
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1674?type=check_update&version=2

Appl. Sci. 2021, 11, 1674

20f21

technique is only suitable for well-known attacks [3]. To overcome this disadvantage,
some researchers have developed flexible signature-based NIDS [4,5]. On the other hand,
anomaly detection aims to elaborate heuristic rules or statistical models based on the
analysis of normal and abnormal activities that can further be used to classify some
behaviour as benign or malicious. These systems can detect novel attacks and be combined
with artificial intelligence methods to increase their detection performance.

Advances in hardware, software, and network topologies, such as the Internet of
Things (IoT), mean that cyber attacks are becoming more complex and sophisticated and,
therefore, more difficult to detect [6]. This dynamic nature of cyber attacks makes anomaly
detection an exciting area in which to employ artificial intelligence algorithms like Neural
Networks or more traditional classifiers, like Random Forests (RF), k-Nearest Neighbors
(kKNN) or Support Vector Machines (SVM). However, significant and realistic data from
emulated network environments are required to test and compare different anomaly
detection approaches and methods. The absence of reliable datasets has been identified in
the literature as one of the main obstacles to intrusion detection research [7]. Nevertheless,
in the last few years, some intrusion detection datasets have been published, namely
CIDDS-001 [8,9] , CICIDS2017 [10] and UNSW-NBI15 [11]. For a detailed comparison
between several NIDS datasets, the reader can consult [12].

In our research, anomaly detection for the CIDDS-001 dataset was addressed from
two distinct viewpoints. The first, single-flow, consider only individual flow features.
In contrast, the second, multi-flow, perform a more in-depth analysis of flow sequences,
gathering more context from previous flows to detect anomalous behaviour. For each
viewpoint, three state-of-the-art artificial intelligence models were employed, RF, MLP,
and LSTM. By analysing these methods’ results through multiple evaluation metrics, it
is possible to better understand which approach best suits the dataset and which model
achieves the best performance. The objective of these techniques is not only to detect
malicious behaviour but also to specify the nature of that behaviour by identifying the re-
spective attack type through a multi-class classification process. A model trained for binary
classification with Normal and Attack labels would not be able to recognise which type of
attack was performed, only that an anomalous situation it had occurred on the network.

This work was developed within the Security of Air Transport Infrastructures of
Europe (SATIE) project, as research for a novel approach to investigate the temporal
correlation between cyber and physical alerts. The SATIE project will build a holistic,
interoperable, and modular security toolkit to be exploited by the next generation of
Airport Operation Centres and Security Operation Centres to protect critical air transport
infrastructures against combined cyber—physical threats [13].

Our work introduces several novelties, and mainly differs from others presented in
Section 2 because, to the best of our knowledge:

* No work has addressed the target variable AttackType of the CIDDS-001 in order to
perform multi-class classification for intrusion detection;

® Only Gwon et al. in [14] has addressed network intrusion detection from a sequential
perspective by using LSTM. However, the experimental results were achieved for
the UNSWNB-15 dataset, which is two years older than the CIDDS-001, contains
considerably less data for training and testing, and regards different attack types to
those presented in the CIDDS-001 dataset;

* Only in [15], was LSTM used for the CIDDS-001 dataset. Nevertheless, the work does
not mention any study about the flow window size and its impact in the model’s
evaluation metrics. It is also important to highlight that, in [15], only the External
Server data was used and the Class label was selected as target value. This analysis is
different to the one presented in our work;

* No previous work has established a proper comparison between the two intrusion
detection approaches addressed in our work: single-flow and multi-flow;

¢ Our work was performed in the context of the SATIE project and the methods de-
scribed in this research will become part of it's modular security toolkit to be used

Appl. Sci. 2021, 11, 1674

3of21

by the next generation of Security Operation Centres to protect critical air transport
infrastructures.

The paper is organized in multiple sections that can be detailed as follows. Section 2
provides a comparison between the current research and previous works on the CIDDS-
001 dataset as well as a description of other implementations of the same methods for
other relevant datasets. Section 3 briefly explains the machine learning models that were
used, the problem’s viewpoints and the considered evaluation metrics. In Section 4, the
obtained results are presented and discussed. Section 5 provides a summary of the main
conclusions that can be drawn from this research and appoints further research topics that
can be addressed.

2. Related Work

In the last few years, several works have tested different machine and deep learning
models on the CIDDS-001 dataset. These experiments addressed the target variable Class
and, in general, attempted to classify each flow as either Suspicious, Unknown, Normal,
Attacker or Victim. This particular work, although being related to previous research,
considers a different target variable and, therefore, performs a substantially different
analysis of the dataset. The AttackType attribute was used as label in order to train the
selected models to not only identify the occurrence of a given attack but also detect the
type of attack that has been performed. Nevertheless, it is very important to understand
what conclusions have been drawn from prior and related work on the CIDDS-001 dataset.

In [16], Tama et al. evaluated the performance of a Deep Neural Network (DNN) for
conducting anomaly detection in an IoT environment. To assure a reliable performance
analysis, several validation methods, such as cross-validation and repeated cross-validation,
were performed on different datasets, namely, CIDDS-001, UNSW-NB15 and GPRS [17]. A
grid-search was conducted in order to find the appropriate hyper-parameters of the DNN
for each dataset. The model achieved nearly 100% accuracy for the the CIDDS-001 dataset
(using Class as target variable).

In [18], Verma and Ranga performed an analysis of the CIDDS-001 dataset from the
machine learning point of view. Both k-NN Classifier and k-Means Clustering methods
performed well. A comparative analysis between CIDDS-001 and other existing bench-
marking datasets is appointed as a future research topic in order to measure the complexity
of this dataset compared to others.

In [15], Althubiti et al. used the CIDDS-001 External Server data to test a Long-Short
Term Memory (LSTM) model. The data were split into 67% for training and 33% for testing.
The LSTM achieved a greater performance when compared with other methods, namely
SVM, Naive Bayes (NB) and Multi-Layer Perceptron (MLP). Although sequence size is
not mentioned, most of the hyperparameter values that were used are described in detail.
Nicholas et al., in [19], also evaluated the performance of an LSTM model in the flow-based
data of CIDDS-001 and compared the obtained results with other traditional classifiers.

In [20], Abdulhammed et al. addressed the problem of disproportional class distri-
bution. The research considered only the flows which corresponded to the target values
Normal and Attack for the dataset’s Class label and employed several class-balancing
techniques, such as minority class up-sampling, majority class down-sampling, spread
sub-sampling and class balancing by assigned weights inversely proportional to class
frequencies. The authors, although believing that the results may not be generalized to
a broader range of problems, concluded that class unbalance had a slight impact on the
classification process for that specific situation. Advantages of the usage of RF for anomaly
detection have been appointed, such as the ability to estimate missing data and maintain
reasonable accuracy values even when a large proportion of data is missing.

