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Abstract: Recently, tunable photonic crystals (PhCs) have received great research interest, thanks to
the wide range of applications in which they can be employed, such as light emission and sensing,
among others. In addition, the versatility and ease of fabrication of PhCs allow for the integration of
a large range of responsive elements that, in turn, can permit active tuning of PhC optical properties
upon application of external stimuli, e.g., physical, chemical or even biological triggers. In this
work, we summarize the most employed theoretical tools used for the design of optical properties of
responsive PhCs and the most used fabrication techniques. Furthermore, we collect the most relevant
results related to this field, with particular emphasis on electrochromic devices.
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1. Introduction

Photonic crystals (PhCs) represent versatile building blocks in optics, although they
are mostly used as passive optical elements. In these systems, the periodic arrangement
of materials with different refractive indices gives rise to the so-called photonic band gap
(PBG) and, thus, to structural coloration [1,2]. In this context, however, anything that
can interfere with either the periodicity or the refractive index contrast can be translated
into an active modulation of the PBG. This in fact enables application of PhCs as optical
active elements. From conceptualization to fabrication, the simplest photonic crystal is
represented by a multilayer that alternates materials with different refractive indices [3,4].
From an application point of view, multilayer photonic crystals, also known as distributed
Bragg reflectors (DBRs) or Bragg stacks (BSs), have been used as resonators for distributed
feedback lasers [5,6], smart dielectric layers for light-emitting transistors [7] and light-
induced tunable filters [8], among others.

In this paper, we will review the latest advancements in the field of responsive 1D
PhCs, with particular attention to electro-responsive systems. In particular, this paper
will discuss both the theoretical methods that are commonly used to predict the optical
properties of 1D PhCs, as well as the most employed fabrication techniques. In addition,
we will describe the different approaches utilized to achieve active tuning of the photonic
band gap.

2. Theoretical Background

First, we consider a multilayer of materials deposited on a substrate on one side (with
refractive index ns) and in contact with air (with refractive index n0 = 1.000277 ∼= 1) on the
other side. The transfer matrix method is exhaustively explained in the literature, such as
in reference [9]. The transfer matrix for the kth layer is given by [9]:

Mk =

[
cos
( 2π

λ nkdk
)

− i
pk

sin
( 2π

λ nkdk
)

−ipksin
( 2π

λ nkdk
)

cos
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with φk = 2π
λ nkdkcosαk that is the light phase variation passing through the kth layer, nk

being the refractive index, dk the thickness of the layer and cosαk the parameter that takes
into account the light beam propagating through the layer with refractive index nk, related
to the angle of incidence ϑ0 (as displayed in Figure 1a) of the light on the structure:

cosαk =

[
1−

n2
0sin2ϑ0

n2
k

] 1
2

(2)
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Figure 1. (a) Sketch of the one-dimensional photonic crystal (ϑ0 is the angle of incidence of the 
light). Simulation of the angular dependent transmission spectrum of a 5 bilayer TiO2-SiO2 nano-
particle-based photonic crystal for a transverse electric (TE) wave (b) and a transverse magnetic 
(TM) wave (c). For both the nanoparticle layers, the filling factor is 0.7. 
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Photonic crystals can be fabricated by following two main approaches: (1) top-down 

methods; and (2) bottom-up methods. In particular, bottom-up techniques can be more 
conveniently used on the laboratory scale, while top-down approaches rely on the use of 
microfabrication methods permitting development of microstructures with selected size 
and shape from bulk materials [16,17]. Besides these advantages, both of them also show 
some disadvantages. Bottom-up methods usually suffer from a relatively low throughput, 
whereas top-down techniques require substantial initial investment in terms of money 
and person hours for dedicated setups. For these reasons, it is thus essential to select the 
most suitable approach according to the desired goal. Self-assemble techniques are surely 
the most used bottom-up methods, combining building blocks such as nanoscale struc-
tures (e.g., nanoparticles) or block copolymers. These techniques are particularly suitable 
for the fabrication of responsive photonic crystals as, in this way, one can combine differ-
ent unitary structures and materials to integrate different functionalities in a one single 
photonic device. A list of the most used techniques is reported in Table 1. 

