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Abstract: Atrophy quantification is fundamental for understanding brain development and diagnos-
ing and monitoring brain diseases. FSL-SIENA is a well-known fully automated method that has
been widely used in brain magnetic resonance imaging studies. However, intensity variations arising
during image acquisition may compromise evaluation, analysis and even diagnosis. In this work,
we studied whether intensity standardisation could improve longitudinal atrophy quantification
using FSL-SIENA. We evaluated the effect of six intensity standardisation methods—z-score, fuzzy
c-means, Gaussian mixture model, kernel density estimation, histogram matching and WhiteStripe—
on atrophy detected by FSL-SIENA. First, we evaluated scan–rescan repeatability using scans taken
during the same session from OASIS (n = 122). Except for WhiteStripe, intensity standardisation did
not compromise the scan–rescan repeatability of FSL-SIENA. Second, we compared the mean annual
atrophy for Alzheimer’s and control subjects from OASIS (n = 122) and ADNI (n = 147) yielded by
FSL-SIENA with and without intensity standardisation, after adjusting for covariates. Our findings
were threefold: First, the use of histogram matching was counterproductive, primarily as its as-
sumption of equal tissue proportions does not necessarily hold in longitudinal studies. Second,
standardising with z-score and WhiteStripe before registration affected the registration performance,
thus leading to erroneous estimates. Third, z-score was the only method that consistently led to
increased effect sizes compared to when omitted (no standardisation: 0.39 and 0.43 for OASIS and
ADNI; z-score: 0.45 for both datasets). Overall, we found that incorporating z-score right after
registration led to reduced inter-subject inter-scan intensity variability and benefited FSL-SIENA.
Our work evinces the relevance of appropriate intensity standardisation in longitudinal cerebral
atrophy assessments using FSL-SIENA.

Keywords: intensity standardisation; FSL-SIENA; longitudinal atrophy quantification; brain mag-
netic resonance imaging

1. Introduction

Longitudinal brain atrophy quantification is an active research area in medical image
analysis as these measurements permit studying brain development, diagnosing brain
diseases and evaluating disease progression over time, and assessing treatment effective-
ness [1–6]. Although slow shrinkage of the brain comes with ageing, it may also be a
neuroimaging feature of pathologies, such as schizophrenia, cerebral small vessel disease,
Alzheimer’s disease and multiple sclerosis [7–12]. Therefore, accurate and reliable brain
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volume measurements are essential for characterising normal and abnormal brain tissue
changes and understanding the nature of brain problems.

Longitudinal brain volumetry assessments consist of finding and quantifying brain
tissue variations between two scans of the same patient taken at different time-points:
a baseline and a follow-up scan, e.g., scans acquired at inclusion and a year later. Numerous
algorithms have been proposed for carrying out such evaluations [8]. However, FSL-
SIENA (Structural Image Evaluation, using Normalisation, of Atrophy) [13] continues to
be a widespread tool in the medical community, given the fact that it is fully automated
and available under open source license [8].

Like many other methods, FSL-SIENA computes brain edge displacement as a surro-
gate measure of atrophy [8]. The processing pipeline comprises skull stripping, registration,
tissue segmentation and brain edge displacement estimation. Naturally, the accuracy
and precision of each step determines the overall performance of FSL-SIENA. For exam-
ple, intensity variations between baseline and follow-up scans—e.g., caused by imaging
protocol—may have serious consequences on both the registration and segmentation steps,
affecting subsequent stages of the analysis [14,15].

Previous works have explored ways to reduce intensity variations within
FSL-SIENA [14,16]. Shah et al. [16] demonstrated the effectiveness of histogram matching
for improving multiple sclerosis lesion segmentation in a multi-site multi-scanner setup.
Battaglini et al. [14] showed the relevance of improved brain extraction and intensity
correction modules. In both aforementioned works, the intensity standardisation step
consisted of a piece-wise linear histogram matching, which assumes that the balance of
tissue classes is consistent between subjects being matched. However, this assumption
does not necessarily hold in longitudinal studies [17].

In this work, we evaluate the effect of intensity standardisation strategies on longi-
tudinal atrophy quantification. In particular, we consider six strategies that are used in
medical image analysis; all of them available to the public [17,18]. We hypothesise that
incorporating intensity standardisation in atrophy quantification assessments leads to
significantly better estimations compared to when omitted. To our best knowledge, this
is the first time such an analysis has been carried out. The contributions of this work are
threefold: (i) we showcase and make publicly available a ready-to-use tool for assessing the
effect of intensity standardisation on scan–rescan and longitudinal atrophy quantification,
(ii) we benchmark six intensity standardisation techniques for harmonising intensities
between baseline and follow-up scans within a standard whole brain atrophy quantifica-
tion pipeline and (iii) we show quantitatively that intensity standardisation may lead to
improved longitudinal atrophy quantification.

2. Materials and Methods
2.1. Datasets

We considered two publicly available longitudinal MRI repositories: Open Access
Series of Imaging Studies (OASIS) [19] and Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [20]. For the sake of reproducibility, we attach the list of selected cases from ADNI
and OASIS as Supplementary Materials.