Finally, in [2], Rashid et al. performed a comparative analysis between the benchmark
datasets NSL-KDD and CIDDS-001. A hybrid feature selection method was used in
order to reduce the number of attributes of each dataset and six machine learning models
were tested. For the CIDDS-001 dataset, NB and k-NN achieved the best results with

Appl. Sci. 2021, 11, 1674

40f21

an accuracy score of 99%. A detailed comparison between deep learning methods, such
as Convolutional Neural Networks (CNN), Deep Belief Networks (DNB) and Recurrent
Neural Networks (RNN) have been appointed as further research. The authors also
mentioned the possibility of applying feature learning on the raw data of network traffic
headers in order to stimulate the maximum potential of neural networks.

None of the works mentioned above addressed multi-class classification to detect
distinct attack types for the CIDDS-001 dataset. Only the Class label was used for distin-
guishing between Normal, Attacker, Victim, Suspicious and Unknown classes. No work
has used the AttackType target variable for identifying and categorizing attack attempts.
Additionally, only in [15] was the LSTM used for the context of CIDDS-001, and the work
does not mention any study regarding flow window sizes and its impact on the methods
performance. Some other works that have also studied LSTMs for network-based intrusion
detection systems in the context of other well-established datasets such as UNSW-NB15
and CICIDS2017 can be described as follows.

In [21], Roy and Cheung, presented, within the IoT environment, a novel technique
for anomaly detection using a Bi-directional LSTM network. The model was trained and
tested in a smaller randomly selected sample of the UNSW-NB15 dataset and obtained
substantially good results, namely an accuracy score of 95.71% and a fl-score value of
98.00%. Similarly to [15], sequence size was not mentioned.

In [14], Gwon et al. used an LSTM model with a feature-embedding layer on the
UNSW-NB15 dataset, obtaining excellent results. Instead of using traditional encoding
methods for the categorical variables, the authors employed a word embedding layer that
transformed those variables into numeric vectors that were able to translate their inherited
semantic meaning. Network-based anomaly detection was addressed from a sequential
perspective, and flaws of traditional classifiers were appointed, since they struggle to learn
sequential patterns from data. The LSTM model was selected to overcome this problem
since it can analyse entire sequences of flows and learn meaningful patterns from sequential
data. Learning strategies such as many-to-one or many-to-many were carefully studied,
and the performance of the model was analysed for different sequence sizes. For binary
classification, the model achieved an accuracy score of 99.72%, while for multi-class, the
accuracy score was 86.98%.

In [3], He et al., proposed a combination of a Multimodal Deep Auto Encoder (MDAE)
and an LSTM for conducting anomaly detection. This novel approach was tested on three
datasets from 1999 to 2017, namely, NSL-KDD, UNSW-NB15 and CICIDS2017 achieving,
for multi-class classification, accuracy scores of 80.20%, 86.20% and 98.60%, respectively.

It is important to state that in [14], LSTMs were used to address intrusion detection
from a sequential perspective, combining patterns from both individual flows and se-
quences of flows. However, the experimental results were obtained in the context of the
UNSWNB-15 dataset, which is older than CIDDS-001, resembles a smaller data collection
and contains several attack types, such as Shellcode, Backdoors and Worms, which are
considerably distinct from the ones presented in CIDDS-001.

Our work presents a novel analysis on the CIDDS-001 by using the AttackType label to
perform a multi-class classification process and highlights the benefits of using machine
learning for processing a stream of network flows to accurately detect and categorize
malicious behaviour on network traffic. Two deep learning methods, LSTM and MLP,
and one machine learning method, RE, were selected to be employed based on the results
presented in the literature. RF was chosen over other well-known methods since it obtained
the best overall results in the the broader scope of intrusion detection research. For example,
in [22], the performance of several machine learning models were analysed in the context
of the KDD99 dataset and RF achieved an accuracy score of 99.81%, greater than the
accuracy of other techniques such as SVMs, Naive Bayes and Logistic Regression. Similarly,
in [23], several methods were tested on four distinct datasets, including CIDDS-001, and
RF presented the best average accuracy value over all datasets, 94.94%, in comparison to
other models such as AdaBoost and Extreme Gradient Boosting.

Appl. Sci. 2021, 11, 1674

50f21

3. Materials and Methods

This section describes the main characteristics and properties of the selected dataset
as well as the nature of the machine and deep learning techniques that were applied.
Each model is briefly explained and all configurations and parameters are detailed. The
employed evaluation metrics are also carefully explained so that the comparison between
methods can be better understood. The objectives of our study can be described as follows:

* Compare single-flow and multi-flow approaches for attack detection in the context of
network-based intrusion detection systems;

* Understand the effect of temporal dependencies in intelligent attack detection
and classification;

e Understand how the performance of an ML algorithm is affected by the size of the
flow window;

e Use the AttackType label of the CIDDS-001 as target variable in order to perform
multi-class classification for intrusion detection.

3.1. Dataset Description

The Coburg Intrusion Detection Data Set (CIDDS-001), disclosed by Markus Ring et al.
in [8], contains about four weeks of network traffic from 5:43:57 p.m., 3 March 2017 up
until 11:59:30 p.m., 18 April 2017, comprising a total of nearly 33 million flows captured
from two different environments, an emulated small business environment (OpenStack)
and an External Server that captured real and up-to-date traffic from the internet. The
OpenStack environment includes several clients and typical servers like an E-Mail server
or a Web server. The dataset contains labeled flow-based data that can be used to evaluate
anomaly-based network intrusion detection systems considering normal activity as well
as DoS, Brute Force, Ping Scans and Port Scan attacks. The python scripts used for traffic
generation can be found in a github repository [24].

The CIDDS-001 is a very reliable dataset for studying and evaluating network-based
intrusion detection methods since it is considerably recent, comprises a considerable
collection of network flows and regards several up-to-date attack types. The collection of
data provided by the CIDDS-001 dataset is represented in a unidirectional Netflow format.
Table 1 provides an overview of the dataset attributes. All attributes from 1 to 12 are default
Netflow features, whereas those from 13 to 16 result from the labelling process.

Regarding the AttackType label, CIDDS-001 is a very unbalanced and realistic dataset.
The majority class corresponds to benign traffic. Each of the other classes represents one of
four distinct attack types that are not equally distributed over time. Table 2 describes the
attack type distribution over time.

For the OpenStack environment, only the first two weeks contain data related to attacks
while the remaining weeks only contain benign behaviour. On the other hand, for the
External Server, the first week does not contain any attack attempt and the remaing three
weeks onyl contain instances of the DoS and Port Scan attack types.

Appl. Sci. 2021, 11, 1674

6 of 21

Table 1. Specification of the CIDDS-001 dataset features. Adapted from [8].

