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Abstract: X.509 certificates play an important role in encrypting the transmission of data on both
sides under HTTPS. With the popularization of X.509 certificates, more and more criminals leverage
certificates to prevent their communications from being exposed by malicious traffic analysis tools.
Phishing sites and malware are good examples. Those X.509 certificates found in phishing sites or
malware are called malicious X.509 certificates. This paper applies different machine learning models,
including classical machine learning models, ensemble learning models, and deep learning models,
to distinguish between malicious certificates and benign certificates with Verification for Extraction
(VFE). The VFE is a system we design and implement for obtaining plentiful characteristics of
certificates. The result shows that ensemble learning models are the most stable and efficient models
with an average accuracy of 95.9%, which outperforms many previous works. In addition, we obtain
an SVM-based detection model with an accuracy of 98.2%, which is the highest accuracy. The outcome
indicates the VFE is capable of capturing essential and crucial characteristics of malicious X.509
certificates.

Keywords: HTTPS; malicious X.509 certificates; machine learning

1. Introduction

The HTTP protocol is one of the basic standards for transporting information between
different sites on the Internet. Since data transmitted by HTTP are easily intercepted
by the man in the middle (man in the middle: the attacker who would like to steal
communication data) of the transmission channel, HTTPS protocol is proposed to ensure
security and stability of information communication. The critical contribution of HTTPS
protocol is applying X.509 certificates, which are used to exchange asymmetric public
keys and authenticate against public keys of communication partners. X.509 certificates
are issued by a set of trusted Certification Authorities (CAs: authorities of signing and
issuing X.509 certificates), the TBS (TBS: basic information, defined in RFC 5280, about
certificate’s issuer and subject) information of an end certificate is signed by the private
key of its issuer to construct the signature. With the relationship of signing and being
signed, a certificate chain is formed. When a client receives a server certificate, the client
can check the certificate status obtained via Online Certificate Status Protocol (OCSP),
and whether the root certificate in its certificate chain is trusted, the server certificate is
expired or included in Certificate Revocation Lists (CRLs). The client will trust only the
server certificate which passes the inspection.

The occurrence of X.509 certificates decreases the probability of being monitored
by others to some extent, but it provides an illegal person with a helpful tool as well.
According to the Phishing Activity Trends Report of 1st quarter 2020 (Phishing Activity
Trends Reports: https://apwg.org/trendsreports/) released by Anti-Phishing Working
Group (APWG), more and more phishing websites utilize X.509 certificates to encrypt
communication information and pretend to be regular sites, which avoid the detection of
malicious flow analysis tools. Figure 1 shows the percentage of phishing sites with HTTPS
recently. From the statistical data, we can observe that the rate of phishing attacks hosted
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on HTTPS reaches 74% approximately, which is high enough to attract more attention.
In addition to phishing sites, the communication between malware and their Command
Control (CC) servers leverage X.509 certificates to avoid the detection of traffic analysis
tools frequently. The SSL Blacklist (SSLBL) project exposes many X.509 certificates used
by botnet CC servers to transmit information with malware installed in remote bots. The
number of this type of X.509 certificate is increasing over time. We call the certificates
found during malicious activities like phishing and malware communication malicious
certificates or abnormally used certificates.

Figure 1. Percentage of phishing attacks hosted on HTTPS.

Being shielded by malicious certificates, phishing sites are more likely to be trusted by
web browsers and even camouflage other popular websites and steal private information,
which has enormous damage to the Internet. X.509 certificates are indeed created for
safeguarding against malicious network impersonators. However, a trusted Certificate
Authority (CA) may reissue X.509 certificates for a website by accident, which provides a
chance to camouflage this website with the reissued certificate. For example, in 2011, the CA
Comodo was compromised and reissued certificates for Microsoft and Google (Source:
https://blog.comodo.com/other/the-recent-ra-compromise/). Suppose an attacker holds
a reissued certificate for Google. In that case, he can set up a phishing website with the
same interface as Google and use the reissued certificate for communication during the
HTTPS connection, which is trust by browsers. If users login into this phishing website
with their accounts, their information is stolen. The detail of the HTTPS connection with
the X.509 certificate is illustrated in RFC 5280 [1]. In addition, the communications between
malware and CC servers are unobservable, which has a destructive influence by way of
snooping privacy and stealing important information. How to detect those malicious
certificates is imperative and significant work.

There are many solutions to detect malicious certificates. The most straightforward
method is filtering with known malicious ones. For example, Ghafir et al. [2] proposed a
Malicious SSL certificate Detection (MSSLD) model to detect Advanced Persistent Threat
(APT) communications based on a blacklist of malicious SSL certificates to filter connec-
tions. In addition, many researchers applied machine learning methods for detecting
malicious certificates. Categorized by the type of detecting model, machine learning-based
methods contain two types of models: one is the use of classical machine learning model,
the other is applying neural network to the detection of malicious certificates. For example,

https://blog.comodo.com/other/the-recent-ra-compromise/
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Mishari et al. [3] applied classical machine learning models to train separate models for
distinguishing phishing and typosquatting with gathered certificates. Dong et al. [4] used
deep neural networks for training rogue certificates detection models with artificial rogue
certificates. The details of previous methods are illustrated in Section 2.

