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Abstract: Phase balancing is a classical optimization problem in power distribution grids that involve
phase swapping of the loads and generators to reduce power loss. The problem is a non-linear integer
and, hence, it is usually solved using heuristic algorithms. This paper proposes a mathematical
reformulation that transforms the phase-balancing problem in low-voltage distribution networks
into a mixed-integer convex quadratic optimization model. To consider both conventional secondary
feeders and microgrids, renewable energies and their subsequent stochastic nature are included in
the model. The power flow equations are linearized, and the combinatorial part is represented using
a Birkhoff polytope B3 that allows the selection of phase swapping in each node. The numerical
experiments on the CIGRE low-voltage test system demonstrate the use of the proposed formulation.

Keywords: phase-balancing; convex approximations; heuristic algorithm; unbalanced power distri-
bution grids; microgrids; combinatorial optimization

1. Introduction

In recent years, electric distribution networks have become more intricate by connect-
ing new technologies, especially in medium- and low-voltage levels [1,2]. These technolo-
gies include renewable energy sources (i.e., photovoltaic and wind farms), energy storage
devices, and controllable and non-controllable loads [3,4]. A network that integrates several
of these new technologies, with the possibility of operating as an individual unit under
grid-connected or isolated modes, is known as a microgrid [5,6]. Microgrids may operate
under unbalanced conditions due to single-phase residential loads and the connection of
small single-phase solar-photovoltaic sources and batteries [7,8]. The main problem associ-
ated with unbalanced loads is the increment of the conductors’ energy losses due to the
imbalance produced in the current magnitudes and the increase in current through the neu-
tral. These characteristics in the network configuration lead to an interesting optimization
problem known as optimal phase-balancing [9].

Models for phase-balancing have been developed in many applications, such as in
aircraft electric distribution systems [10] and in power distribution grids with a high
penetration of electric vehicles [11]. Due to its combinatorial nature, the phase-balancing
problem is usually solved using heuristics [12] and meta-heuristics [13] as well as expert
systems [14]. Modern approaches include the uncertainty associated with the load and
generator [15].
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While the phase–phase balance is a classical problem in power distribution networks,
no previous scientific literature report exists that addresses this problem using integer-
convex optimization. Mainly, the problem has been solved with metaheuristics due to
its binary and non-linear nature [16]. Notwithstanding, we propose a mixed-integer
quadratic programming (MI-QP) approximation, which has not been previously reported
in the literature.

Unbalance in a network, it is important to note, can also be reduced using power
electronics technologies. For example, an active filter with a four-leg converter can control
the neutral current, and unbalance is reduced [17]. However, these devices imply an
investment cost, while the solution of the optimization model proposed here only requires
a suitable rearrangement of the loads. Nevertheless, both solutions are complementary
and may be used together.

The problem of the optimal-phase balancing in electrical distribution networks and mi-
crogrids is complex for three main reasons, namely: (i) Power balance equations constitute
a high-dimensional non-linear and non-convex set of constraints; (ii) the problem is com-
binatorial due to the binary variables, associated with the possible options for balancing
loads and generators at each node [16,18]; and (iii) the problem is stochastic due to the high
variation of the load and generation of renewable sources [15]. These complications in the
solution of the phase-balancing problem motivate the development of the current research.
It is possible to obtain a convex relaxation of it by using a linear representation of the
power flow problem in three-phase networks [19]. For this representation, a linearization
is applied to the relation between voltages and powers, allowing the rewriting of them as a
set of complex affine functions [20]. We recur to the integer convex optimization theory
regarding the binary variables that model the phase-balancing problem. The optimal
solution of an integer-convex optimization problem can be guaranteed via the branch and
bound method [21]. For each binary combination of variables, the internal problem is
convex, implying that each internal problem has a global solution [22].

The remainder of the paper is organized as follows: Section 2 describes the main
features of the problem; then, Section 3 presents the stationary state model of a microgrid
and how the stochastic nature of the problem is managed. Section 4 shows the power
flow linearization that convexifies the problem; after, Section 5 presents the Birkhoff
polytope concepts, which allow an efficient geometric representation of the combinatorial
part of the problem, with a reduced number of integer variables. Section 6 presents the
numerical experiments performed and is followed by conclusions in Section 7 and the
relevant references.

2. Problem Formulation

Microgrids are increasingly used in power distribution grids to integrate renewable
energies [5]. They include single-phase components such as loads and solar-photovoltaic
units. Therefore, microgrids are usually unbalanced, especially in low-voltage residential
cases [7]. To reduce power loss, microgrid designers need to define the right placement of
each single-phase unit (load or generation) using a process known as phase balancing [16].
Each three-phase node has six possible configurations as depicted in Figure 1. The problem
involves defining each load or generator’s configuration to reduce the microgrid’s total
losses. Therefore, since there are 6n possible configurations, where n is the number of
three-phase nodes, the problem is combinatorial. The problem is not trivial, even in
small networks. For example, a microgrid with 10 nodes will have more than 60 million
possible configurations.
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Figure 1. Set of possible configurations in a three-phase node.