OASIS. We used a subset of the OASIS2 longitudinal dataset comprising scans from
122 different subjects. In each imaging session, each subject was scanned three to four times
using an MP-RAGE sequence and a 1.5T Vision scanner (Siemens, Erlangen, Germany).
Imaging acquisition details can be found in Table 1. All subjects in the study were evaluated
using the clinical dementia rating to determine their dementia status and classified into non-
demented or very mild to mild Alzheimer’s disease. We downloaded the complete OASIS2
longitudinal dataset and selected patients who remained in either category throughout the
entire study and had their follow-up scan approximately between six months and three
years of their baseline visit, as depicted in Figure 1. The resulting sample consisted of 60
Alzheimer’s disease patients (mean age (SD) = 75.05 (6.89); female proportion = 47%) and
62 control subjects (mean age (SD) = 75.40 (8.70); female proportion = 74%).
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ADNI. We used a subset of the ADNI longitudinal dataset comprising scans from 147
different subjects. Each subject was scanned using an MP-RAGE sequence and multiple
scanners (General Electric (GE) Healthcare; Philips Medical Systems; and Siemens Medical
Solutions). Imaging acquisition details can be found in Table 1. All subjects in the study
were evaluated via global, functional and behavioural assessments, including the clinical
dementia rating, to determine their dementia status. We used the advanced search tool in
the ida.loni.usc.edu platform to extract our subsample. The inclusion criteria were image
type = original (raw); field strength = 1.5T; slice thickness = 0.5–1.9 mm, weighting = T1,
image description = MP-RAGE, subject group = AD or NC; visits = ADNI screening and
ADNI1/GO Month 12. The resulting sample consisted of 64 Alzheimer’s patients (mean
age (SD) = 75.58 (8.16); female proportion = 45%) and 83 control subjects (mean age (SD) =
77.59 (4.56); female proportion = 53%). Subjects had their follow-up scan approximately
one year after their baseline visit, as illustrated in Figure 1.

The ADNI was launched in 2003 as a public–private partnership, led by Principal In-
vestigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For
up-to-date information, see www.adni-info.org [accessed on 10 February 2021]).

Table 1. Image acquisition details of considered OASIS and ADNI scans. We extracted the information
in this table from the publications in [19,20].

Parameter OASIS ADNI

Sequence MP-RAGE MP-RAGE
Repetition time (ms) 9.7 3000

Echo time (ms) 4.0 –
Flip angle 10◦ 8◦

Inversion time (ms) 20 1000
Orientation Sagittal Sagittal

Thickness (mm) 1.25 1.20
Slice number 128 184–208

Resolution 256 × 256 192 × 192
1×1 mm 1.25 × 1.25 mm
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Figure 1. Distribution of time between visits in the considered ADNI and OASIS datasets.
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2.2. Equipping FSL-SIENA with Intensity Standardisation

We quantified atrophy using FSL-SIENA [13]. This tool measures brain edge displace-
ment between scans acquired at baseline and follow-up visits as a surrogate measure of
cerebral atrophy. Briefly, the processing pipeline consists of skull stripping, registration,
tissue segmentation and brain edge displacement analysis. Among these steps, intensity
variations have been found to affect registration [21] and segmentation [14]. Thus, in this
work, we evaluate the effect of standardising intensities in FSL-SIENA in two separate
experiments: when standardisation occurs before registration (Figure 2a) and after reg-
istration (Figure 2b). Given that FSL-BET (default skull stripping tool) may not perform
well in Alzheimer’s disease patients [22], we used ROBEX instead due to its improved
effectiveness [23,24].

Input Brain
extraction

Intensity
standardisation

Registration
to MNI

Tissue segmentation Edge
displacement

Output

Intensity
standardisation

Intensity
standardisation

Percentage
of brain

volume change

(a) Intensity standardisation before registration

Input Brain
extraction

Registration
to MNI

Intensity
standardisation

Tissue segmentation Edge
displacement

Output

Intensity
standardisation

Intensity
standardisation

Percentage
of brain

volume change

(b) Intensity standardisation after registration

Figure 2. Incorporating intensity standardisation in the FSL-SIENA pipeline. Standardisation takes
place before or after registering input volumes to the MNI space. The inputs correspond to the
baseline and follow-up T1-w scans. The FSL-SIENA pipeline consists of skull stripping, spatial
normalisation, tissue segmentation, edge displacement analysis and brain volume change reporting.

2.3. Considered Intensity Standardisation Techniques
2.3.1. z-Score

The z-score is a popular normalisation method that linearly transforms intensities to
have zero mean and unit standard deviation. Given an input image I, the process consists
of subtracting the mean intensity value from each voxel and dividing the result by the
standard deviation value as follows,

Iz−score =
I − µ

σ
, (1)

where µ and σ are the mean and standard deviation of intensities within the intracranial volume,
respectively.
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2.3.2. Fuzzy c-Means-Based Standardisation

The fuzzy c-means-based standardisation leverages fuzzy clustering of the white
matter. The process is as follows. First, fuzzy c-means clustering takes place [25]. Given a
set of voxels xi ∈ I, fuzzy c-means finds a set of K clusters, C = {c1, ..., cK}, minimising the
following loss function:

arg min
C

∑
xi∈I

∑
ck∈C

wik · ||xi − ck||22, (2)

where ck is the centroid of the cluster k and wik ∈ [0, 1] is the membership of xi to the cluster
k. The membership of a data point to a certain cluster is given by

wik =
1

∑K
j=1
||xi−ck ||22
||xi−cj ||22

. (3)

The process is carried out iteratively until convergence. Second, the method divides
all voxel intensities by the mean intensity of the detected white matter [18]. The selection
of K may depend on the regions of interest to be segmented or on the presence of abnormal
tissue (e.g., white matter hyperintensities, stroke lesions or tumours) or extra-cerebral
regions. As in the original implementation, we set K = 3 (ideally white matter, grey matter
and cerebrospinal fluid).