Table 1. Main manufacturing techniques of photonic crystals. The type of approach and the most significant advantages 
are indicated for each technique. 
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Figure 1. (a) Sketch of the one-dimensional photonic crystal (ϑ0 is the angle of incidence of the light).
Simulation of the angular dependent transmission spectrum of a 5 bilayer TiO2-SiO2 nanoparticle-
based photonic crystal for a transverse electric (TE) wave (b) and a transverse magnetic (TM) wave
(c). For both the nanoparticle layers, the filling factor is 0.7.
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For a transverse electric (TE) wave, the parameter pk in Equation (1) can be written
as pk,TE = nkcosαk, while for a transverse magnetic (TM) wave pk,TM = cosαk

nk
. The matrix

product M = M1·M2 . . . Mk . . . Ms =

[
m11 m12
m21 m22

]
gives the matrix of the multilayer

made of s layers. We can write the transmission coefficient t as

t =
2p0

(m11 + m12ps)p0 + (m21 + m22ps)
(3)

For a transverse electric (TE) wave p0,TE = n0cosα0 and ps,TE = ns

[
1− n2

0sin2ϑ0
n2

s

] 1
2
,

while for a transverse magnetic (TM) wave p0,TM = cosα0
n0

and ps,TM =

[
1− n2

0sin2ϑ0
n2

s

] 1
2

ns
.

Finally, to calculate the light transmission of the multilayer photonic crystal we can use the
following equation:

T =
n0

ns
|t|2 (4)

If, in the spectral range of interest, the refractive index does not show a significant
wavelength dependence, its value can be essentially considered as constant. Otherwise,
we should consider the refractive index as a function of the wavelength. The refractive
indexes of many materials are reported in the literature [10] and can be expressed with
a Sellmeier equation. For example, the Sellmeier equation for silicon dioxide, which is
widely employed for the fabrication of one-dimensional photonic crystals, is [11]:

n2
SiO2

(λ)− 1 =
0.6961663λ2

λ2 − 0.06840432 +
0.4079426λ2

λ2 − 0.11624142 +
0.8974794λ2

λ2 − 9.8961612 (5)

For porous materials, we can determine the refractive index by employing the Maxwell–
Garnett effective medium approximation [12,13]:

εe f f = εair
2(1− f )εair + (1 + 2 f )εmaterial
2(2 + f )εair + (1− f )εmaterial

(6)

where εmaterial is the dielectric constant of the material, εair is the dielectric constant of air
and f is the filling factor.

In Figure 1, we show the simulation of the angular dependent transmission of a 1D
photonic crystal, consisting of the alternation of five bilayers of TiO2-SiO2 nanoparticles
(filling factor = 0.7). The wavelength-dependent refractive index of TiO2 is given by

nTiO2(λ) =
(

4.99 + 1
96.6λ1.1 +

1
4.60λ1.95

)1/2
[14]. From these simulations, it is also possible to

determine the electric field at the kth interface [15].

3. Fabrication Techniques

Photonic crystals can be fabricated by following two main approaches: (1) top-down
methods; and (2) bottom-up methods. In particular, bottom-up techniques can be more
conveniently used on the laboratory scale, while top-down approaches rely on the use of
microfabrication methods permitting development of microstructures with selected size
and shape from bulk materials [16,17]. Besides these advantages, both of them also show
some disadvantages. Bottom-up methods usually suffer from a relatively low throughput,
whereas top-down techniques require substantial initial investment in terms of money
and person hours for dedicated setups. For these reasons, it is thus essential to select
the most suitable approach according to the desired goal. Self-assemble techniques are
surely the most used bottom-up methods, combining building blocks such as nanoscale
structures (e.g., nanoparticles) or block copolymers. These techniques are particularly
suitable for the fabrication of responsive photonic crystals as, in this way, one can combine
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different unitary structures and materials to integrate different functionalities in a one
single photonic device. A list of the most used techniques is reported in Table 1.