Although those previous methods have high accuracy in detecting malicious certifi-
cates, they cannot handle the situation which is strict with detection accuracy. Moreover,
filtering malicious certificates with known malicious certificates has a low performance
while encountering new malicious certificates. Both phishing certificates and malware-used
certificates are malicious certificates. A detection method that can distinguish those two
types of malicious certificates together will be time-saving and effortless. Therefore, we
combine phishing certificates and malware-used certificates as malicious certificates to
train models. Furthermore, the ensemble learning model has shown excellent performance
in many competitions. To improve the detection accuracy as much as possible, we leverage
the ensemble learning model to detect malicious certificates. In addition, features selected
for training models are various, and most of them are insufficient.

To solve these problems and achieve our objectives, we apply machine learning mod-
els, including classical models, ensemble learning models, and deep learning models,
to detect malicious certificates that combine phishing certificates and malware-used cer-
tificates. Features play a crucial role in training different models. Considering previous
methods do not have comprehensive and minute feature extraction towards X.509 certifi-
cates, we design and implement Verification for Extraction (VFE). The VFE is intended for
analyzing basic fields of certificates, checking certificates’ conformation of criterion defined
in RFC 5280, constructing and verifying certificate chain, and recording information for
features extraction. The result shows that the VFE can capture crucial traits of certificates.
The best model achieves an accuracy of 98.2% for detecting malicious and benign cer-
tificates, which is a higher score than state-of-the-art. Torroledo et al. [5] implemented
a system that is capable of identifying malware certificates with an accuracy of 94.87%.
Fasllija et al. [6] achieved a phishing attempts detecting system with an accuracy of 91%
approximately. Our contributions can be summarized as follows:

1. Design and implement the VFE for verification and extracting characteristics from cer-
tificates. The result shows features extracted from the VFE are good at distinguishing
malicious certificates from benign certificates.

2. Apply and compare various machine learning models for malicious certificate de-
tection. We had tested the performance of different models in malicious certificate
detection and have a good grasp of the advantages and disadvantages of those models.

3. Find the best model for detecting malicious certificates with an accuracy of 98.2%. Af-
ter trying and optimizing different models, we found a model with the highest accuracy.

The remainder of this paper is organized as follows. In Section 2, we review related
work in this field. Then, in Section 3, we illustrate the design and implementation of the
VFE in detail. We analyze the total features extracted from the VFE and explain the reason
for choosing them in Section 4. In Section 5, we describe selective machine learning models
and their structures during experiments. Our experiments, including data collection,
experimental design, and experimental results, are illustrated in Section 6. In Section 7, we
make conclusions about the total work.

2. Related Work

Malicious certificate detection is a complementary and effective method to distinguish
phishing websites and communications between malware and their CC servers. There were
many studies related to this field. Apart from filtering malicious certificates with known
malicious certificates, many researchers work out this problem with machine learning.
Those machine learning methods were differential in data sources, feature engineering,
model selection, and focused certificates.

Ghafir et al. [2] proposed a Malicious SSL certificate Detection (MSSLD) model to
detect Advanced Persistent Threat (APT) communications based on a blacklist of mali-
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cious SSL certificates to filter connections. To enhance detection ability, they updated the
blacklist of malicious SSL certificates from different sources each day at 3:00 am. It is the
most direct way to find APT communications. This model relies on malicious certificates
from other sources, which cannot ensure the timeliness of detection while meeting new
malicious certificates.

In an article by Mishari et al. [3], they trained Random Forest, Decision Tree, and Near-
est Neighbor to detect web-fraud domains. They collected nine features of the certificate
and some sub-features to train models. In addition, they analyzed the selected features
minutely. The result shows that the highest phishing detection accuracy is 88%.

Xianjing et al. [7] analyzed attribute correction of certificates in the certificate chain
and built up a probabilistic model SSLight to model attribute correction. Training the
SSLight with a large number of regular certificates, they applied it to detect fake certificates.
The model built in this paper is comprehensive and demands extensive data for training.

In an article by Dong et al. [8], they designed and implemented a real-time detecting
system with certificate downloader, feature extractor, classification executor, and decision-
maker parts. In addition, they collected 95,490 phishing certificates and 113,156 non-
phishing instances for training Decision Tree, Random Forest, Naive Bayes Tree, Logistic
Regression, Decision Table, and K-Nearest Neighbors. One advantage of this work is the
timeliness of detection.

Fasllija et al. [6] made use of Certificate Transparency (CT) logs to extract features and
train classical models to detect phishing certificates. One innovation of this research was
that their models divided certificates into five categories.

In another paper by Dong et al. [4], they applied deep neural networks to train
detection models for rogue certificates. Considering data imbalance of rogue certificates,
they changed tiny content of benign certificate to construct rogue certificate, which has an
outstanding performance. Their experiments obtained the highest accuracy of 97.7%.