A general representation of the problem is as follows:

min E(pL) (1)

f (v, M) = 0 (2)

Mi ∈ {M1, M2, M3, M4, M5, M6} (3)

where E represents the expected value; pL is the active power loss; f is a vector function that
represents the power flow equations; and M is the phase-swapping included in the set of
possible configurations already depicted in Figure 1 (e.g., the configuration Mi with i = 3,
i.e., M3, implies that the original configuration ABC changes to BCA). Each of this model’s
equations shows a different source of complexity: (i) the objective function (1) is stochastic;
(ii) the equations of the power flow (2) are non-convex, and (iii) the configuration (3) leads
to a combinatorial problem. This paper presents a mixed-integer quadratic formulation
to this problem, which allows to find an optimal solution. In this way, by using the
paradigm of disciplined convex programming, the non-linear integer stochastic problem is
transformed into a tractable model [21,23].

3. Model of the Microgrid

A microgrid is represented by a connected graph with 3n nodes and a three-phase
nodal admittance matrix Y ∈ C3n×3n. All the values are given per-unit under a well-defined
basis. The set of nodes is divided into two subsets, namely: S for the slack node, and N
for the rest of the nodes. Note that the slack node is defined in the three-phase domain,
implying that it fixes the voltage output for each phase using positive sequence. Thus,
the voltages in the slack node are given by (4),

VS = (1, e−2π/3j, e2π/3j)>. (4)

The loads are represented by exponential models [24]. Therefore, the power flow
equations take the following representation:(

sk
vk

)∗
‖vk‖α =

3

∑
s=1

yksvS + ∑
m∈N

ykmvm, ∀k ∈ N. (5)

Note that (5) is non-linear and defined in the complex domain. This representation is
general for both generators and loads since photovoltaic units can be introduced into the
model as constant power injections (i.e., α = 0 and real(sk) ≥ 0). The total power losses are
given by (6), a convex quadratic function since the real part of the nodal admittance matrix
is positive semidefinite. In fact, the matrix is positive definite if the graph is connected.
In that case, the function is not only convex but strictly convex.

pL = real

(
3n

∑
k=1

3n

∑
m=1

ykmvkv∗m

)
. (6)
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The main objective is to reduce the expected value of the active power losses. Therefore,
the system is divided into scenarios of generation and load, and the following deterministic
representation is obtained:

E(pL) = ∑
i∈W

ρi pL(i), (7)

where W is the set of scenarios, ρi is the probability associated with the scenario i, and pL(i)
is the corresponding power loss. Observe that this equation is convex.

4. Power Flow Linearization

A linear approximation is proposed for the power flow Equation (5), taking into
account the model of the loads. Equation (5) can be rewritten in matrix form as,

S∗N = diag
(

V−
α
2

N ◦
(

V1− α
2

N

)∗)
(YSVS + YNVN). (8)

Now, using the Laurent’s series expansion is linearized Equation (8) around the
point UN = VS ⊗ 1n−1 where 1n−1 represents a vector of size n− 1 whose entries are 1,
and ⊗ is the Kronecker product (see [19] for more details of this linearization approach).
Therefore, (8) can be approximated by the following affine compact form [25]:

S∗N = A + BVN + CV∗N , (9)

where

A = T∗N −
(

U1−α/2
N

)∗
◦U−α/2

N ◦ (YNUN)−
(

1− α

2

)
◦
(

U−α/2
N

)∗
◦U−α/2

N ◦ JN ◦ (UN)
∗

+
α

2
◦
(

U1−α/2
N

)∗
◦U−α/2−1

N ◦ JN ◦UN , (10)

B = diag
((

U1−α/2
N

)∗
◦U−α/2

N

)
YN − diag

( α

2
◦
(

U1−α/2
N

)∗
◦U−1−α/2

N ◦ JN

)
, (11)

C = diag
((

1− α

2

)
◦
(

U−α/2
N

)∗
◦U−α/2

N ◦ JN

)
, (12)

and JN , TN are auxiliary vectors given by

JN = YSVS + YNUN , (13)

TN =
(

U1−α/2
N ◦U−α/2

N ◦ JN

)∗
, (14)

in this case, ◦ represents the Hadamard product and (·)∗ is the complex conjugate. The pro-
posed linearization must be implemented for each of the scenarios to be considered.