Table 1. Main manufacturing techniques of photonic crystals. The type of approach and the most significant advantages are
indicated for each technique.

Table 18. Approach Advantages References

Co-Extrusion Bottom-up

Control of thickness
Low cost

Large area deposition
High number of layers

[18]

Sputtering Bottom-up
High reproducibility

High yield
High precision

[19–21]

Molecular Beam Epitaxy (MBE) Top-down
High precision

Instant thickness control
High reproducibility

[22,23]

Pulsed Laser Deposition (PLD) Bottom-up
High reproducibility

High yield
High precision

[24]

Glancing Angle Deposition (GLAD) Bottom-up High reproducibility
Choose the deposition angle [25,26]

Spin Coating Bottom-up High reproducibility
Easy and fast execution [27–33]

Nanoimprint Lithography Top-down
Low cost

High throughput
High resolution

[34–38]

Self-Assemble Bottom-up
Easy

No need of instrumentation
Reaction engineering

[39–46]

Plasma Enhanced Chemical Vapor Deposition (PECVD) Bottom-up

High uniformity
Low temperatures

Fast deposition
High yield

[20,47]

Inverse Opal Template Bottom-up Possibility to insert active materials
in the structure [48–52]

4. Active Tuning of the Photonic Band Gap

Any stimulus that can modify either the periodicity or the refractive index contrast
(or both) of the PhC can lead to a shift of the PBG, according to Bragg–Snell’s law:

λmax =
2
m

d
√

n2
eff − sin2 θ (7)

where λmax is the wavelength of the maximum reflection (photonic band gap) peak, d is
the lattice constant, m is the order of diffraction, neff is the effective refractive index and
θ is the angle of incidence of the light with respect to the PhC [53]. It is noteworthy that
the effective refractive index can be determined with different approaches [54]. A large
number of external stimuli that are able to modulate the PBG are reported in the literature.
Main examples include chemical, thermal, magnetic, biological, mechanical, light and
electrical stimuli.

Table 2 summarizes the main stimuli and tuning mechanisms mentioned in this article.
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Table 2. Summary of main stimuli used for tunable photonic crystals.

Stimuli Mechanism References

Chemical Infiltration of vapours, solvents or ions [20,30,55–61]

Thermal Application of ∆T to thermoresponsive materials [48,62–64]

Magnetic Interaction between an external magnetic field
and magnetic nanoparticles [65–69]

Biological Detection of different species by
functionalization with recognition groups [27,40,42,43,70–75]

Mechanic Application of a mechanical force to an
elastomeric matrix [17,31,39,44,47]

Light Stimulation of photosensitive materials, dyes
and LC by light [51,75–77]

Electric

Reorientation of infiltrated LC [78–83]

Electrochemical process [33,46,84–90]

Electrophoretic forces [91–95]

4.1. Chemical Stimuli

One of the most used methods to tune the PBG via chemical methods relies on the
interaction between a soft structure (e.g., a hydrogel) and a given chemical species. For
instance, the interaction with ions can generate a swelling and a shrinkage of the soft
structure, which in turn changes the geometrical features of the PhC and leads to a shift
of the photonic band gap [45,61,96–98]. Furthermore, this approach can be used for the
detection H+ ions, and thus for building up pH sensors [45,60,62,99,100]. Another class
of chemically tuned PhCs consist in the integration of porous materials in the PhC, in
which refractive index modulation is given by infiltration of vapors [30,55,56,101] or sol-
vents [20,29,57–59,102–104]. Wang et al. fabricated 1D photonic crystals alternating films of
poly methyl methacrylate-co-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate
(PMMA-co-PHEMA-co-PEGDMA) and titania nanoparticles by spin-coating, drastically
changing its structural color when immersed in different solvents (Figure 2a,b) [32].