Torroledo et al. [5] leveraged long short-term memory (LSTM) to extract features from
subject and issuer information. They used those features combined with other numerical
features to train models for detecting phishing certificates and malware-used certificates,
respectively. This work inspires our research, and we change the method to deal with
subject information.

However, all these previous works of detecting malicious certificates suffer the disad-
vantages introduced in Section 1. To cope with these drawbacks, we design and implement
the VFE to analyze basic fields of certificates, check certificates’ conformation of criterion de-
fined in RFC 5280, construct, and verify the certificate chain. During this process, we collect
plentiful features of certificates, which is feature engineering. Obtaining sufficient features,
we select classical machine models, ensemble learning models, and deep learning models
to detect malicious certificates. In addition, we propose some novel tricks for extracting
features from subject and issuer information of certificates.

The detection of malicious certificates is beneficial for detecting phishing sites or
malware. There are some other researches of finding phishing sites or malware without
X.509 certificates. In an article by Hutchinson et al. [9], they proposed a method of using the
features of the URL to detect phishing ones. They considered different feature sets to detect
phishing URLs with Random Forest (RF). The best model achieved an accuracy of 96.5%.
Kulkarni et al. [10] implemented four classifiers with MATLAB to detect phishing websites
with dataset from machine learning repository of The University of California, Irvine.
Among four classifiers of the Decision Tree, Naïve Bayesian classifier, SVM, and neural
network, the Decision Tree reached the highest accuracy of 91.5%.

3. Verification for Extraction (VFE)

The VFE is implemented to analyze certificates’ basic fields, checking whether cer-
tificates conform with constraints agreed on RFC 5280, constructing and verifying the
certificate chain. We can seize characteristics of certificates, as many as possible for picking
up features during those processes. This process is conforming with capturing comprehen-
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sive aspects about X.509 certificates. The integral architecture of the VEF includes basic
analysis, standard checking, certificate chain construction, and certificate chain validation,
four parts. The basic analysis part parses primary fields in the content of certificates for
feature use. The standard checking part exams certificates’ conformation to RFC 5280, not
only the type of areas but also some fields’ presence. The certificate chain construction part
builds the certificate chain according to two methods. One is searching certificates database,
and the other is obtaining upper certificates with the help of Authority Information Access
(AIA: information for obtaining issuer’s certificate). The certificate chain validation part
verifies the certificate chain in multiple dimensions, including certificate policy mapping,
path length constriction, name constrict, etc. In the following part of this section, the details
of the VFE are illustrated.

3.1. Basic Analysis

The basic analysis part parses basic fields of a certificate, including certificate version,
validation, serial number, public key, subject information, issuer information, extensions,
error information, existence information, etc. Table 1 shows the details of basic fields.
Those basic fields are contents of the certificate itself, and they play an essential role in the
processes of the following parts and are basic information about certificates. We accomplish
this part with the help of the python package of OpenSSL (OpenSSL: https://www.openssl.
org/). The basic analysis part takes DER (DER: binary encoding scheme of X.509 certificates)
or PEM (PEM: Base64 encoding scheme of X.509 certificates) type certificates as inputs and
output contents of certificates with OpenSSL’s help.

Table 1. Detail of basic fields of X.509 certificates.

Name Description Value Type

PEM certificate PEM type certificate bytes
version version of certificate integer

fingerprint sha1 and sha256 fingerprints of certificate string
serial number serial number integer

public key public key of subject dictionary
validation validation information of certificate dictionary

issuer issuer information of certificate dictionary
subject subject information of certificate dictionary

signature hash algorithm hash algorithm used in signature string
signature algorithm asymmetrical algorithm of signing string

signature the signature of certificate bytes
tbs certificate the tbs information of certificate bytes

extensions extensions of certificate dictionary

3.2. Standard Checking

The standard checking part carries out criterion checking with the guide of RFC 5280.
For example, if the serial number is a positive integer no longer than 20 octets, whether
certificates of versions 1 and 2 have extensions or the length of explicit text in certificate
policy exceeds 200, etc. Table 2 shows the details of checking items. In a word, what we do
in this part is find restrictions of RFC 5280 and check whether certificates are conforming
with those restrictions. This is a necessary step for the reason that RFC 5280 is an agreement
about X.509 certificates.

https://www.openssl.org/
https://www.openssl.org/
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Table 2. Details of checking items.