2.3.3. Gaussian Mixture Model-Based Standardisation

The Gaussian mixture model-based standardisation leverages supervised clustering
to segment the white matter. This clustering technique assumes that the histogram of
intensities can be represented using a mixture of Gaussian distributions for each region of
interest. Intensities belong to a cluster depending on the number of standard deviations
from the intensity value to the mean. Given a set of voxels xi ∈ I, clustering consists of
finding K Gaussian distributions maximising the following loss function:

arg max
(π,µ,σ)

∑
xi∈I

ln
K

∑
k=1

πj · N (xi | µk, σk), (4)

where the k-th Gaussian distribution of the mixture is represented by its mean µk and
standard deviation σk and has a weight πk in the mixture. Note that ∑K

j=1 πj = 1. Similarly
to the fuzzy c-mean standardisation, the method divides all voxel intensities by the mean
intensity of the segmented white matter [18].

2.3.4. WhiteStripe

The WhiteStripe method proposed by Shinobara et al. [17] estimates statistics of
intensities of the white matter to normalise all other regions of interest. The process is
as follows. First, the method uses a penalised spline smoother to estimate the latest non-
background mode of the histogram of intensities, µWS. In T1-w scans, this mode would
coincide with the white matter mode. Second, the method estimates the standard deviation,
σWS from a window of 10% of the intensity values around the detected mode. Third,
all intensities are normalised in a z-score fashion using these two statistics (Equation (1)).
This standardisation method has been shown to be robust to the presence of white matter
lesions in ageing populations [17].

2.3.5. Kernel Density Estimation Based Standardisation

This method estimates a probability density function out of a set of data points (in
this case, histogram of intensities). The probability density function, p(x), is expressed as

p(x) =
1

card(I) ∑
xi∈I
K
(

x− xi
h

)
, (5)
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where K is the smoothing kernel, h is the smoothing parameter and card(·) denotes cardi-
nality. The contribution of each data point depends on its neighbourhood: the closer the
points to x, the higher the p(x). The bandwidth controls the smoothness of p(x): the lower
the h, the smoother the resulting probability density function. Once the method computes
p(x), it finds its right-most mode and assumes it represents the white matter mode. In this
work, we used a Gaussian kernel and h = max(I)/80 as provided in the implementation
in [18].

2.3.6. Piecewise Linear Histogram Matching

The piecewise linear histogram matching method proposed by Nyul and Udupa [26]
learns an intensity mapping function from a reference scan and uses it to standardise input
scans. In the training step, the method identifies a set of p landmarks (e.g., percentiles or
modes) from the histogram of the reference scan and creates a piecewise linear function
by interpolating linear segments between consecutive landmarks. The method avoids the
minimum and maximum values to add robustness against outliers. In the transformation
phase, the same landmarks are identified and intensities updated according to the estimated
mapping function. In this work, we assumed the reference scan was the baseline scan of
each subject.

2.4. Evaluation Analysis and Measures
2.4.1. Quality of Intensity Standardisation

The Kullback–Leibler (KL) divergence measures the difference between two probabil-
ity distributions, expressed as intensity histograms in this work. As the standardisation
process seeks to map intensity distributions to a similar range, we use this metric as a
measure of the standardisation quality. Given two probability density functions, p and q,
the KL divergence is computed as follows,

KL(p, q) =
N

∑
i=1

p(xi) log
p(xi)

q(xi)
. (6)

The more similar the distributions, the lower the KL divergence value. We compare
the KL divergence between baseline and follow-up scans before and after standardisation
using the Wilcoxon signed-rank test. We expect the KL divergence value to decrease after
standardising intensities.

2.4.2. Scan–Rescan Repeatability

Scan–rescan assessments measure the robustness of an atrophy quantification algo-
rithm against subtle imaging variations. As the atrophy level between scans of the same
patient taken on the same visit with the same imaging protocol and same scanner should
be minimal, the expect atrophy measured by FSL-SIENA should be close to zero. We study
whether standardising intensities could affect the performance of the original method. We
compare the scan–rescan error with and without equipping FSL-SIENA with intensity
standardisation using the Wilcoxon signed-rank test.

2.4.3. Testing for Atrophy Differences between Alzheimer’s Disease and Normal
Control Subjects

The lack of manual segmentation limits assessing the accuracy of atrophy quantifica-
tion methods [27]. The evaluation typically consists of testing for differences in atrophy
rates between a pathological and a control group [22]. The evaluation process is as fol-
lows. We run FSL-SIENA on baseline and follow-up scans from OASIS and ADNI using
FSL-SIENA with and without intensity standardisation. Next, we conducted analyses of
covariance to determine a statistically significant difference between Alzheimer’s disease
and normal control subjects on detected atrophy rates. We controlled for age, biological
sex, time between visits and normalised baseline brain volume (total brain volume divided
by intracranial volume). Then, we estimated the marginal mean brain volume change at
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one year of inclusion using the resulting linear models. Finally, we estimated effect size
using the Cohen’s d formula:

Cohen’s d =
µAD − µNC√
(σ2

AD + σ2
NC)/2

, (7)

where µAD and µNC are the mean atrophy rates for the Alzheimer’s disease and the normal
control groups, and σAD and σNC are their standard deviations. Given that the sample
under consideration is fixed, an increase in effect size after standardisation could imply
that either inter-group differences or intra-group homogeneity has increased. In practice,
this situation would translate into smaller sample sizes to show statistical differences
between Alzheimer’s disease and control groups.

2.5. Implementation Details

We implemented all methods in Python using the Intensity Normalisation library [18]
and used FSL-SIENA v6.0. We ran all the experiments on a GNU/Linux machine box run-
ning Ubuntu 18.04, with 16 GB RAM. The developed framework is available to download
at our Github repository (https://github.com/emyesme/IntensityStandarisation [accessed
on 10 February 2021]). We carried out all statistical analyses using RStudio v1.1.456 with R
v3.5.1.