4.2. Thermal and Magnetic Stimuli

Photonic crystals fabricated using thermoresponsive materials like polymers or col-
loidal dispersions can be easily tuned through the application of a temperature gradi-
ent [48,62,63,105,106]. Chunfang et al. fabricated a SiO2 PhC and infiltrated the pores
with a thermo-sensitive Poly (N-isopropylacrylamide) (PNIPAM) hydrogel. The thermal
variation generates a blue shift of the photonic band gap and exhibits a reversible response
in the range from 24 ◦C to 31 ◦C [64].

Magnetically responsive PhCs are usually fabricated by integrating magnetic nanopar-
ticles in the structure [16]. Herein, an external magnetic field interacts with the active
material and changes its optical properties, orienting it according to the direction of the
field [65–69,107–109]. Ge et al. synthesized some polyacrylate-capped superparamagnetic
magnetite (Fe3O4) colloidal nanocrystal clusters (CNCs) with sizes from 30 to 180 nm.
These clusters self-assembled into colloidal photonic crystals in solution. In Figure 2c,d,
the change in the optical response is visible, as the magnetic field changes by controlling
the distance between the sample and an NdFeB magnet [110].

4.3. Biologic Stimuli

Photonic crystals can be easily functionalized with appropriate recognition groups
that allow for the detection of specific biomolecules. Due to the change in color, colorimetric
detection is quick and easy [16,111]. These sensors change their optical properties not only
when in contact with classical biomolecules like sugars, creatinine or glucose [40,112,113],
but also larger ones such DNA [42,43,70,71] and proteins [72–74,114].
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Recently, silver has been integrated inside 1D PhCs in order to exploit its antibacterial
properties and detect the presence of bacteria [27,75,115–117]. Paternò et al. fabricated a
hybrid plasmonic–photonic device applying a silver layer on top of a TiO2/SiO2 PhC. At
the Ag/bacteria interface, there is a generation of polarization charges due to a “biodoping”
mechanism. This triggers a change in the PBG of the sensor when exposed to Escherichia
coli [27]. % start a new page without indent 4.6cmAppl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 

 
Figure 2. Different cases of tunable photonic crystals. (a) (b) Reflectance spectra and visual effect 
of PMMA-co-PHEMA-co-PEGDMA) and titania photonic crystals (PhCs) in different solvents. 
Adapted from reference [32] by permission of The Royal Society of Chemistry. (c) (d) Effect of the 
magnet–sample distance on polyacrylate-capped superparamagnetic magnetite (Fe3O4) colloidal 
nanocrystal clusters (CNCs). Adapted from reference [110] by permission of John Wiley & Sons. 
(e) Changing of structural color of grating nanostructured polydimethylsiloxane membrane/TiO2 
as the elongation increases. Adapted from reference [31]. 
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dergoes a destabilization due to a localized charge variation. The consequent reorganiza-
tion of the structure generates a geometric variation of the sample, which, in accordance 
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Figure 2. Different cases of tunable photonic crystals. (a,b) Reflectance spectra and visual effect of PMMA-co-PHEMA-
co-PEGDMA) and titania photonic crystals (PhCs) in different solvents. Adapted from reference [32] by permission of
The Royal Society of Chemistry. (c,d) Effect of the magnet–sample distance on polyacrylate-capped superparamagnetic
magnetite (Fe3O4) colloidal nanocrystal clusters (CNCs). Adapted from reference [110] by permission of John Wiley &
Sons. (e) Changing of structural color of grating nanostructured polydimethylsiloxane membrane/TiO2 as the elongation
increases. Adapted from reference [31].