Name Description Value Type

serial_number_not_conforming Whether serial number is positive and no longer than 20 octets integer
after_smaller_than_before Whether after-time is small than before-time in validation integer

extension_exist_in_wrong_version Whether extensions are math with certificate version integer
decipher_and_encipher_error Whether the appearance of decipher and encipher is conforming integer

explicit_text_exceed Whether the length of explicit text exceeds 200 integer
only_consist_reasons_error Whether cRLDistributionPoint only consist reasons integer

keycertsign_not_conform_ca Whether the set of keycertsign is conforming with ca field integer
cA_with_empty_subject Whether subject information is empty and the subject is ca integer

CRLissuer_with_empty_subject Whether subject information is empty and the subject is CRLissuer integer

3.3. Certificate Chain Construction

The certificate chain construction part locates certificates’ issuers until positioning
their root certificates. The task of constructing the certificate chain for an end certifi-
cate is completed as its root certificate is exposed. There are two manners to locate
the issuer’s certificate. One is searching in the certificates database CCADB (CCADB:
a common certificate authority database with root and intermediate certificates from
https://www.ccadb.org/forsearching). The other is obtained according to access informa-
tion in AIA. To promote the rate of building a complete certificate chain, we integrate two
methods. Algorithm 1 describes the overall process of forming the certificate chain. Once
the root certificate is found, or no issuer’s certificate is obtained by trying two methods,
the certificate chain construction is completed. To reduce the time of building a certificate
chain, we give priority to the database for searching issuer’s certificate since leveraging
AIA information to obtain the issuer’s certificate is time-consuming.

Algorithm 1: construct certificate chain
Input: certificate X
Output: certificate chain X_chain
X_chain=[];
X_chain.append(X);
temp_certificate=X;
while temp_certificate is not root certificate do

if obtain upper certificate of temp_certificate by searching the CCADB then
temp_certificate=upper certificate;
X_chain.append(temp_certificate);

else
if obtain upper certificate of temp_certificate according to AIA information then

temp_certificate=upper certificate;
X_chain.append(temp_certificate);

else
print(“Fail to construct certificate chain”);
break;

end
end

end
return X_chain;

3.4. Certificate Chain Validation

The certificate chain validation part is implemented for examining some fields for re-
lated certificates in the certificate chain. For instance, certificate policy mapping, path length
constriction, name constrict, etc. Any implementation of certificate chain validation is
required to be conforming to RFC 5280. Considering the time cost of implementing a tool

https://www.ccadb.org/ for searching
https://www.ccadb.org/ for searching
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for verifying the certificate chain, we accomplish the certificate chain validation part with
the help of OpenSSL. Many trusted certificates and Certificate Revocation Lists (CRLs) are
required to be added into the validation context during the validation process. It is worth
mentioning that we validate the certificate chain of each certificate in the certificate chain to
find more possible errors. The detail of certificate chain validation is recognized by checking
results of OpenSSL. The details of validation values are displayed on the official website of
OpenSSL (OpenSSL verify: https://www.openssl.org/docs/man1.0.2/man1/verify.html).

We record the necessary information for extracting as many as possible features during
the processing flow of four parts. With the help of the VFE, comprehensive and useful
traits of certificates are collected.

4. Feature Engineering

Feature engineering is based on certificates’ characteristics obtained from the basic
analysis, standard checking, certificate chain construction, and certificate chain validation
of the VFE. In addition, some outputs of packages and tools we use are taken into con-
sideration. We also attempt to acquire six extra features based on what we gain already.
Considering the number of features we extracted is comparably huge, we upload a de-
scription of all the features to our website (Our website: https://github.com/fight-think/
features-extraction). In the following parts of this section, more details about the features
of a certificate are explained.

4.1. Features from Cryptography

Cryptography is a python package that supports us to parse basic fields of certificates.
There are few limitations, including versions, algorithms, and extensions supported in this
package. Sometimes inputs cannot be parsed by this package. When one of those four
situations occurs, the corresponding feature will be stored. In addition, the parsing process
does not always go well, so 26 features about parsing errors are extracted. Table 3 illustrates
some sample features from Cryptography. The full features from Cryptography are listed
on our website (Our website: https://github.com/fight-think/features-extraction).

Table 3. Sample features from Cryptography.

Feature Name Feature Description Value Type

fail_load_with_cryptography Whether fail to load certificate with Cryptography integer

version_not_support Whether version of certificate is supported integer

algorithm_not_support Whether signature algorithm is support integer

extension_not_support Whether has unsupported extensions integer

version_parse_error Whether meet error while parsing version information integer

fingerprint_produce_error Whether meet error while parsing fingerprint integer

serial_number_parse_error Whether meet error while parsing serial number integer

public_key_parse_error Whether meet error while parsing public key integer

validation_parse_error Whether meet error while parsing validation information integer

4.2. Features from Basic Analysis

The basic fields of certificate contents are essential features. For example, signature
algorithm, public key algorithm, version, country of the issuer, country of the subject, etc.
Therefore, we collect 16 features about the basic contents of certificates and 11 features
that are easily computed from the contents of certificates. Extensions of certificates are
supplementary and explanatory information about certificates. Therefore, not all exten-
sions are essential in a certificate. The presence of extensions shows the importance and
completeness of certificates in some way. Each extension has a property about whether this

https://www.openssl.org/docs/man1.0.2/man1/verify.html
https://github.com/fight-think/features-extraction
https://github.com/fight-think/features-extraction
https://github.com/fight-think/features-extraction
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extension is critical or not. The difference between critical and not critical extensions is that
critical extensions must be parsed and verified during certificate chain validation. To seize
all possible keys, we sort out 14 existential features and 14 critical features. Table 4 shows
some sample features from the basic analysis. The full features from the basic analysis are
listed on our website (Our website: https://github.com/fight-think/features-extraction).