N° Name Desription
1 Src IP Source IP Address
2 Src Port Source Port
3 Dest IP Destination IP Address
4 Dest Port Destination Port
5 Proto Transport Protocol (e.g., ICMP, TCP, or UDP)
6 Date first seen Start time flow first seen
7 Duration Duration of the flow
8 Bytes Number of transmitted bytes
9 Packets Number of transmitted packets
10 Flags OR concatenation of all TCP Flags
11 Tos Type of Service
12 Flows Not specified
13 al Class label (Normal, Attacker, Victim, Suspicious and
ass
Unknown)
14 AttackType Type of Attack (PortScan, DoS, Bruteforce, PingScan)
15 AttackD Unique Attack id. Allows attacks which belong to the same

class carry the same attack id
Provides additional information about the set attack parameters
16 AttackDescription (e.g., the number of attempted password guesses for
SSH-Brute-Force attacks)

Table 2. Attack distribution over time.

Open Stack External Server
Week DoS Brute-Force Ping Scan Port Scan Dos Brute-Force Ping Scan Port Scan
1st Yes Yes Yes Yes No No No No
2nd Yes Yes Yes Yes Yes No No Yes
3rd No No No No Yes No No Yes
4th No No No No Yes No No Yes

3.2. Data Preprocessing and Sampling

In order to train the Machine Learning methods, the CIDDS-001 data first had to be
preprocessed. The data were first analysed in order to detect errors, duplicated values and
inconsistent data. Some abnormalities were found, such as the Flows column, with the
same value for each dataset entry and the Bytes columns representation for its numerical
values being 1K instead of 1000. Thereby, the Flows column was removed as well as three
other columns that correspond to labels not considered in our study, Class, AttackID and
AttackDescription. Only AttackType was considered because this research is focused on the
evaluation of different machine- and deep-learning approaches for attack recognition and
specification. Some additional transformations were also done to correct the Bytes column,
such as replacing “K” for 10% and “M” for 10° and then converting the corresponding result
to its correct numeric representation. The Date first seen feature was used to index the data
in order to preserve the flow sequence.

After these operations seven categorical features and three numerical features re-
mained. The resulting feature vector is composed of the following features: Src IP, Src
Port, Dest IP, Dest Port, Proto, Flags, ToS, Duration, Bytes and Packets. Since the input
value of the employed algorithms is expected to be a numerical matrix, all non-numerical
features, such as Src IP and Dst IP, were encoded into a representative numerical form
using the ordinal encoding method. Finally, every feature was normalized between 0 and 1
using min-max normalization to enhance the performance of the mentioned techniques.
Min-max scales look at each feature individually according to the following equation

Appl. Sci. 2021, 11, 1674

7 of 21

;- (x*xmin)
¥ Conne—) v

where x’ represents the scaled value of x.

As previously stated, the dataset comprises a total of nearly 33 million flows. Due to
this considerable number of flows, high hardware requirements are needed to conduct this
study. In order to solve this problem and substantially decrease the required amount of
memory, processing power and time, only a portion of the data were used.

Since one of the objectives of this research is to better understand the effect of temporal
dependencies in intelligent attack detection and classification, a random and stratified
split approach could not be used because it would not preserve the flow sequence. Hence,
efforts were made to find a smaller flow interval that could be used a good representation
of the dataset, with instances of every attack and similar class proportions. Thereby, only
the first two weeks of OpenStack environment were considered since they contain instances
of every attack type, and a sample of 2,535,456 flows between 2:18:05 p.m., 17 March 2017
and 5:42:17 p.m., 20 March 2017 was selected. Table 3 establishes a comparison in terms of
size and class proportion between the chosen sample, the first two weeks of OpenStack
environment and the whole dataset.

Table 3. AttackType class distribution comparison.

Class Dataset OpenStack 1st Half Sample
Total Records 32,630,424(100%) 18,762,253(100%) 2,535,456(100%)
Brute Force 9888(0.03%) 4992(0.03%) 1262(0.05%)
DoS 2,959,027(9.07%) 2,959,027(15.77%) 390,440(15.40%)
No Attack 29,352,063(89.95%) 15,526,226(82.75%) 2,092,550(82.53%)
Ping Scan 6090(0.02%) 6090(0.03%) 1068(0.04%)
Port Scan 303,356(0.93%) 265,918(1.41%) 50,136(1.98%)
3.3. Models

One machine learning model, Random Forest [20], and two deep learning models,
Multi-Layer Perceptron [25] and Long-Short Term Memory [14,15] were employed. These
state-of-the-art techniques for intrusion detection systems presented very promising results
in previous research for multiple state-of-the-art datasets, namely for the CICIDS2017 [10]
and the UNSW-NBI15 [11]. In order to better understand the main differences in each
technique, a brief description of their nature is provided as well as all the considered
parameters and configurations.

Random Forest Classifier [26]. A Random Forest (RF) consists in a large number of
Decision Trees that operate together as an ensemble. Each Decision Tree is a decision tool
that works in a tree-like model of decisions and outcomes. For a given dataset entry, each
tree of a Random Forest model predicts a given class and the most voted one is elected
as the model’s output. The underlying theory behind Random Forests is the wisdom
of crowds. In order to assure good performance, the algorithm must be trained with
good representative data and the correlation between the predictions of each tree must be
low [27]. Figure 1 represents the behaviour of the classifier.

Appl. Sci. 2021, 11, 1674

8 of21

Random Forest Classifier

\,—~

O) O ()) (@) O @)

D) O O Q 5&
)(e 5~ - i TN <
(

PP o NP NN o N e N e N o NP o NP a8
/ U/ / \,) <\ J _J U/ _/ N\) (\ J \) Q, J _/ U/ (\\ \) (\ ,) U/ /
i Class A } { Class C l Class B i Class C } { Class C l
v v v Y v
(Majority Voting Process W
v
Class C

Figure 1. Representation of Random Forest prediction process.

The Random Forest Classifier has multiple parameters that can be configured. Table 4
summarizes some important parameters that were applied.

Table 4. Summary of Random Forest configuration.

Parameter Value
N° of Estimators 100
Split Criterion Gini Impurity
Max Depth 35
Min Samples Split 2
Min Samples Leaf 1
Max Features v NP° of Features
Class Weights Balanced

Max tree depth was set to 35 to prevent the occurrence of overfitting and to ensure
generalization. Class weights were adjusted to be inversely proportional to class frequen-
cies in the input data in order to avoid poor classification on the minority classes, since the
CIDDS-001 dataset is highly unbalanced [20]. This way, it was possible to tune the classifier
to favor the minority classes over the majority classes by using weights obtained through
the following equation

el
el Miotal @
where w,; is the weight of class one, 1,1 is the number of occurrences of class one in the
input data and n;0tal represents the total number of samples of the input.

The remaining values for the number of estimators, split criterion, min samples split,
min samples leaf and max features were set to the default of Scikit-learn [28] python library,
since they are recognised as well established configurations for a vast majority of contexts.

Multi-Layer Perceptron [29]. A Multi-Layer Perceptron (MLP) is a type of Feed-
Forward Network which can be represented as an acyclic graph with no feedback connec-
tions (the outputs of the model are not fed back into itself). An MLP comprises three or
more layers, having one input layer, one or more hidden layers and an output layer, in
which each layer has multiple neurons that can be represented in mathematical notation.