4.4. Mechanical Stimuli

Mechanically tuned photonic crystals exploit the elastic properties of the constituent ma-
terials. In general, they are usually compounded by an elastomeric matrix [17,39,44,47,51] that
actively responds to mechanical stimuli. In this case, the mechanical force deforms the poly-
mer and this changes the periodicity of the lattice, thus changing the optical response [16].
Karrock et al. fabricated a 400 nm periodical linear grating made of a nanostructured
polydimethylsiloxane membrane by nanoimprinting replication. Subsequently, a high re-
fractive index TiO2 nanoparticle layer was spin-coated, showing a guided-mode resonance.
The elastomeric behavior of the membrane allows for a 20% elongation when subjected to
stretching, varying the resonance peak position up to ≈80 nm. In Figure 2e, it is possible
to see the change of structural colors brought about by the mechanical deformation [31].
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4.5. Light Stimuli

Incorporating a photosensitive material [75,118–120] or a dye [77,121] inside a pho-
tonic crystal structure allows for tuning of its optical properties upon exposure to light
stimuli. Light can change the refractive index or lead to a modification of the structural
properties. For instance, PhCs can be used like a casing for liquid crystals and they will
then be stimulated by light [50,51,76]. Paternò et al. fabricated an optically switchable
SiO2/ITO 1D photonic crystal. Through a UV-light photodoping process, it is possible to
tune the indium tin oxide (ITO) plasmonic response in the near-infrared range and translate
the effect to the visible light range, switching the optical properties of the device [8].

4.6. Electric Stimuli

Electrically tunable photonic crystals represent an incredible opportunity for tech-
nological applications, ranging from colorful displays to sensitive claddings and elec-
trochromic windows. Their electrotunability can be triggered in three ways: (1) reorien-
tation of infiltrated liquid crystals; (2) an electrochemical process; and (3) electrophoretic
forces in crystalline colloidal arrays. Liquid crystals (LCs) are a class of materials combining
the properties of solid crystals and fluids. According to their alignment axis orientation, LCs
assume a different distribution inside the liquid, switching from a randomly distributed
phase (nematic) to an oriented phase (smectic or chiral). These materials own different
refractive indices in different directions, so by changing their phase it is possible tune
their optical properties. Thus, it is possible to tune their dielectric constant by applying an
external electric field. LCs are usually infiltrated inside a porous structure [78–82,122–124].
Criante et al. fabricated a porous silicon dioxide/zirconium dioxide 1D photonic crystal
infiltrated with a nematic liquid crystal (Figure 3a). The device is tuned by applying an
external electric field and so changing the LC alignment, producing a blue shift (Figure 3b)
of the peak of 8 nm at 8 V [83].

Electrochemically tuned photonic crystals consist in an electrochemical cell immersed
in a liquid electrolyte. By applying an electric field, it is possible to activate an electrolytic
process, which promotes an oxidation–reduction effect or an acid–base exchange. The
stimulus produces an electrostatic repulsion; thus, the original structure undergoes a
destabilization due to a localized charge variation. The consequent reorganization of
the structure generates a geometric variation of the sample, which, in accordance with
Bragg–Snell’s law, causes a shift of the peak [46,84–86,125,126]. In the case of polymers, it
is possible to incorporate an electro-responsive material inside the main chain, generat-
ing a swelling of the matrix under the application of the field [48,87,127–129]. Xiao et al.
fabricated a WO3-based electrochromic PhC by a facile, reproducible, one-step room tem-
perature glancing-angle electron-beam evaporation (GLAD). By changing the deposition
angle, it is possible to obtain layers with different porosities corresponding to different
refractive indices. The PhC is then immersed in 1M LiClO4 in propylene carbonate solution
and subjected to an external electric field of −1.1 V (vs. Ag/AgCl). This leads to an
electrochromic effect, as reported in Figure 3c. A gradual decrease of the reflectance and a
shift of the reflection peak are attributed to colored LixWO3, which decreases the optical
thickness (reduces the refractive index) and increases the light absorption (Figure 3d,e).
When an anodic potential is applied (+1.1 V), the process is completely reversed [26].