Table 4. Sample features from basic analysis.

Feature Name Feature Description Value Type

issuer_country The country of issuer integer

subject_country The country of subject integer

digital_signature The keyusage information integer

content_commitment The keyusage information integer

serial_number_length The length of serial number integer

has_expire Whether certificate has expired integer

issuer_is_empty Whether issuer information is empty integer

public_key_parse_error Whether meet error while parsing public key integer

validation_parse_error Whether meet error while parsing validation information integer

4.3. Features from Standard Checking

RFC 5280 documents common agreements of CAs, certificate users, governments,
and several organizations to X.509 certificates. Any implementation of RFC 5280 should be
conforming to its criterion. Kumar et al. [11] implemented a frame for checking whether
certificates issued by CAs complied with standards defined by RFC 5280, CAs, and browser
corporations. The results showed the number of unmatched certificates was decreasing
and the percentage reduced to 0.02% in 2017. Although the rate of inconsistent certificates
is lower, it is necessary to check certificates’ match with RFC 5280. Therefore, we extract
10 features to represent checking results. Table 5 illustrates the details of features from
standard checking.

Table 5. Details of features from standard checking.

Feature Name Feature Description Value Type

serial_number_not_conforming Whether serial number is positive and no longer than 20 octets integer

after_smaller_than_before Whether after-time is small than before-time in validation integer

extension_exist_in_wrong_version Whether extensions are math with certificate version integer

decipher_and_encipher_error Whether the presence of decipher and encipher is conforming integer

explicit_text_exceed Whether the length of explicit text exceeds 200 integer

only_consist_reasons_error Whether cRLDistributionPoint only consist reasons integer

keycertsign_not_conform_ca Whether the set of keycertsign is conforming with ca field integer

cA_with_empty_subject Whether subject information is empty and the subject is ca integer

CRLissuer_with_empty_subject Whether subject information is empty and the subject is
CRLissuer

integer

subject_with_subaltname_no_critical Whether subject information is empty and subject alternative
name is not critical

integer

https://github.com/fight-think/features-extraction
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4.4. Features from Certificate Chain Construction

We care about the result of construction, error occurrence, and the subject infor-
mation of certificates in the certificate chain during the certificate chain construction.
Drury et al. [12] compared phishing certificates with regular certificates in many dimen-
sions. The results indicated subject and issuer information of certificates were vital to
distinguish them. Fadai et al. [13] analyzed trusted SSL root CAs of different modern
browsers and operating systems. It shows that the trustworthiness of SSL root CAs is rela-
tive to their original countries. Torroledo et al. [5] analyzed issuer and subject information
minutely while carrying out feature engineering. Inspired by previous work, we connect
subject information of each certificate in the certificate chain to an integral fragment, which
is regarded as a trick for discovering the relationship between issuer and subject. We apply
two ways to extract features from the text of subject information, and one is the bag of
words (BOW) [14], the other is using trained fast text [15] to build embedding word vector
of text information. We apply two types of neural networks to deal with embedding word
vector [16]. Apart from the text of subject information, we record six more features about
errors and the results of certificate chain construction. Table 6 illustrates the details of
features from certificate chain construction.

Table 6. Details of features from certificate chain construction.

Feature Name Feature Description Value Type

mid_cert_parse_error Whether middle certificate in chain parses with error integer

mid_cert_without_ca_issuerWhether middle certificate in chain does not have ca issuer information integer

mid_cert_aia_error Whether error occurs in obtaining issuer’s certificate with AIA integer

chain_len The length of certificate chain integer

construct_result The construction result integer

subject_infor_chain The chain contains subject information text

4.5. Features from Certificate Chain Validation

Akhawe et al. [17] illustrated the procedure of browsers’ checking to server certificate
and analyzed reasons that many Transport Layer Security (TLS) warnings were wrongly
issued. Certificate chain validation is an essential tactic to identity certificates’ authenticity.
Therefore, we obtain 74 related features, which compose 71 validation flags of an end
certificate from OpenSSL and three features indicating the validation of middle certificates
in the certificate chain. As a result that the number of features is relatively large, we
illustrate some sample features from certificate chain validation in Table 7. The full features
from certificate chain validation are listed on our website (Our website: https://github.
com/fight-think/features-extraction).

https://github.com/fight-think/features-extraction
https://github.com/fight-think/features-extraction
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Table 7. Sample features from certificate chain validation.