Each hidden layer /; can be mathematically described by

hi(x) = f(w] x4 by) €)

where x = x1, X2, ..., X,_1, X is the input vector, w; is the weights vector, b; is the bias and f
is a non-linear activation function like sigmoid, hyperbolic tangent or softmax (preferred for
the output layer). These activation function are mathematically represented as

sigmoid =

1+e > @

Appl. Sci. 2021, 11, 1674

9of21

e2X — 1
t = 5 5
angen o 5)

e¥i
softmax(x;) =] (6)

j=i
where x defines a given input.
Figure 2 graphically represents a fully connected architecture of a MLP with one input
layer, one hidden layer and one output layer.

Hidden Layer

Input Layer Output Layer

) <

2

3

58S

Qutput

1

3

RR K

~ N~ A4

2o
SO
S04

Figure 2. Architecture of a Multi-Layer Perceptron.

The employed MLP consists of the four-layered architecture described in Table 5. The
input layer node number is the same as the number of considered features, 10 for single
flow classification and 10 multiplied by the window size for multi-flow. The output layer
node is 5, the same as the number of different categories for the AttackType label. Two
hidden layers of 100 neurons each were considered. For each layer, a Dropout probability
of 0.2 was used. This method will remove some of the next layer inputs (20%) in order to
reduce the probability of overfitting.

Table 5. Employed MLP architecture.

Layer Size Activation Dropout
Dense 10 x Window - -
Dense 100 ReLU 0.2
Dense 100 ReLU 0.2
Dense 5 Softmax -

Rectified Linear Unit (ReLU) was selected as the activation function of the hidden
layers. This activation function has proven to be very computationally efficient and it was
one of the main breakthroughs in the neural network history for reducing the vanishing
and exploding gradient phenomenon [30]. Its mathematical representation is

£(x) = max(0,x) %

where x defines the input.

Softmax was used for the output layer since it assigns decimal probabilities to the
prediction of each class in a multi-classification problem. The sum of all probabilities adds
up to one. Categorical Cross-Entropy was chosen as loss objective function and Adam was
used as optimization function. The batch size was set to 1024, the epoch size to 50 and an
early stopping method was employed in order to stop the training as soon as the loss value

Appl. Sci. 2021, 11, 1674

10 of 21

stabilized. The learning rate was set to 0.001 to avoid a quick convergence to a sub-optimal
solution.
Table 6 summarizes the main configurations of the MLP model.

Table 6. Summary of MLP configuration.

Parameter Value
Epoch 50
Batch Size 1024
Optimizer Adam
Learning Rate 0.001
Objective Loss Categorical Cross-Entropy

Long-Short Term Memory [31,32]. A Long-Short Term Memory (LSTM) is a type of
Recurrent Neural Network (RNN). An RNN contains feedback connections that allow
information to travel in a loop from layer to layer. These networks store information about
past computations through a hidden state that represents the network memory. Therefore,
the output, o, for a given input, x;, at a given timestep, t, is influenced by the inputs of its
previous timesteps, x;_1, X;_2, ..., Xt—u, Where n defines the total number of prior timesteps.
This characteristic allows RNNs to be very suited to working with sequential data. Figure 3
represents the unfold form of a standard many to many RNN.

Figure 3. Standard to many RNN in unfold form (influenced by [33,34]).

Unfold is a concept associated with RNN graphical representation. The network is
expanded according to the size of its input and output sequence. RNN can be modeled for
one to one, one to many, many to one and many to many problems. The difference between
each of the presented problems is the distinct cardinality between the input and output of
the network. An RNN can be mathematically expressed by the following equations [33]

hi = g(ht—1,x1;6) 8)

or = f(h;0))

where x; is the input, o; is the output and /; is the hidden state at a given timestep t.
h;_1 is the hidden state of previous timestep and 6 comprises the weights and biases of
the network.

RNNs’ main issue is that they have difficulties in learning long-term relationships
between the elements of the input sequence due to the vanishing and exploding gradient
problem. LSTM cells were designed to overcome this problem through the use of cell
memory and gating units. Therefore, an input x; at a given timestep f can change or even
override the cell state. This process is carefully regulated by three gating units, the input
guate, the forget gate and the output gate [34]. Figure 4 describes the basic architecture of an
LSTM cell.

Appl. Sci. 2021, 11, 1674

11 of 21

@)

N

Figure 4. Basic LSTM cell architecture (adapted from [34]).

The forget gate is a sigmoid layer that outputs a result between 0 and 1 for each value of
the cell state C;_. This results determines which information should be erased or kept. It
can be mathematically represented as

ft = 0c(Wg - [h4—1, x¢] + by) (10)

The input gate determines which values should be updated and the fanh layer creates
a vector of candidate values C;. The current cell state, C;, results from the addition of
the forget computation, obtained by the multiplication of C;_1 and f;, with the scaled
candidate values. This process can be represented by the following equations

it = o(W; - [he—1, x¢] + b;) (11)
Cr = tanh(We - [hy_1, x¢] + be) (12)
Cr=fi*xCi1+irxC (13)

The output gate establishes the output information. The sigmoid layer determines what
cell status information will be output. The cell state C; is processed by hyperbolic tangent
in order to scale its values between —1 and 1. Finally the multiplication between these
outputs is the LSTM cell output value. The process can be mathematically defined as

0y = O'(Wo . [ht,1,xt] + bo) (14)

hy = op x tanh(Cy) (15)

The employed LSTM network model has one input layer of shape (1, 10), two hidden
layers with 100 nodes each, and one output layer with five nodes, one for each class.
Changes in the length of the flow window implies alterations in the input shape from (1,
10) to (Window Size, 10). Each hidden layer has Dropout set to 0.2 to prevent the network
to overfit the training data. Table 7 describes the employed LSTM network architecture.

Table 7. Employed LSTM network architecture.

Layer Size Activation Dropout
Dense (Window, 10) - -
Dense 100 Tanh 0.2
Dense 100 Tanh 0.2
Dense 5 Softmax -

The LSTM network configurations are the same as the ones configured for the MLP.
Categorical Cross-Entropy remains as the loss objective function and an Adam optimizer
with a default 0.001 learning rate was used. The number of epochs was set to 50 and batch
size to 1024. Table 8 summarizes the main configurations of the LSTM model.

Appl. Sci. 2021, 11, 1674

12 of 21

Table 8. Summary of LSTM configuration.

Parameter Value
Epoch 50
Batch Size 1024
Optimizer Adam
Learning Rate 0.001
Objective Loss Categorical Cross-Entropy

3.4. Anomaly Detection

In our research, anomaly detection is addressed from two distinct viewpoints. The first
viewpoint consists of finding patterns in single-flow features, while the second attempts to
make a more informed analysis by considering an entire sequence of flows. For the single-
flow viewpoint, each enumerated technique was trained with the preprocessed data of the
CIDDS-001 dataset. RF and MLP expected a 2D matrix as input, while LSTM, which was
specifically designed for sequential data, requires a 3D input. Figure 5 exemplifies how the
two dimensional CIDDS-001 preprocessed data and its corresponding 3D transformation
can be visualized.