5. Birkhoff Polytope

A permutation group can represent all the possible configurations of the nodes. This fi-
nite group is wholly determined by matrices Mi, as given in Table 1.

Note that this group is discrete; however, it can be represented as the set B3 ∈ R3×3

that is schematically depicted in Figure 2. This set constitutes the convex hull of the six
permutation matrices given in Table 1 and is called the Birkhoff polytope [26].

Each vertex corresponds to a feasible permutation, and the shaded part corresponds
to the convex hull (i.e., the Birkhoff polytope). The vertices are a discrete set, but the entire
polytope is a continuous and convex set given by (15).

B3 =
{

M ∈ R3×3 : M13 = 13, M>13 = 13, M ≥ 0
}

. (15)

There are many interesting properties of B3 that hold a direct physical interpretation.
For example, ‖M‖ = 1, meaning that the total power in the original system is equal to
the permutation’s total power. In addition, the determinant of the matrix is det(M) = ±1.
A positive determinant indicates a permutation that does change the sequence of the grid.
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Figure 2. Schematic representation of the Birkhoff polytope B3. This is only a representation since
the real politope belongs to the space R3×3.

Table 1. Feasible permutations for the phase-balancing problem.

Matrix Value Permutation Determinant

M1

 1 0 0
0 1 0
0 0 1

 ABC +1

M2

 0 1 0
0 0 1
1 0 0

 BCA +1

M3

 0 0 1
1 0 0
0 1 0

 CAB +1

M4

 1 0 0
0 0 1
0 1 0

 ACB −1

M5

 0 1 0
1 0 0
0 0 1

 BAC −1

M6

 0 0 1
0 1 0
1 0 0

 CBA −1

The feasible solutions of the problem are in the vertex of the Birkhoff polytope;
therefore, the model must guarantee that each entry of Mi is binary, resulting in the
following quadratic mixed-integer model:

min ∑
i∈W

ρiPL(i) (16)

PL(i) ≥ real

(
3n

∑
k=1

3n

∑
m=1

ykmvkiv∗mi

)
∀i ∈W (17)

S∗Ni = A + BVNi + CV∗Ni ∀i ∈W (18)

Ski = MkS̄ki ∀k ∈ N, i ∈W (19)

Mk13 = 13 ∀k ∈ N (20)

M>k 13 = 13 ∀k ∈ N (21)

Mk ≥ 0 ∀k ∈ N (22)

Mk ∈ B3n×3n×s (23)

Stochastic non-linear mixed-integer problems, such as (1) to (3) are highly compli-
cated to solve, so heuristic algorithms are commonly used to solve them [16]. However,
the proposed approximations transform the problem from a general non-linear mixed-
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integer problem to a convex-quadratic mixed-integer model, given by (16) to (23), since the
objective function is quadratic and all the constraints are linear expressions with binary
components; this type of problem may be solved in practice, using the Branch and Bound
(B&B) algorithm [27]. The B&B algorithm departs from a relaxed problem; in this case,
the convex quadratic programming problem QP. After that, a rooted tree is generated by
branching non-binary variables, as shown in Figure 3, where m refers to the entries of each
matrix M that represents the Birkhoff polytope.

B0

B1 B2

B3 B4

x
1 =

1x 1
=

0

x
2 =

1x 2
=

0

Relaxed convex problem

convex1 convex2

convex3 convex4

Figure 3. Example of the branch and bound algorithm for the proposed problem.

The B&B algorithm works efficiently in this case for two reasons: First, each node
corresponds to a QP problem for whose solution there are high-speed algorithms; second,
the Birkhoff polytope structure allows a geometric representation that helps to discard
nodes in the tree. As a result, a problem that was commonly solved by heuristics is now
solvable by using an exact technique, which is the main contribution of this research to the
scientific literature.

6. Numerical Validation

This section presents the computational validation of the proposed mixed-integer
quadratic problem evaluated in a low-voltage distribution network (i.e., CIGRE net-
work). First, we give its main characteristics, and second, the numerical implemen-
tations and results found using the MATLAB software are presented and discussed
(Supplementary Materials).

6.1. Test System

Figure 4 illustrates a modified version of the CIGRE low-voltage test system for
microgrid applications. This system is a typical residential network composed of 19-nodes,
with a peak power demand of 186.9 kW and a nominal voltage of 400 V. This modified
CIGRE version was proposed in [28], which includes solar generations at nodes 8, 10, 12,
and 16.

6.2. Scenario Generation

The number of scenarios is key to obtain an accurate but tractable model. In this case,
three conditions for generation and three load scenarios were considered. These correspond
to low, medium, and high generation/demand. These conditions were combined, gener-
ating nine generation and demand scenarios with their respective probability. A higher
number of scenarios is possible, although the degree of improvement of the solutions to
justify the additional computational effort was insufficient. The likelihood of each scenario
is given in Table 2.
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Figure 4. Modified CIGRE low voltage benchmark test system.