Feature Name Feature Description Value Type

mid_cert_verify_error Whether error occurs in verifying chain of middle certificate integer

mid_cert_basic_validate_error Whether error occurs in validating basic fields of
middle certificate

integer

verify_result_error The result of verifying chain of an end certificate integer

unspecified_certificate_verification_error An unspecified verification error integer

unable_to_get_issuer_certificate The certificate cannot get issuer’s certificate integer

CRL_path_validation_error Error occurs while validating Certificate revocation list(CRL) integer

application_verification_failure An application specific error set by application callback integer

unable_to_get_CRL_issuer_certificate Cannot get issuer certificates of certificates in CRL integer

unhandled_critical_extension The return result of OpenSSL for verifying chain of an
end certificate

integer

4.6. Extra Features

The seven extra features are discovered with the help of what we gain already.
The first one is judging whether the certificate is an Extended Validation (EV) certifi-
cate. EV certificates are issued with more checking and more expense, which makes
them more credible. Torroledo et al. [5] selected whether the certificate was an EV cer-
tificate while extracting features as well. We accomplish it with a list of certificate poli-
cies that demonstrate whether one certificate is an EV certificate or not. In addition,
whether the root certificate of an end certificate is trusted by hardware and software
companies, including Microsoft, Apple, Cisco, and Mozilla, is an important mark of credi-
bility. Therefore, we obtain four features indicating the trust of Microsoft (Microsoft: https:
//ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT), Ap-
ple (Apple: https://support.apple.com/en-us/HT209143), Cisco (Cisco: https://www.
cisco.com/security/pki/), and Mozilla (Mozilla: https://ccadb-public.secure.force.com/
mozilla/CACertificatesInFirefoxReport) according to comparison of certificates’ finger-
prints collected from websites. Finally, the Alexa rank of the subject domain name is
searched from the ranking file (Alexa rank: https://www.alexa.com/topsites), and the
result shows that the Alexa rank is a useful feature. Table 8 illustrates the details of
extra features.

Table 8. Details of features from extra features.

Feature Name Feature Description Value Type

is_ev Whether certificate is extended validation certificate integer

ios_trust Whether root certificate is trusted by Apple integer

cisco_trust Whether root certificate is trusted by Cisco integer

microsoft_trust Whether root certificate is trusted by Microsoft integer

mozilla_trust Whether root certificate is trusted by Mozilla integer

subject_domain_alexa_rank The Alexa rank of subject domain name integer

error_occur Whether error occurs during extracting features integer

https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://support.apple.com/en-us/HT209143
https://www.cisco.com/security/pki/
https://www.cisco.com/security/pki/
https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport
https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport
https://www.alexa.com/topsites
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5. Model Illustration

We apply classical machine learning models, ensemble machine learning models,
and deep learning models to detect malicious certificates. Among three types of models,
classical machine learning models and ensemble machine learning models are proposed
by previous researchers, which are illustrated in the following parts. We do not modify
them for applying them to detect malicious certificates. The structures of deep learning
models are designed and implemented by us with the help of third packages including Py-
torch (Pytorch: https://pytorch.org/), Sklearn (Sklearn: https://scikit-learn.org/stable/),
Numpy (Numpy: https://numpy.org/), nltk (nltk: https://www.nltk.org/), and Pandas
(Pandas: https://pandas.pydata.org/). With a comparison of different models, we have a
profound command to the detection of malicious certificates. In the following parts of this
section, specific models and their structures are illustrated.

5.1. Classical Machine Learning

The classical machine learning models we select include Logistic Regression (LR),
Decision Tree (DT), and Support Vector Machine (SVM). The Logistic Regression was
proposed by Joseph Berkson [18], it leveraged a sigmoid [19] function to accomplish
nonlinearization and control the outcome range 0 to 1 which presents the probability of
outputting value 1. Support Vector Machine is aimed at looking for a hyperplane which
distinguishes two types of data with the help of a kernel trick if linear classifier cannot
work [20]. Training the Decision Tree model is a process of building a Decision Tree with the
best decision rules while making a decision about which feature is selected as judgment [21].
Those classical models have a long history and show their performances in many problems,
especially in the problems where data are not so large, and the relationship between data
is relatively simple. We apply classical machine learning to the detection of malicious
certificates with the purpose of reference experiments.

5.2. Ensemble Machine Learning

Ensemble machine learning models [22] use multiple machine learning algorithms
to predict the result rather than obtain the predictive result from one of the constituent
learning algorithms alone, which always have a better performance. Among several compe-
titions about machine learning, the ensemble machine learning method achieves a relatively
high score. Considering different characters and performance of varying ensemble ma-
chine learning models, we select four models, including Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Cate-
gory Boosting (CatBoost), to model four classifiers. Random Forest combines multiple
decision trees to make the final predictive result, which always has a better performance
than a single decision tree [23]. XGBoost is a scalable end-to-end tree boosting system
with a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for
approximate tree learning, which has achieved great success in several machine learning
challenges [24]. LightGBM promotes the efficiency and scalability of Gradient Boosting
Decision Tree (GBDT) implementation while handling high dimension and extensive data
with Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [25].
Compared with XGBoost and LightGBM, CatBoost focuses on prediction shift with two
algorithmic advances composing ordered boosting and an innovative algorithm for pro-
cessing categorical features [26]. The data processing of classical and ensemble models are
displayed in Figure 2. After splitting and clearing text information of subject_infor_chain,
we count the most frequent 30 words and label their presence in one subject_infor_chain as
features. Combining those features with 182 numerical features, we train several classical
and ensemble models.

https://pytorch.org/
https://scikit-learn.org/stable/
https://numpy.org/
https://www.nltk.org/
https://pandas.pydata.org/
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Figure 2. The data processing of classical and ensemble models.