Figure 5. Single flow input visualization. The x axis stands for the number of features of each flow,
the y represents the number of samples and the z, required for the LSTM input, corresponds to the
number of timesteps (1 timestep for single flow).

The multi-flow approach addresses the problem from a different point of view. Pat-
terns acquired from single-flow features can be insufficient to correctly detect and differen-
tiate anomalies. From a temporal and sequential analysis of a given window of flows, it is
possible to combine individual patterns with short- to long-term relations between flows,
which can potentially lead to better results. In order to conduct this analysis, data had to be
reorganized and prepared to reflect the intended temporal properties. The original 2D data
were reshaped to a 3D format by performing an one-to-one window overlap. For a selected
window size s, a dataset entry e; can be defined as ¢; = x;_, ..., X;_1, X, where x is a given
flow at a given timestep t. Algorithm 1 describes how the introduced transformation
was implemented.

Appl. Sci. 2021, 11, 1674 13 of 21

Algorithm 1 Pseudo-code for the data reshape algorithm

1: Input

2 D 2D matrix of original data, where D = {x, ..., x;_1, X}

3: s Window size

4

5: Output

6: R 3D resulting matrix, where R = {ey,...,e,_1,€x}

7:

8: procedure TRANSFORMTOSEQUENTIAL(D, s) > Transforms D into a 3D matrix
9: R+ {}

10: I + len(D)
11: fori=0,1,...,1—1do

12: if i >= s then > The first s rows should be removed
13: forj=0,1,..,sdo

14: Z4s5—j

15: Rij < Dj,

16: end for

17: end if

18: end for

19: return R

20: end procedure

Suppose a given entry, e;, contains s + 1 flows. In that case, the first s rows of the
algorithm’s output matrix should be disregarded because they have invalid data due to the
insufficient number of previous timesteps. For this study, the first 99 rows were removed
to ensure that the algorithms are trained and tested with the same data, regardless of the
selected window size (which is never higher than this value).

As previously explained, LSTM is a model designed to deal with three-dimensional
data and already expects a 3D matrix as input, while RF and MLP require the conven-
tional 2D input. To provide such an input, the sequential data were flattened into a
two-dimensional space. This operation implies no distinction between the features of inde-
pendent flows and that data, although containing information from previous timesteps,
cannot be interpreted as a sequence. This process is represented in Figure 6.

y axis .
>
{ e

x axis

z axis

Figure 6. Multi-flow as a two-dimensional space. The x axis stands for the number of features, y
represents the number of samples and z describes the number of time steps.

Appl. Sci. 2021, 11, 1674

14 of 21

In conclusion, in our approach the network traffic data are first preprocessed, removing
the least meaningful features, then the flows are ordered in chronological order and the
resultant feature vector is transformed into a numerical representative form, as explained
in Section 3.2 Then, the preprocessed data are transformed to a three-dimensional format
according to a given window size and split into train, validation and test sets. For the RF
and MLP models, the 3D data are reshaped into a corresponding 2D format, and for the
LSTM, the data are directly used in their 3D representation. Finally, each model produces
predictions, which are evaluated by the metrics described in Section 3.5.

Regarding the hold-out method, 70% of the total data were selected for training, while
the remaining 30% were used for testing. From the training set, 10% of data were set aside
for validation. The full scope of our approach is summarized in Figure 7.

Pre-Processing Transformation Modeling
— 2D to 3D N
I /| i
N N) N Flattened N Attack Class
— N \
’ ‘ —> Sorl by Date omput ||| MLP —> Prediction
A Preprocessed Holdout Split
Data .
py
30 Input

Figure 7. Anomaly Detection Approach.

3.5. Evaluation Metrics

Several metrics, such as Accuracy, Recall, Precision and F1-Score, can be used to
evaluate the performance of a given classifier [35]. However, these metrics” employment
should not be made carelessly, particularly in intrusion detection systems, where high-
class imbalance situations are relatively common. This section will briefly describe the
metrics used in this research, their mathematical representation [36], and how they can
be interpreted to better understand the results obtained from applying the previously
enumerated methods.

Accuracy is one of the most common metrics used in classification problems and
usually gives a reliable measure of the model’s performance. It can be calculated through
the following equation [28]

1 Nsamples

accuracy(y,§) = — Y. I(yi=1i) (16)
samples j—1

where 7515 1S the number of samples of a given dataset, § = §1,72, ..., Jn—1,n is the
vector of predicted values, ¥ = y1, Y2, ..., ¥»—1, Yn is the corresponding vector of true values
and I is the indicator function, which returns 1 if y; matches ; and 0 otherwise.

In this particular case, due to the fact that CIDDS-001 is a very unbalanced dataset,
accuracy is not a good metric to use. In the selected sample, 82.53% of the flows are benign
traffic. Even if the classifier fails to classify every other attack class and only predicts the
benign flows correctly, it would still achieve an accuracy value of 82.53%. When working
with unbalanced data, the accuracy is biased towards the majority class. To overcome this
situation, other metrics were considered.

In terms of the number of true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN) reported by the confusion matrix, the macro-averaged precision
can be expressed as follows

1 Melasses TPI

— —_— 17
Melasses 1:21 TP+ FP; ()

Pmucro =

Precision measures the number of labels a model has incorrectly predicted to be
positive that were actually negative. TP; is the number of flows correctly classified as class

Appl. Sci. 2021, 11, 1674

15 of 21

¢; and FP; is the amount of flows whose true value corresponds to a given class c;, where
j € [1,neiasses) A j # 1 that were incorrectly labeled as c;.

On the other hand, recall expresses the ability of a model to find relevant instances in
a dataset. Macro-averaged recall can be defined as

1 Melasses TPl

Ryacro = ——— S
e Melasses 1221 TP + FN;

(18)

where FN; stands for the number of flows of a class c; that were incorrecly labeled as a
class c;.

Fl-score is a metric that considers both precision and recall through the computation
of their harmonic mean. The macro-averaged f1-score is well suited for unbalanced datasets
such as CIDDS-001, and it can be mathematically described as

Pmacro . Rmucro
F1 =2— 19
nacro Pmacro + Rmacro ()

False Positive Rate (FPR), or Fall-Out, expresses the probability of false alarm and can
be determined by the following mathematical statement

1 Nelasses FPl

FPR =
e Nclasses j— FPi+TN;

(20)

In this research, results are expressed through all the above measures. Understanding
each evaluation metric and each employed model’s nature is crucial to making sense of the
obtained results.

4. Results and Discussion

The results presented and discussed in this section derive from the implementation of
the previously described models, viewpoints, and metrics through the usage of the Python
programming language and its appropriate libraries.

e Scikit-learn [28] was used to implement RF and to preprocess data;

* NumPy [37] and Pandas [38] were also used for data preprocessing and manipulation;
e Tensorflow [39] and Keras [40] were used to implement MLP and LSTM;

e Matplotlib [41] was used for result visualization.