Table 2. Scenarios of generation and load.

Scenario Load/Generation Probability

1 low/low 0.2210
2 low/medium 0.0443
3 low/high 0.0676
4 medium/low 0.2767
5 medium/medium 0.0554
6 medium/high 0.0845
7 high/low 0.0845
8 high/medium 0.0332
9 high/high 0.0507

6.3. Numerical Results

The numerical experiments were performed on a modified version of the CIGRE low-
voltage test system [29]. The convex model was solved using CVX, a package for specifying
and solving convex programs [30]. Table 3 shows the configuration of phase-balancing
achieved by the proposed model in generation and demand nodes.

Table 3. Results of the configuration nodes.

Node 8 10 11 12 13 14 16 18 19

Permutation M4 M2 M4 M6 M5 M5 M4 M3 M6
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Figure 5 shows the initial power losses for each scenario and their corresponding
power loss reduction with the configuration achieved by the MI-QP model.

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

0.46

1.24

2.64

0.46

1.24

2.64

0.46

1.24

2.64

0.29

0.73

1.43

0.29

0.73

1.43

0.29

0.73

1.43

Scenario

Po
w

er
lo

ss
[p

u]

Before phase balancing After phase balancing

Figure 5. Power loss behavior for each one of the scenarios evaluated.

From Figure 5, it can be observed that the MI-QP model reduced system power losses
by, on average, 41.74 %; this indicates that, in any scenario, the system power losses always
will reduce concerning the base case. The MI-QP model’s solution guarantees the global
optimum for all scenarios with a robust configuration.

To demonstrate that the proposed approach reaches the global optimum of the prob-
lem, we evaluate all the possible phase-swapping configurations using an exhaustive search
method based on nested loops, which takes about 46 h to evaluate 34 million combinations.
However, with the proposed MI-QP, the global optimum finding takes about 104.17 s,
demonstrating the efficiency of the proposed approach regarding the required processing
times to solve this complex optimization problem.

Figure 6 depicts the box-plot of thee-phase voltages, before and after the phase-
balancing. This type of plot, provides a visual representation of the results under different
scenarios; it also shows the minimum, maximum, median and first quartile. After the
phase-balancing, the voltage profiles are enhanced by reducing the average unbalanced
index from 0.3354 to 0.2921. In addition, the voltages moved to acceptable ranges between
0.9 and 1.1 pu. For example, the average of the voltages in Nodes 8, 9 and 10 was below
0.9, in the original system, and changed to values between 0.9 to 1.0 pu in the balanced
system. There are, some scenarios with voltages below 0.9, even after balancing; however,
this behavior occurs only in few critical scenarios.

It is worth mentioning that the proposed MI-QP model can deal with planning and
operating problems associated with phase balancing. However, the proposed model is most
suitable for the planning stage, where a working group will configure all the phases before
setting up the grid under operation. In the grid operation, all the grid nodes must have a
three-phase device composed of switches to change the phase configuration. This option
is possible in practice, but it is expensive for low-voltage applications and may introduce
unwanted transient behavior.
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Figure 6. Voltage in generation and demand nodes: (a) Before phase-balancing and (b) after
phase-balancing.

7. Conclusions

A reformulation of the MINLP model that represents the optimal phase-balancing
in low-voltage distribution networks has been proposed in this paper. A mixed-integer
quadratic programming (MI-QP) model was developed, whose main advantages compared
to the exact MINLP model are as follows: (i) the global optimum can be guaranteed by
combining a B&B algorithm with the quadratic approximation of the three-phase power
flow model. (ii) classical heuristic and metaheuristic approaches can be avoided to solve
this large-scale combinatorial optimization problem; (iii) by preserving the convex structure
of the optimal power flow problem, this model allows one to deal with the uncertainties
caused by renewable generation and variable loads while working with probabilities;
(iv) under the same simulating conditions, the solution reached the same global solution.
The latter implies that it does not require statistical tests to prove its efficiency, which is not
possible with metaheuristics.

As the numerical results have demonstrated, when the probability scenarios of load
consumption and power generation are considered, the proposed MI-QP model’s solution
is robust as it reaches the best configuration possible, thus minimizing the total power losses.
This is not possible if the grid is optimized only for a particular load/generation condition.

For future works, we propose using local measures in load and generation points
and extending our approach to real-time phase-balancing in power distribution networks.
We also propose that the proposed MI-QP model be used to locate and size three-phase dis-
tributed generators, finding unbalanced distribution networks for power loss minimization,
or enlarge the voltage stability margin.
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