3. Results

We ran FSL-SIENA on both ADNI and OASIS before and after standardisation with the
proposed pipelines shown in Figure 2 and assessed the effect of the additional processing
step on scan-rescan repeatability and prediction of dementia status. Furthermore, we
evaluated the similarity between histogram of intensities of baseline and follow-up scans
before and after standardisation using the KL divergence as a surrogate measure of the
standardisation quality. The experimental results are described in the following sections.

3.1. Quality of Intensity Standardisation

We measured the quality of standardisation by determining whether histograms of
baseline and follow-up scans were similar, in terms of the KL divergence, after standar-
dising intensities or not. The measured KL distance is shown in Figure 3. In most cases,
standardising intensities between baseline and follow-up scans resulted in significantly
lower KL divergence values (p < 0.001), except when using WhiteStripe. The situation may
be explained by the large variation in the left-most tails of the resulting histograms of inten-
sities (See Appendix A). This variation results in a higher mismatch between histograms of
intensities and, thus, in higher KL divergence.

https://github.com/emyesme/IntensityStandarisation
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OASIS ADNI

<0.001       <0.001      <0.001      <0.001       <0.001      1.00

(a) Standardisation before registration

<0.001       <0.001      <0.001      <0.001       <0.001      0.11

(b) Standardisation before registration

<0.001       <0.001      <0.001      <0.001       <0.001      0.99

(c) Standardisation after registration

<0.001       <0.001      <0.001      <0.001       <0.001      0.003

(d) Standardisation after registration

Figure 3. Similarity between histograms of intensities with and without standardisation. We equipped FSL-SIENA with
intensity standardisation before or after registration. We measured the degree of similarity between the histogram of
intensities of baseline and follow-up using the Kullback–Leibler (KL) divergence. We used the Wilcoxon signed-rank test to
examine whether the median KL divergence obtained after standardisation was lower than that obtained when omitted
(p-values on top). FCM: Fuzzy c-means. GMM: Gaussian mixture model. KDE: Kernel density estimation. HM: Histogram
matching. WS: WhiteStripe.

3.2. Scan–Rescan Repeatability

The scan–rescan repeatability experiment consisted of examining whether intensity
standardisation could result in increase scan–rescan error compared to when omitted.
We ran FSL-SIENA on pairs of scans of subjects from OASIS, that were acquired in a single
session (as explained in Section 2.1). We used the resulting percentage of brain volume
change yielded by FSL-SIENA as measure of error as this variation should be close to zero.
The results are presented in Figure 4. While most intensity standardisation methods did
not compromise the original robustness of FSL-SIENA against subtle imaging artefacts,
WhiteStripe did (p < 0.001). Furthermore, the application of intensity standardisation
before registration led to less dispersion of scan-rescan errors overall.
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    0.45          0.55          0.66          0.99          0.26        <0.001

(a) Standardisation before registration

    0.98          0.90          1.00          0.91          0.95        <0.001

(b) Standardisation after registration

Figure 4. Scan–rescan deviation with and without intensity standardisation. We equipped FSL-SIENA with intensity
standardisation before or after registration. We expressed the error as the percentage of brain volume change between scans
acquired during the same visit and using the same scanner and acquisition protocol. We used the Wilcoxon signed-rank test
to examine whether the median error obtained after standardisation differed from that obtained without standardisation
(p-values on top). FCM: Fuzzy c-means. GMM: Gaussian mixture model. KDE: Kernel density estimation. HM: Histogram
matching. WS: WhiteStripe.

3.3. Effect of Intensity Standardisation on Atrophy Differences between Alzheimer’s Disease and
Normal Control Subjects

We evaluated the effect of intensity standardisation on atrophy differences between
the pathological and control groups in ADNI and OASIS. The procedure was as follows.
First, we ran FSL-SIENA, with and without intensity standardisation, on pairs of baseline
and follow-up scans. We tested the effect of standardising either before or after registration,
as illustrated in Figure 2. Second, we tested for differences in atrophy between the two
groups, after adjusting for age, biological sex, baseline normalised brain volume (total brain
volume divided by intracranial volume) and time between visits. We report the estimated
mean annual atrophy for both groups and whether differences between estimates were
significant or not in Table 2.

The estimated annual atrophy for Alzheimer’s disease patients was higher than that
of the control group regardless of the method and dataset. Nevertheless, the values them-
selves varied depending on the dataset under examination. We observed that atrophy
gauged in OASIS disagreed with that in ADNI. Brain tissue loss measured in subjects in
the former dataset was consistently lower than that gauged in ADNI, regardless of whether
standardisation was considered or not. For example, in the absence of standardisation,
the mean annual brain volume change for Alzheimer’s disease and control subjects in
OASIS was −0.61 (95% CI −0.85, −0.37) % and −0.10 (95% −0.35, 0.17) %, while esti-
mates for the same groups were equal to −0.89 (95% CI −1.10, −0.69) and −0.27 (95%
−0.45, −0.08) in ADNI. Further inspection of other clinical parameters revealed that the
mean normalised baseline brain volume differed between datasets: mean values were
approximately 0.58 (95% CI 0.57, 0.59) % and 0.55 (95% CI 0.55, 0.56) % for the pathological
and control group in ADNI and 0.72 (95% CI 0.71, 0.73) % and 0.75 (95% CI 0.74, 0.76)
in OASIS. Additionally, image acquisition parameters (Table 1) could have contributed
to these inter-dataset atrophy variations as these parameters determine tissue contrast
and partial volume effects, which could have led to a distinct characterisation of brain
boundaries in each dataset.