The required hardware support was granted by Google Colab [42], which provided
free access to virtual machines equipped with GPUs and significant disk space and RAM.
Since the resources on Colab are not guaranteed and not unlimited, the amount of available
RAM and GPU type can vary over time. Therefore, it was impossible to perform a reliable
comparison between the computing time costs of the employed methods.

4.1. Single-Flow

For the single-flow viewpoint, each model was trained and tested with the the CIDDS-
001 preprocessed data. Table 9 summarizes the obtained results.

Table 9. Single-Flow results for the LSTM, RF and MLP models.

Single-Flow (%)

Model Accuracy Precision Recall F1-Score FPR
LSTM 99.91 98.37 71.40 74.23 0.05
RF 99.90 79.43 95.68 85.04 0.02
MLP 99.92 78.68 73.75 75.79 0.06

Even though there are few differences between each model’s accuracy results, the
values for the other metrics are quite different. LSTM presents the highest precision score

Appl. Sci. 2021, 11, 1674

16 of 21

with little recall, while RF presents the highest recall value with considerably less precision.
On the other hand, MLP exhibits a minor difference between its precision and recall values.
This balance translates into a better f1-score value than the one related to the LSTM model.
The f1-score for the RF model is substantially greater than the ones presented by every
other technique. Regarding the FPR, the RF assures fewer occurrences of false alarms than
both the LSTM and MLP.

The combination of high accuracy values and differentiated fl-scores can lead to
the conclusion that models performed quite differently on the minority classes. Figure 8
expresses the fl-score values of each model for every class.

Single-Flow Multi-class F1-Score Comparison

. LSTM
100 - mem RF
MLP

80
L w0
~
s

) I

m J

0 Brute Force DaS Mo Attack Ping Scan Part Scan

Figure 8. Single-Flow fl-score values of the LSTM, RF and MLP models for the Brute Force, DoS, No
Attack, Ping Scan and Port Scan classes.

The RF performed better for the Ping Scan class than every other model. Since the Ping
Scan class only represents 0.04% of the total sample data, this class’s misclassification has
little effect on the accuracy value. For the macro-averaged f1-score, this does not happen,
because the misclassification of any class, more or less prevalent in the sample, translates
into a heavy penalization in its value.

From the general perspective, choosing the best model for this experiment is not a
straightforward process. The RF assures that most of the attacks are detected even with the
occurrence of a considerable amount of false-positive errors, while the LSTM fails to detect
a significant quantity of attacks but grants a lower occurrence of such errors. Regarding
the balance between precision and recall, RF outperforms the remaining techniques, but
that is only significant when compliant with the deployment situation’s requirements
and constraints.

4.2. Multi-Flow

From the multi-flow viewpoint, the CIDDS-001 preprocessed data were transformed
as multiple sequences, and several window sizes from 0 to 70 were used. Figure 9 describes
the evolution of the f1-score for each model as the window size increases.

The LSTM’s f1-score increases alongside the window size while the corresponding
score for the remaining models consistently decreases. Despite this trend, the RF model for
a window of 10 flows presented an f1-score of 89.82. This result is considerably close to the
best recorded value, 91.66, exhibited by the LSTM for the maximum window size.

A possible explanation for the decrease in the f1-score value for the RF model after
reaching such a relevant result and the consistent increase in the values presented by the
LSTM can be related to the nature of these techniques. While the LSTM model has a
cell state carefully regulated by gates that allow it to learn only meaningful short-term
relationships across a given sequence of flows (independently of its size), the RF model
was not designed to deal with sequential data. With the increase in window size, the
feature space of each entry for the RF substantially increases as well. Its inability to learn
sequence-based relationships from data can potentially lead to worse results with the

Appl. Sci. 2021, 11, 1674 17 of 21

increase in feature space. On the other hand, Random Forests generally behave quite well
with noise and are not prone to suffering from overfitting. Table 10 compares the scores of
the RF and LSTM models that exhibited the best f1-score results.

o F1-Score Comparison

% //’/_/’/

[o2]
[

Fl-score (%)
o0
o

~
w

70 - —— L5TM

Random Forest
— MLP
65
0 10 20 30 40 50 60 70

Window Size
Figure 9. Evolution of the fl-score for the LSTM, RF and MLP models as the window size increase.

Table 10. Comparison between the f1-scores of LSTM-70 and RF-10.

Multi-Flow (%)

Model Accuracy Precision Recall F1-Score FPR
LSTM-70 99.94 94.03 89.71 91.66 0.04
RF-10 99.95 96.83 85.65 89.82 0.04

Both techniques presented significant results, with LSTM exhibiting better recall
scores and slightly less precision. Although RF’s performance worsens as the window size
increases, it is still a quite reliable model for recognising patterns in small sequences of
flows. The LSTM model scores are more consistent and could potentially be even better for
larger window sizes. The value of FPR is the same for both approaches.

Since f1-score is obtained through the harmonic mean of precision and recall, analysis
of these metrics can be important to better understand each model’s behaviour. Figure 10
translates the variations in the RF’s and LSTM’s precision and recall values.

LSTM Precision and Recall
RF Precision and Recall 100 Precisi
100 — ecision

Recall
f/—_/— 95
90
/ 20
80

85

Score Value (%)
Score Value (%)

80

60 ~—— Pprecision

75
Recall

] 10 20 30 40 50 &0 70

) ; 70
Window Size 0 10 20 30 40 50 60 70

Window Size

(a) Precision and Recall for the RF model.
(b) Precision and Recall for the LSTM model.

Figure 10. Precision and recall values for the RF and LSTM models as window size increases.

Appl. Sci. 2021, 11, 1674

18 of 21

Fl-Score(%)

100
80

40

20

—

Regarding the RF, for the 10 flow window, the precision value increased from 79.43%
to 96.83% while the recall decreased from 95.68% to 85.65%. These results contributed to
the better f1-score result of the RF, 89.82%. As the window size increased, both precision
and recall values became smaller, resulting in consistently lower f1-scores until reaching the
value of 65.40% for a window size of 70. On the other hand, in the LSTM, for a window of
10 flows, precision dropped from 98.37 to 89.74 and recall increased from 71.40 to 80.21. This
trade-off resulted in a better balance between the values of each metric, which translated
into a greater fl-score value. Although casual decreases have occurred for some sequence
lengths, both precision and recall were consistently better for further window sizes.

Macro-averaged fl-score can also be detailed by understanding how the individual
score for each class evolved. Figure 11 expresses the RF and LSTM model’s behaviour for
the minority classes.

RF F1-Score Comparison LSTM F1-Score Comparison

—— Brute Force

Ping Scan
Port Scan

o 10

(a) Fl-scores for the RF model.

20

100

30
Wil

m/\hhﬂ lm\/\/J

¥
T &0
2
]
i
w40
20 —— Brute-force
Ping Scan
Port Scan
40 50 60 70 0 o 10 20 30 40 50 60 70
ndow Size Window Size

(b) F1-scores for the LSTM model.