5.3. Deep Learning

Since Krizhevsky et al. [27] applied a convolutional neural network (CNN) to an
image classification challenge in 2012 and won the championship in this competition,
deep learning [28] ravaged the world and achieved outstanding results in many fields.
To further deal with the words embedding vector of subject information and acquire
possible high accuracy models, we use CNN and LSTM to extract features from the words
embedding vector and merge those new features with previous features to train classifiers.
The critical operations of the convolutional neural network are convolution and pooling,
which have superb efficiency in seizing critical features [27]. Long short-term memory
is an improved version of the recurrent neural network (RNN) with a cell, an input gate,
an output gate, and a forget gate in each unit. It reduces the possibility of gradient
vanishing and gradient explosion, which are frequent in RNN [29]. The architecture
of networks with CNN and LSTM used in our experiment are displayed in Figure 3.
The total architecture includes handling words embedding vectors and combining previous
numerical features and features extracted by neural networks to train a classifier. The words
embedding vector is obtained by a pre-trained model with an input of 30 words in one
subject_infor_chain at most. The difference between CNN based classification model and
LSTM based classification model is the neural network for handling word embedding
vectors. In addition, we illustrate the detail of hidden layers in CNN-based and LSTM-
based models in Appendix A.
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Figure 3. The architecture of networks with convolutional neural network (CNN) and long short-term memory (LSTM).

6. Experiment
6.1. Data Collection

To obtain models with better generalization performance and stability, we feed many
data to models, especially deep learning models. The truth is that the number of malicious
certificates is far less than the number of benign certificates. Therefore, the principle of use is
collecting plentiful malicious certificates and a corresponding number of benign certificates.
We acquire malicious certificates from two sources, and one is Uniform Resource Locators
(URLs) of phishing websites provided by PhishTank (PhishTank: https://www.phishtank.
com/). The other is fingerprints of malicious certificates collected by the SSLBL project
(SSLBL: https://sslbl.abuse.ch/). Connecting URLs with HTTPS in port 443 and obtaining
possible certificates sent from servers during the process of ServerHello, we collect 1711
malicious certificates. We apply fingerprints provided by the SSLBL project as searching
keys to search at crt.sh (Crt.sh: https://crt.sh/) and censys.io (Censys: https://censys.io/)
to get certificates in PEM format. We finally obtain 611 malicious certificates in this way.
The total number of malicious certificates we collect is 2322. Compared with malicious
certificates, benign certificates are adequate and easier to obtain. We leverage part domains
of the Alexa top 1 million sites (Alexa rank: https://www.alexa.com/topsites) as seeds to
get their certificates with the help of HTTPS protocol. The number of benign certificates we
collect is 11,909, which is imbalanced. To make fair use of malicious certificates, we select
9288(4 × 2322) benign certificates whose domain names have a high Alexa rank for different
experiments. Considering to train models with great generalization ability, we adopt to re-
sampling malicious certificates, which makes data balance in training and validation. To make
it easier for reproduction, we release the features of all malicious and benign certificates on
our website (Our website: https://github.com/fight-think/features-extraction).

6.2. Experimental Design

All the experiments are run on ThinkPad Carbon X1 2019 with 8G RAM hardware,
Intel(R) Core(TM) i5-8265U CPU, and 512G SSD. We divide collected malicious and be-
nign certificates into different datasets according to the Alexa rank of domain names or
re-sampling malicious certificates. Just as Figure 4 shows, we select 9288 (4 × 2322) benign
certificates with higher Alexa rank and divide them into b1, b2, b3, and b4 four parts,
each of which has the same number of certificates with malicious certificates part, m1.
Then we combine m1 with b1, b2, b3, and b4 for constituting Dataset1, Dataset2, Dataset3,
and Dataset4, respectively. Three more datasets are formed by re-sampling malicious

https://www.phishtank.com/
https://www.phishtank.com/
https://sslbl.abuse.ch/
https://crt.sh/
https://censys.io/
https://www.alexa.com/topsites
https://github.com/fight-think/features-extraction
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certificates and combining the same number of benign certificates with them. We apply dif-
ferent machine learning models with seven datasets, including LR, DT, SVM, RF, XGBoost,
CatBoost, LightGBM, CNN-based model, and LSTM-based model, to fit each dataset and
compare the performance of all models in various datasets.

Figure 4. The combination of different datasets.

While training a specific model on one dataset, we use eight-fold cross-validation to
find the best model. There are two reasons for using eight-fold cross-validation. The first is
that the number of certificates in the experiment is relatively small. If dividing the data
into ten pieces, the number of certificates used for testing is relatively small, which will
affect the computation of the evaluation metric. The other is that if dividing the data into
five pieces, the number of certificates used for training will decrease, which will affect the
performance of the model. The experiments with five-fold cross-validation and ten-fold
cross-validation indicate them. Therefore, we use eight-fold cross-validation.