Estimated annual brain volume changes also differed depending on whether inten-
sity standardisation was carried out or not. We noticed two clear trends in this regard.
First, the application of histogram matching resulted in more similar estimates for both
Alzheimer’s disease patients and normal control subjects, even more similar than those
detected without standardisation. This situation may be reflective of a potential under-
detection of the actual atrophy due to information loss (e.g., contrast loss) after the applica-
tion of histogram matching. Second, standardising intensities with z-score and WhiteStripe
before registering baseline and follow-up scans resulted in lower effect sizes compared
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to those obtained when applying them afterwards (z-score: 0.39 vs. 0.45 in OASIS and
0.27 vs. 0.45 in ADNI; WhiteStripe: 0.37 vs. 0.44 in OASIS and 0.02 vs. 0.46 in ADNI).
After inspecting the registration outputs, we noticed that standardising with these two
techniques prior to registration led to unsatisfactory outcomes in numerous cases (ADNI:
63 with WhiteStripe and 26 with z-score; OASIS: 24 with WhiteStripe and 44 with z-score).
Some examples of this issue are shown in Figure 5. On the other hand, the application
of these two techniques after registration led to some of the highest Cohen’s d values in
both datasets.

WhiteStripe before registration z-score before registration

Figure 5. Examples in which registration failed due to the application of WhiteStripe and z-score before registration.
The cases correspond to “ADNI_005_S_0814” and “ADNI_098_S_0149” for which brain volume change was estimated
around 2.89% and −5.02%, respectively.
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Table 2. Mean annual brain volume change (%) in Alzheimer’s disease (AD) and normal control (NC) subjects estimated
using FSL-SIENA with and without intensity standardisation. We obtained mean values after controlling for age, biological
sex, baseline normalised brain volume (total brain volume divided by intracranial volume) and time between visits.
Additionally, we tested whether mean atrophy for both groups was similar. We reported the effect size (Cohen’s d)
computed using Equation (7)) and p-value. CI: 95% confidence interval.

None z-Score
Fuzzy

c-Means

Gaussian
Mixture
Model

Kernel
Density

Estimation
WhiteStripe

Histogram
Matching

O
A

SI
S

(n
=

12
2)

Be
fo

re

Mean (CI),
AD %

−0.61
(−0.85,
−0.37)

−0.94
(−1.65,
−0.23)

−1.00
(−1.51,
−0.49)

−0.99
(−1.49,
−0.49)

−0.98
(−1.49,
−0.48)

−0.94
(−0.59,
−1.28)

−0.59
(−0.79,
−0.40)

Mean (CI),
NC %

−0.10
(−0.35,
0.17)

0.48 (−0.30,
1.26)

0.06 (−0.50,
0.62)

0.04 (−0.50,
0.60)

0.10 (−0.46,
0.67)

−0.01 (0.38,
−0.41)

−0.27
(−0.49,
−0.06)

Cohen’s d 0.39 0.39 0.44 0.46 0.45 0.37 0.30

p-value 0.03 0.03 0.02 0.01 0.01 0.04 0.10

A
ft

er

Mean (CI),
AD %

−0.61
(−0.85,
−0.38)

−1.01
(−1.49,
−0.53)

−1.01
(−1.51,
−0.50)

−1.05
(−1.62,
−0.49)

−1.01
(−1.52,
−0.50)

−0.83
(−1.18,
−0.49)

−0.60
(−0.81,
−0.39)

Mean (CI),
NC %

−0.09
(−0.35,
0.17)

0.03 (−0.49,
0.56)

0.03 (−0.53,
0.59)

0.08 (−0.54,
0.71)

0.02 (−0.53,
0.59)

−0.04
(−0.42,
0.34)

−0.35
(−0.58,
−0.11)

Cohen’s d 0.39 0.45 0.44 0.45 0.44 0.44 0.23

p-value 0.03 0.01 0.02 0.01 0.02 0.02 0.20

A
D

N
I(

n
=

14
7)

Be
fo

re

Mean (CI),
AD %

−0.89
(−1.10,
−0.69)

−2.42
(−3.78,
−1.07)

−1.43
(−1.76,
−1.09)

−1.42
(−1.75,
−1.09)

−1.44
(−1.77,
−1.10)

−1.03
(−2.29,
0.21)

−0.77
(−0.95,
−0.59)

Mean (CI),
NC %

−0.27
(−0.45,
−0.08)

0.19 (−1.03,
1.42)

−0.44
(−0.75,
−0.14)

−0.44
(−0.74,
−0.14)

−0.45
(−0.75,
−0.14)

−0.78
(−1.92,
0.36)

−0.28
(−0.44,
0.12)

Cohen’s d 0.43 0.27 0.42 0.42 0.42 0.02 0.39

p-value 0.02 0.11 0.02 0.02 0.02 0.89 0.02

A
ft

er

Mean (CI),
AD %

−0.89
(−1.10,
−0.69)

−1.47
(−1.79,
−1.14)

−1.45
(−1.78,
−1.12)

−1.51
(−1.87,
−1.14)

−1.45
(−1.78,
−1.12)

−1.19
(−1.44,
−0.93)

−0.71
(−0.89,
−0.55)

Mean (CI),
NC %

−0.27
(−0.45,
−0.08)

−0.45
(−0.75,
−0.15)

−0.45
(−0.75,
−0.15)

−0.46
(−0.80,
−0.12)

−0.44
(−0.75,
−0.14)

−0.36
(−0.59,
−0.13)

−0.27
(−0.41,
−0.10)

Cohen’s d 0.43 0.45 0.45 0.41 0.42 0.46 0.36

p-value 0.01 0.003 0.008 0.02 0.01 0.007 0.03

4. Discussion

Recent works have shown that intensity non-standardness contributes to atrophy
quantification errors [14]. In this work, we studied whether intensity standardisation could
benefit an established and thoroughly validated atrophy quantification tool provided in the
FSL package, FSL-SIENA. Given that both registration and segmentation may be affected
by intensity variations, we tested the effect of incorporating intensity standardisation before
registration and segmentation and before segmentation only. We considered six intensity
standardisation techniques comprising z-score, fuzzy c-means, Gaussian mixture model,
kernel density estimation, WhiteStripe and histogram matching. To our knowledge, this is
the first time that the effect and suitability of multiple intensity standardisation has been
quantitatively investigated for cerebral atrophy quantification.