Figure 11. F1-score changes for the minority classes for the RF and LSTM models.

The most prevalent classes were not represented because there were no significant
changes in their values. For the RF, at window size 10, the fl-score for the Brute Force
class reaches its peak at 91.01%, explaining the increase in the overall f1-score of the model.
For larger window sizes, the f1-score of all classes, Brute Force, Ping Scan and Port Scan,
rapidly decreased. Concerning the LSTM, for the DoS class, the score remained at 99.99,
for attack absence at 99.77, and for Port Scan it increased from 98.48 to 99.12. Regarding
the minority classes, despite the considerable drop in Brute Force’s f1-score for the 10 flow
window, it steadily increased from 70.84 to 71.76 for further sizes. On the other hand, the
Ping Scan class presented the most relevant increase, from 01.86 to 87.46.

The presented results can lead to the interpretation that the LSTM is able to detect
consistently more attacks with less false-positive errors as the flow sequences grow larger.
This general improvement does not seem to imply favoring one class performance over
another, as the fl-score of every class either remained the same or increased.

To ensure that the model has been trained properly, the learning curves, represented
in Figure 12, were carefully studied.

The loss value decreases over each epoch for both training and validation sets without
any evidence of the occurrence of underffiting or overffiting. The accuracy score for both
sets is also quite similar and it slowly improves as loss value is minimized.

Appl. Sci. 2021, 11, 1674

19 of 21

loss

0.10

0.08

0.08

0.04

0.02

0.00

m

odel loss model accuracy

—— frain
validation

L0001 qain R
validation

0995

0990

accuracy

0985

0980

I 0975

(a) Optimization learning curve.

20

3|0 40 50 0 10 20 £l 40 50
gpoch epoch

(b) Performance learning curve.

Figure 12. LSTM training and validation learning curves.

4.3. Conclusions

Overall, it can be concluded that anomaly-based intrusion detection for the CIDDS-001
dataset can be better addressed from a multi-flow perspective. The obtained results lead to
the interpretation that an analysis that considers features from individual flows, as well as
patterns expressed by flow sequences with specific lengths, builds a considerably better
classification model. The LSTM model’s employment has proven to be very promising
for detecting such patterns in data compared with other state-of-the-art techniques. Its
performance as a classifier seems to get better as the flow sequence size increases.

5. Conclusions

Our work addressed the CIDDS-001 dataset using the AttackType label to train machine-
learning methods, such as RF, MLP, and LSTM, to correctly classify a given network flow
as either benign or as a DoS, Brute Force, Ping Scan, or Port Scan attack. The employed
models were implemented from two distinct perspectives, single-flow and multi-flow, and
the obtained results were compared in order to determine which was best-suited to the
concerned scenario.

For the single-flow perspective, only individual flow characteristics were addressed
by the models, and RF achieved the best result, with an f1-score of 85.04%. On the other
hand, for the multi-flow viewpoint, both individual flow features and short- to long-term
relationships between flows of a given sequence were considered. Several sequence sizes
were tested and the best f1-score value, 91.66%, was obtained by the LSTM model for
a window size of 70. Although the performance of the RF considerably drops with the
increase in sequence length, for a window size of 10, it achieved a fl-score of 89.82%,
which is relatively close to the best recorded value. From the results, it can be concluded
that learning sequential relationships between flows seem to improve anomaly detection
considerably. The LSTM has proven to be a very reliable model for capturing these
sequential patterns, and its performance appears to get better for bigger flow sequences.

This research was very important to conclude that, within the SATIE project’s scope,
LSTM is an interesting approach to deal with the temporal complexity of security alerts
with multiple heterogeneous sources. This technique will be part of a Machine Learning
module to be integrated into an investigation tool, where security operators can better
grasp the context of incident occurrence.

In the future, it would be pertinent to train the LSTM for larger windows in order to
better understand the model’s behaviour. More refined feature engineering and data prepa-
ration methods can be performed to improve the results, and other LSTM architectures
with attention mechanisms can further be experimented with. Meta-heuristic methods
such as Genetic Algorithms could also be employed to maximize the optimization of the
algorithm’s hyper-parameters.

Appl. Sci. 2021, 11, 1674 20 of 21

Author Contributions: Conceptualization, LP.,, N.O. and E.M.; methodology, I.P. and N.O.; imple-
mentation, N.O.; validation, L.P. and O.S.; investigation, E.M. and N.O.; writing, L.P., N.O. and O.S.;
supervision, L.P. and O.S.; project administration, I.P,; funding acquisition, I.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 832969.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: CIDDS-001.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Debar, H.; Dacier, M.; Wespi, A. Towards a taxonomy of intrusion-detection systems. Comput. Netw. 1999, 31, 805-822. [CrossRef]

2. Rashid, A,; Siddique, M.J.; Ahmed, S.M. Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches
for Intrusion Detection System. In Proceedings of the 2020 3rd International Conference on Advancements in Computational
Sciences (ICACS), Lahore, Pakistan, 17-19 February 2020; pp. 1-9.

3. He, H.; Sun, X,; He, H.; Zhao, G.; He, L.; Ren, J. A Novel Multimodal-Sequential Approach Based on Multi-View Features for
Network Intrusion Detection. IEEE Access 2019, 7, 183207-183221. [CrossRef]

4. Papamartzivanos, D.; Gémez Médrmol, F.; Kambourakis, G. Introducing Deep Learning Self-Adaptive Misuse Network Intrusion
Detection Systems. IEEE Access 2019, 7, 13546-13560. [CrossRef]

5. Hu, Z; Li, Z; Wu,]. A Novel Network Intrusion Detection System (NIDS) Based on Signatures Search of Data Mining. In
Proceedings of the First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), Adelaide, SA,
Australia, 23-24 January 2008; pp. 10-16.

6. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for
Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525-41550. [CrossRef]

7. Matowidzki, M.; Berezinski, P; Mazur, M. Network Intrusion Detection: Half a Kingdom for a Good Dataset. In
Proceedings of the NATO STO SAS-139 Workshop; 2015. Available online: https://pdfs.semanticscholar.org/b39%e/
0f1568d8668d00e4a8bfe1494b5a32al7el7.pdf (accessed on 2 February 2021).

8. Ring, M.; Wunderlich, S.; Grued], D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion detection. In Proceedings
of the 16th European Conference on Cyber Warfare and Security (ECCWS); ACPI: Dublin, Ireland, 2017; pp. 361-369.

9. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. Creation of Flow-Based Data Sets for Intrusion Detection. |. Inf.
Warf. 2017, 4, 40-53.

10. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In ICISSP; University of New Brunswick (UNB): Fredericton, NB, Canada, 2018; pp. 108-116.

11. Moustafa, N.; Slay,]. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10-12 November 2015; pp. 1-6.

12. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147-167. [CrossRef]

13. SATIE-Security of Air Transport Infrastructure of Europe. 2020. Available online: http://satie-h2020.eu/ (accessed on 2
September 2020).