In recent years, the integration of plasmonic nanoparticles in PhCs has attracted
the interest of the scientific community. In these systems, quantized carrier oscillations
generate localized surface plasmon resonances (LSPRs) that span over a wide range of
wavelengths, depending mostly on the charge carrier density and the surrounding re-
fractive environment. For instance, the charge carrier density in heavily doped metal
oxide nanocrystals lies in the infrared (IR) region [130–132] as it is significantly lower
compared with bulk materials (10 21 cm−3 and 10 23 cm−3, respectively). This allows for
easy manipulation of this parameter and, hence, of the dielectric function upon application
of external electrochemical bias. In particular, by applying an electric field it is possible to
induce a capacitive depletion or accumulation and, consequently, a modulation of optical
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properties [65,132,133]. For these reasons, photonic crystals fabricated with plasmonic
materials [27,33,65,88,89,134] have emerged in the in the last decade. Heo et al. exploited
these materials to manufacture 1D photonic crystals composed of alternated layers of
WO3-x and indium tin oxide (ITO) nanocrystals. In this case, the selected materials show
a very similar refractive index in the discharge state (2.19 for ITO and 2.1 for WO3-x in
the bulk), while charging leads to a strong modification in the WO3-x refractive index,
thus causing a change of the refractive index contrast (Figure 4a–c). Interestingly, the
same procedure can be used to deposit the photonic crystals on an ITO-coated flexible
polyethylene terephthalate substrate [90].
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the conversion of an external stimulus into an easily recognizable optical response. Given 
these properties, they have attracted increasing attention from both the scientific commu-
nity and industry, as they can be employed in a wide range of applications, such as dis-
play, sensing and lighting. 
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Figure 4. (a–c) Cross-sectional SEM image, reflectance spectra and optical image of 1D photonic crystals constituted of
indium tin oxide (ITO) NCs and WO3-x NC layers (BS1). Adapted from reference [90] under permission from John Wiley &
Sons. Effect of an electric tuning and UV curing combination on E-ink. (d) Schematic mechanism and (e) optical example of
lithographical printing by photomask covering. Adapted from reference [91] under permission from John Wiley & Sons.

Another approach relies on the immersion of electrotunable PhCs in liquid electrolytes,
with the aim to increase the migration of electrons and ions. Despite the relatively high
electrotunability achieved in such devices, the electrolyte can lead to a degradation of
the samples and restrict the possibilities of their applications [26,90,135]. To address this
problem, all solid-state devices have been developed over the past decade, in order to
minimize such a detrimental effect [8,49,136] For instance, we have recently proposed a
1D electrolyte-free photonic crystal, combining indium tin oxide nanoparticles with TiO2
nanoparticles on top of a fluorine-doped tin oxide substrate acting as an electrode. The
structure was contacted with a top fluorine-doped tin oxide (FTO) substrate and clipped
with a paper binder to ensure mechanical stability. By applying a bias to this circuit, charges
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accumulate at the doped semiconductor/TiO2 interface, leading to an increase of the charge
carrier density and an increase of the plasma frequency, according to equation:

ωp =

√
Ne2

m∗ε0
(8)

where N is the carrier density, e is the electron charge, ε0 is the dielectric constant under
vacuum and m* is the effective mass [33].

Tunability of photonic crystals can be also achieved by means of electrophoretic forces,
which occurs when an external electric field is applied on a high concentration colloidal
system. In this way, the particles are in dynamic equilibrium between packing force and
electrostatic repulsive force, leading to a specific interparticle distance and, thus, to a
specific optical signal. The applied field generates an electrophoretic force between the
particles that are forced to reorganize into a more stable structure. Finally, this lattice
modification translates into a shift of the photonic band gap [41,92–95,137]. For instance,
Chen et al. exploited this mechanism to fabricate an electric-field-assisted multicolor
printing (Figure 4d,e) based on electrically tunable and photocurable colloidal photonic
crystals [91].

5. Conclusions

In this review, we have summarized some notable examples of tunable and stimuli-
responsive 1D photonic crystals, with particular emphasis on electrotunable devices. These
systems, which can usually be fabricated using easy and low-cost processes, permit the
conversion of an external stimulus into an easily recognizable optical response. Given these
properties, they have attracted increasing attention from both the scientific community and
industry, as they can be employed in a wide range of applications, such as display, sensing
and lighting.
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