We examined the degree of similarity between histograms of intensity of baseline
and follow-up scans before and after standardisation as a measure of the quality of the
standardisation process per se. Given that an intensity standardisation method maps
histograms to a normalised space, we expected its use to lead to lower KL divergence
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values. Indeed, we observed that inter-subject inter-scan variability was reduced with the
use of most intensity standardisation methods, except for WhiteStripe for which the KL
divergence was comparable to that measure without standardisation. A closer examination
of the histograms of intensity in Figures A1 and A2 revealed that standardising intensities
with WhiteStripe led to high coincidence in the white matter mode, but less coincidence
in grey matter and cerebrospinal fluid modes. A similar observation was highlighted by
Fortin et al. [28].

We assessed the effect of standardisation on the scan–rescan repeatability of FSL-
SIENA by examining atrophy detected in scans of the same subject taken during the same
imaging session. Given that the level of atrophy is expected to be minimal during short
periods of time, a large deviation from zero would suggest the quantification method—not
the standardisation method—is sensible to subtle imaging variations. Thus, we tested
whether scan–rescan errors were similar before and after standardising intensities. Most
intensity standardisation methods lead to median scan–rescan errors similar to those mea-
sured on raw scans, except for WhiteStripe (p < 0.001). Furthermore, standardising before
registration and segmentation resulted in increased variance in scan–rescan errors, espe-
cially for z-score and WhiteStripe. Even though we did not detect a clear misregistration
problem, we noticed subtle misalignment in a few cases that may have resulted in the
measured errors.

We evaluated the effect of intensity standardisation on atrophy differences—not
on histograms of intensity—gauged by FSL-SIENA between Alzheimer’s disease and
normal control subjects from ADNI and OASIS. A larger effect size implies that smaller
sample sizes are required to show statistical significance between groups. We opted
for this approximation as assessing accuracy in longitudinal atrophy quantification is
difficult [27,29] due to the lack of manual segmentations and histological confirmation.
According to our experimental results, intensity standardisation affected the estimation of
brain atrophy. The atrophy gauged on standardised scans was larger than that measured
on raw scans. Whether one or the other is more reflective of the disease cannot be clarified
in this study. However, it is important to remark that mean annual brain volume changes
detected on images standardised with multiple methods were similar. Furthermore, the
use of z-score and WhiteStripe led to consistently higher effect sizes compared to those
obtained without standardisation if applied after registration and before segmentation. We
noticed that their use prior to registration led to a clear misregistration in numerous cases.
As both z-score and WhiteStripe showed a similar behaviour and both standardisation
strategies led to negative values, we hypothesise that negative values may have affected
FSL-FLIRT’s performance. Further research in this regard is needed to determine the
specific step affected by this standardisation scheme.

z-score is one of the simplest intensity standardisation methods considered in this
study. Despite being based on statistics which are sensitive to outliers, this strategy reduced
inter-subject variations in both datasets, as depicted in Figure 3. If applied after registration,
z-score could be included within FSL-SIENA.

Clustering-based intensity standardisation methods—fuzzy c-means and Gaussian
mixture model—segment regions of interest in the brain and use the mean intensity of the
selected region to standardise intensities. Leveraging on these types of techniques seemed
compatible with FSL-SIENA as they reduced inter-scan intensity variability. However,
low tissue contrast as well as the presence of brain abnormalities and extra-cerebral regions
can weaken their performance. Therefore, we recommend visual inspection of input scans
and histogram of intensities to determine whether clustering is feasible and the optimal
number of clusters to reach optimal performance.

The histogram matching method proposed by Nyul et al. [26] assumes equal tissue
proportions between the input scans [17], i.e., histograms of both the reference and input
scan are equivalent. However, such an assumption does not necessarily hold in longitudinal
studies due to the appearance of new brain lesions and brain tissue loss between visits.
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Moreover, linear interpolation between landmarks results in potential information and
contrast loss. Thus, we do not recommend its use in longitudinal studies using FSL-SIENA.

WhiteStripe standardises intensities based on the right-most mode (in T1-w scans)
and, thus, ensures histograms of intensities will coincide at least on the detected peak.
Furthermore, this methods does not require segmentation, thus reducing computation time
and dependency on the accurate identification of the region of interest. Despite its theoreti-
cal advantages and improved performance in other scenarios [17], our experimental results
suggest WhiteStripe is not compatible with FSL-SIENA as it can compromise its perfor-
mance. Note that this outcome does not imply WhiteStripe is not a recommended intensity
standardisation strategy, but that its use within FSL-SIENA compromises FSL-SIENA’s
performance. Additionally, we suggest using the original implementation of WhiteStripe
in R as third-party implementations may not perform the same processing steps.

Kernel density estimation also processes the histogram of intensities to find the right-
most mode (in T1-w scans). Unlike WhiteStripe, it normalises intensities by the maximum
peak, i.e., its application results in positive values only. This might explain why the
method did not affect FSL-FLIRT’s performance. At an experimental level, we found
that the incorporation of this intensity standardisation method to FSL-SIENA did not
seem to compromise its scan–rescan performance. Furthermore, its application resulted in
higher effect sizes, i.e., an increase differentiation between Alzheimer’s disease and normal
control patients. However, the performance of kernel density estimation depends on the
smoothing parameter h: small values of h may lead to spiky estimates while large values
may misrepresent the multimodal nature of the data.