14. Gwon, H,; Lee, C.; Keum, R.; Choi, H. Network Intrusion Detection based on LSTM and Feature Embedding. arXiv 2019,
arXiv:1911.11552.

15. Althubiti, S.A.; Jones, EM.; Roy, K. LSTM for Anomaly-Based Network Intrusion Detection. In Proceedings of the 2018 28th
International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21-23 November
2018; pp. 1-3.

16. Adhi Tama, B.; Rhee, K.H. Attack Classification Analysis of IoT Network via Deep Learning Approach. Res. Briefs Inform.
Commun. Technol. Evolut. 2017, 3, 1-9.

17. Vilela, D.W.EL.; Ferreira, EEW.T; Shinoda, A.A.; de Souza Aratjo, N.V.; de Oliveira, R.; Nascimento, V.E. A dataset for evaluating
intrusion detection systems in IEEE 802.11 wireless networks. In Proceedings of the 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM), Bogota, Colombia, 4-6 June 2014; pp. 1-5.

18. Verma, A.; Ranga, V. Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection Systems using Distance-based

Machine Learning. Procedia Comput. Sci. 2018, 125, 709-716. [CrossRef]

https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
http://doi.org/10.1016/S1389-1286(98)00017-6
http://dx.doi.org/10.1109/ACCESS.2019.2959131
http://dx.doi.org/10.1109/ACCESS.2019.2893871
http://dx.doi.org/10.1109/ACCESS.2019.2895334
https://pdfs.semanticscholar.org/b39e/0f1568d8668d00e4a8bfe1494b5a32a17e17.pdf
https://pdfs.semanticscholar.org/b39e/0f1568d8668d00e4a8bfe1494b5a32a17e17.pdf
http://dx.doi.org/10.1016/j.cose.2019.06.005
http://satie-h2020.eu/
http://dx.doi.org/10.1016/j.procs.2017.12.091

Appl. Sci. 2021, 11, 1674 21 of 21

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.
42.

Nicholas, L.; Ooi, S.Y.; Pang, Y.; Hwang, S.; Tan, S.Y. Study of long short-term memory in flow-based network intrusion detection
system. J. Intell. Fuzzy Syst. 2018, 35, 5947-5957. [CrossRef]

Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and Machine Learning Approaches for Anomaly-Based
Intrusion Detection of Imbalanced Network Traffic. IEEE Sens. Lett. 2019, 3, 1-4. [CrossRef]

Roy, B.; Cheung, H. A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-
Term Memory Recurrent Neural Network. In Proceedings of the 2018 28th International Telecommunication Networks and
Applications Conference (ITNAC), Sydney, NSW, Australia, 21-23 November 2018; pp. 1-6.

Saranya, T.; Sridevi, S.; Deisy, C.; Chung, T.D.; Khan, M. Performance Analysis of Machine Learning Algorithms in Intrusion
Detection System: A Review. Procedia Comput. Sci. 2020, 171, 1251-1260. [CrossRef]

Verma, A.; Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wirel. Pers. Commun. 2020, 111,
2287-2310. [CrossRef]

Ring, M.; Wunderlich, S.; Gruedl, D.; Landes, D.; Hotho, A. Generation Scripts for the Coburg Intrusion Detection Data Sets
(Cidds). 2017. Available online: https:/ /github.com/markusring/CIDDS (accessed on 11 May 2020).

Zhiqgiang, L.; Mohi-Ud-Din, G.; Bing, L.; Jianchao, L.; Ye, Z.; Zhijun, L. Modeling Network Intrusion Detection System Using
Feed-Forward Neural Network Using UNSW-NB15 Dataset. In Proceedings of the 2019 IEEE 7th International Conference on
Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12-14 August 2019; pp. 299-303.

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Yiu, T. Understanding Random Forest. 2019. Available online: https://towardsdatascience.com/understanding-random-forest-
58381e0602d2 (accessed on 15 May 2020).

Cournapeau, D. Scikit-learn Documentation. Available online: https://scikit-learn.org/ (accessed on 15 May 2020).

Kain, N.K. Understanding of Multilayer Perceptron (MLP). 2018. Awvailable online: https://medium.com/@AI_with_Kain/
understanding-of-multilayer-perceptron-mlp-8f179c4al35f/ (accessed on 26 May 2020).

Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of Machine Learning Research, Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11-13 April 2011; Gordon,
G., Dunson, D., Dudik, M., Eds.; PMLR: Fort Lauderdale, FL, USA, 2011; Volume 15, pp. 315-323.

Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]

Van Houdt, G.; Mosquera, C.; Napoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53,
5929-5955. [CrossRef]

McGonagle, J.; Williams, C.; Khim, J. Recurrent Neural Network. Available online: https:/ /brilliant.org/wiki/recurrent-neural-
network/ (accessed on 12 May 2020).

Olah, C. Understanding LSTM Networks. 2015. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs /
(accessed on 14 May 2020).

Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,
45,427-437. [CrossRef]

Déring, M. Performance Measures for Multi-Class Problems. 2018. Available online: https://www.datascienceblog.net/post/
machine-learning/ performance-measures-multi-class-problems/ (accessed on 15 May 2020).

Oliphant, T. NumPy Documentation. 2020. Available online: https:/ /numpy.org/index.html (accessed on 19 May 2020).
McKinney, W. Pandas Documentation. Available online: https://pandas.pydata.org/ (accessed on 16 May 2020).

Abadi, M.; Barham, P; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2—4 November 2016; pp. 265-283.

Chollet, F. Keras Documentation. Available online: https:/ /keras.io/ (accessed on 20 May 2020).

Hunter,].D. Matplotlib Documentation. 2020. Available online: https://matplotlib.org/ (accessed on 19 May 2020).

Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive
Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59-64.

http://dx.doi.org/10.3233/JIFS-169836
http://dx.doi.org/10.1109/LSENS.2018.2879990
http://dx.doi.org/10.1016/j.procs.2020.04.133
http://dx.doi.org/10.1007/s11277-019-06986-8
https://github.com/markusring/CIDDS
http://dx.doi.org/10.1023/A:1010933404324
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://scikit-learn.org/
https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f/
https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1007/s10462-020-09838-1
https://brilliant.org/wiki/recurrent-neural-network/
https://brilliant.org/wiki/recurrent-neural-network/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1016/j.ipm.2009.03.002
https://www.datascienceblog.net/post/machine-learning/performance-measures-multi-class-problems/
https://www.datascienceblog.net/post/machine-learning/performance-measures-multi-class-problems/
https://numpy.org/index.html
https://pandas.pydata.org/
https://keras.io/
https://matplotlib.org/

	Introduction
	Related Work
	Materials and Methods
	Dataset Description
	Data Preprocessing and Sampling
	Models
	Anomaly Detection
	Evaluation Metrics

	Results and Discussion
	Single-Flow
	Multi-Flow
	Conclusions

	Conclusions
	References