Our work has limitations. First, we assumed that higher atrophy differences between
Alzheimer’s disease and normal control subjects implied reduced errors in atrophy quan-
tification compared to when omitted. Even though we found out pathological groups
had higher atrophy rates than normal control groups with or without standardisation,
in line with the literature [7], the values themselves varied. Whether one or the other is
more accurate or reflective of the actual pathology is unclear and out of the scope of this
work. In this regard, we suggest using atrophy generator pipelines in the future to have
a sense of ground truth [30–32]. Second, we only used one method for assessing brain
volume change, and thus it is difficult to generalise our findings to other medical image
analysis tools. Furthermore, even though FSL-SIENA is highly accessible and relatively
easy and ready to use, we are aware that it is not in the state-of-the-art of longitudinal
atrophy quantification in multiple sclerosis and Alzheimer’s disease, but the Jacobian
determinant integration method [33,34]. Thus, future work should consider testing the
pertinence of intensity standardisation on other automatic image analysis pipelines. Third,
we did not analyse the effect of other confounding factors, such as intra-subject intensity
standardisation methods (e.g., bias field correction methods). However, those are likely to
have an effect on atrophy quantification. Thus, future work should analyse the effect of
these types of algorithms on FSL-SIENA.

In conclusion, intensity standardisation can improve longitudinal whole-brain atrophy
quantification using FSL-SIENA, but not all methods do. Their applicability depends to a
great extent on whether their theoretical assumptions are met or not. We recommend incor-
porating z-score into FSL-SIENA, right after registration, to reduce inter-scan intensity varia-
tions as it is computationally efficient and improves FSL-SIENA’s performance consistently.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
CI Confidence interval
FCM Fuzzy c-means
FSL-BET Brain Extraction Tool
FSL-SIENA Structural Image Evaluation, using Normalization, of Atrophy
GMM Gaussian mixture model
HM Histogram matching
KDE Kernel density estimation
KL Kullback–Leibler
MNI Montreal Neurological Institute
MP-RAGE Magnetization Prepared-RApid Gradient Echo
MRI Magnetic resonance imaging
NC Normal control
OASIS Open Access Series of Imaging Studies
SD Standard deviation
WS WhiteStripe

Appendix A. Histograms of Intensity before and after Intensity Standardisation

We measured standardisation quality based on the degree of overlap between his-
tograms of intensities of baseline and follow-up scans using the KL divergence. To further
illustrate the effect of intensity standardisation, we plotted the histograms of intensity
before and after standardisation. The resulting figures for both OASIS and ADNI can be
seen in Figures A1 and A2. In general, standardisation reduced inter-subject intensity dif-
ferences. However, discrepancies in the left-most tails of the resulting histograms indicate
there are remaining unwanted technical variations that intensity standardisation does not
cope with. In the case of WhiteStripe, this situation has been also noted in previous works
in the field [28].
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oasis none flirt

(a) Noneoasis flirt zscore

(b) z-score

oasis flirt fcm

(c) Fuzzy c-means
oasis flirt gmm

(d) Gaussian mixture model

oasis flirt kde

(e) Kernel density estimationoasis flirt ws

(f) WhiteStripe

oasis flirt hm

(g) Histogram matching

Figure A1. Histograms of intensity of OASIS scans before and after intensity standardisation.
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ADNI baseline flirt

(a) None
adni flirt zscore

(b) z-score

adni flirt fcm

(c) Fuzzy c-meansadni flirt gmm

(d) Gaussian mixture model

adni flirt kde

(e) Kernel density estimationadni flirt ws

(f) WhiteStripe

adni flirt hm

(g) Histogram matching

Figure A2. Histograms of intensity of ADNI scans before and after intensity standardisation. We noticed that intensity
variations depend on acquisition site. In particular, scans from site 002 exhibited higher intensities than any other site.
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21. Bağcı, U.; Udupa, J.K.; Bai, L. The role of intensity standardization in medical image registration. Pattern Recognit. Lett. 2010,
31, 315–323. [CrossRef]

22. Nakamura, K.; Eskildsen, S.F.; Narayanan, S.; Arnold, D.L.; Collins, D.L.; Alzheimer’s Disease Neuroimaging Initiative.
Improving the SIENA performance using BEaST brain extraction. PLoS ONE 2018, 13, e0196945. [CrossRef]

23. Iglesias, J.E.; Liu, C.Y.; Thompson, P.M.; Tu, Z. Robust brain extraction across datasets and comparison with publicly available
methods. IEEE Trans. Med. Imaging 2011, 30, 1617–1634. [CrossRef]

24. Han, X.; Kwitt, R.; Aylward, S.; Bakas, S.; Menze, B.; Asturias, A.; Vespa, P.; Van Horn, J.; Niethammer, M. Brain extraction
from normal and pathological images: A joint PCA/image-reconstruction approach. NeuroImage 2018, 176, 431–445. [CrossRef]
[PubMed]

http://doi.org/10.1038/nrneurol.2015.106
http://dx.doi.org/10.1093/brain/awv337
http://dx.doi.org/10.1016/S1474-4422(15)00393-2
http://dx.doi.org/10.1148/radiol.2018172468
http://dx.doi.org/10.1016/j.media.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/29935442
http://dx.doi.org/10.1109/ACCESS.2019.2926697
http://dx.doi.org/10.1016/j.arr.2016.01.002
http://dx.doi.org/10.1016/j.pscychresns.2011.02.012
http://dx.doi.org/10.1093/schbul/sbs118
http://www.ncbi.nlm.nih.gov/pubmed/23042112
http://dx.doi.org/10.1016/S1474-4422(13)70060-7
http://dx.doi.org/10.1038/mp.2015.63
http://dx.doi.org/10.1212/WNL.0000000000003542
http://dx.doi.org/10.1006/nimg.2002.1040
http://www.ncbi.nlm.nih.gov/pubmed/12482100
http://dx.doi.org/10.1002/hbm.23828
http://dx.doi.org/10.1016/j.neuroimage.2018.09.062
http://dx.doi.org/10.1016/j.media.2010.12.003
http://dx.doi.org/10.1016/j.nicl.2014.08.008
http://dx.doi.org/10.1162/jocn.2009.21407
http://www.ncbi.nlm.nih.gov/pubmed/19929323
http://dx.doi.org/10.1002/jmri.21049
http://www.ncbi.nlm.nih.gov/pubmed/18302232
http://dx.doi.org/10.1016/j.patrec.2009.09.010
http://dx.doi.org/10.1371/journal.pone.0196945
http://dx.doi.org/10.1109/TMI.2011.2138152
http://dx.doi.org/10.1016/j.neuroimage.2018.04.073
http://www.ncbi.nlm.nih.gov/pubmed/29730494


Appl. Sci. 2021, 11, 1773 19 of 19

25. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3,
32–57. [CrossRef]

26. Nyúl, L.G.; Udupa, J.K.; Zhang, X. New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 2000,
19, 143–150. [CrossRef]

27. de Boer, R.; Vrooman, H.A.; Ikram, M.A.; Vernooij, M.W.; Breteler, M.M.; van der Lugt, A.; Niessen, W.J. Accuracy and
reproducibility study of automatic MRI brain tissue segmentation methods. NeuroImage 2010, 51, 1047–1056. [CrossRef]

28. Fortin, J.P.; Sweeney, E.M.; Muschelli, J.; Crainiceanu, C.M.; Shinohara, R.T.; Alzheimer’s Disease Neuroimaging Initiative.
Removing inter-subject technical variability in magnetic resonance imaging studies. NeuroImage 2016, 132, 198–212. [CrossRef]
[PubMed]

29. de Bresser, J.; Portegies, M.P.; Leemans, A.; Biessels, G.J.; Kappelle, L.J.; Viergever, M.A. A comparison of MR based segmentation
methods for measuring brain atrophy progression. NeuroImage 2011, 54, 760–768. [CrossRef] [PubMed]

30. Bernal, J.; Valverde, S.; Kushibar, K.; Cabezas, M.; Oliver, A.; Lladó, X. Generating Longitudinal Atrophy Evaluation Datasets on
Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors. Neuroinformatics 2021, 1–16.
[CrossRef]

31. Karaçali, B.; Davatzikos, C. Simulation of tissue atrophy using a topology preserving transformation model. IEEE Trans. Med.
Imaging 2006, 25, 649–652. [CrossRef]

32. Khanal, B.; Ayache, N.; Pennec, X. Simulating longitudinal brain MRIs with known volume changes and realistic variations in
image intensity. Front. Neurosci. 2017, 11, 132. [CrossRef] [PubMed]

33. Boyes, R.G.; Rueckert, D.; Aljabar, P.; Whitwell, J.; Schott, J.M.; Hill, D.L.; Fox, N.C. Cerebral atrophy measurements using
Jacobian integration: Comparison with the boundary shift integral. NeuroImage 2006, 32, 159–169. [CrossRef] [PubMed]

34. Nakamura, K.; Guizard, N.; Fonov, V.S.; Narayanan, S.; Collins, D.L.; Arnold, D.L. Jacobian integration method increases the
statistical power to measure gray matter atrophy in multiple sclerosis. NeuroImage Clin. 2014, 4, 10–17. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1109/42.836373
http://dx.doi.org/10.1016/j.neuroimage.2010.03.012
http://dx.doi.org/10.1016/j.neuroimage.2016.02.036
http://www.ncbi.nlm.nih.gov/pubmed/26923370
http://dx.doi.org/10.1016/j.neuroimage.2010.09.060
http://www.ncbi.nlm.nih.gov/pubmed/20888923
http://dx.doi.org/10.1007/s12021-020-09499-z
http://dx.doi.org/10.1109/TMI.2006.873221
http://dx.doi.org/10.3389/fnins.2017.00132
http://www.ncbi.nlm.nih.gov/pubmed/28381986
http://dx.doi.org/10.1016/j.neuroimage.2006.02.052
http://www.ncbi.nlm.nih.gov/pubmed/16675272
http://dx.doi.org/10.1016/j.nicl.2013.10.015
http://www.ncbi.nlm.nih.gov/pubmed/24266007

	Introduction
	Materials and Methods
	Datasets
	Equipping FSL-SIENA with Intensity Standardisation
	Considered Intensity Standardisation Techniques
	z-Score
	Fuzzy c-Means-Based Standardisation
	Gaussian Mixture Model-Based Standardisation
	WhiteStripe
	Kernel Density Estimation Based Standardisation
	Piecewise Linear Histogram Matching

	Evaluation Analysis and Measures
	Quality of Intensity Standardisation
	Scan–Rescan Repeatability
	Testing for Atrophy Differences between Alzheimer's Disease and Normal Control Subjects

	Implementation Details

	Results
	Quality of Intensity Standardisation
	Scan–Rescan Repeatability
	Effect of Intensity Standardisation on Atrophy Differences between Alzheimer's Disease and Normal Control Subjects

	Discussion
	Histograms of Intensity before and after Intensity Standardisation
	References