During the training process, we split 15% data as testing data and apply eight-fold
cross-validation to the remaining data for finding the best model, which means seven
folds of data for training and one fold for validation. The model with the highest score
of evaluation metric on validation data is regarded as the best model. In classical and
ensemble machine learning models, GridSearchCV (GridSearchCV: https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html) is utilized
for searching for the best model. In deep learning models, we obtain the best model during
updating parameters and altering data. After getting the best model, we test the best
model’s performance in testing data and calculate the time cost from training to testing.

We select accuracy as the evaluation metric to measure different models’ performance.
Accuracy is associated with true positives, true negatives, false positives, and false nega-
tives. In our experiments, benign certificates are considered positive items, and malicious
certificates are negative. There are two main reasons for choosing accuracy as the evaluation
metric. To begin with, finding benign certificates is equally important to detecting malicious
certificates in our experiments. Comparing with precision, recall, or F1 score, accuracy
is suitable for balancing these two abilities. What is more, many previous researchers

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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evaluate their models with accuracy. For example, Dong et al. [30], Torroledo et al. [5],
Fasllija et al. [6], and so on. To make it easier to compare with them, we select accuracy as
the evaluation metric.

6.3. Results

Training several models with each dataset, we record the best model’s testing accuracy
in eight-fold cross-validation and the validation accuracy of eight models trained with
corresponding training data during this process. In addition, the time cost from eight-fold
cross-validation to testing the best model is calculated. What is more, we pay attention to
the importance value of features in DT, RF, XGBoost, CatBoost, and LightGBM models.

6.3.1. Accuracy

During the process of eight-fold cross-validation, eight models are trained with seven
folds data. The validation accuracy of eight models on remaining fold data is recorded.
Among these eight models, the one with the highest validation accuracy is selected as the
best model. Then we obtain the testing accuracy by testing the best model with testing data.
Table 9 shows validation accuracy of eight-fold cross-validation with different models on
Dataset6. The last column of this table is the standard deviation(std) of validation accuracy
values, which show the corresponding model’s stability. The mean and standard deviation
of eight models expose that SVM, XGBoost, and LightGBM have higher validation accuracy
and lower std than other models. In addition, comparing with classical and deep learning
models, ensemble models have higher average validation accuracy and lower average std.
Therefore, ensemble learning models are the most efficient and stable models.

Table 9. Validation accuracy of eight-fold cross-validation on Dataset6.

Accuracy model1 model2 model3 model4 model5 model6 model7 model8 mean std

LR 0.938 0.926 0.937 0.935 0.928 0.930 0.930 0.940 0.933 0.00494

DT 0.943 0.950 0.951 0.946 0.949 0.947 0.935 0.932 0.944 0.00652

SVM 0.969 0.970 0.980 0.978 0.978 0.973 0.972 0.978 0.975 0.00388

RF 0.952 0.949 0.957 0.955 0.955 0.945 0.960 0.960 0.954 0.00493

XGBoost 0.982 0.974 0.974 0.971 0.976 0.976 0.970 0.975 0.975 0.00330

LightGBM 0.981 0.975 0.976 0.974 0.977 0.976 0.975 0.976 0.976 0.00207

CatBoost 0.959 0.956 0.957 0.958 0.960 0.954 0.963 0.955 0.958 0.00256

CNN 0.850 0.853 0.854 0.862 0.863 0.856 0.872 0.864 0.859 0.00679

LSTM 0.860 0.857 0.861 0.864 0.865 0.868 0.870 0.873 0.865 0.00504

In addition to eight-fold cross-validation, we adopt five-fold cross-validation and ten-
fold cross-validation to find the best model. Table 10 shows validation accuracy of five-fold
cross-validation with different models on Dataset6. Table 11 shows validation accuracy
of ten-fold cross-validation with different models on Dataset6. We compare the mean
validation accuracy and the standard deviation (std) of different models. The results show
validation accuracy of eight-fold cross-validation is higher than five-fold cross-validation
and partially higher than ten-fold cross-validation. The std of eight-fold cross-validation
is lower than ten-fold cross-validation and not too higher than five-fold cross-validation.
That shows eight-fold cross-validation is more suitable.
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Table 10. Validation accuracy of five-fold cross-validation on Dataset6.

Accuracy model1 model2 model3 model4 model5 mean std

LR 0.928 0.934 0.933 0.930 0.936 0.932 0.00297

DT 0.950 0.928 0.950 0.939 0.948 0.943 0.00856

SVM 0.969 0.975 0.978 0.969 0.974 0.973 0.00349

RF 0.948 0.955 0.954 0.952 0.957 0.953 0.00303

XGBoost 0.973 0.974 0.971 0.976 0.969 0.972 0.00231

LightGBM 0.976 0.974 0.973 0.977 0.972 0.974 0.00208

CatBoost 0.957 0.959 0.955 0.958 0.957 0.957 0.00130

CNN 0.848 0.843 0.850 0.852 0.853 0.849 0.00354

LSTM 0.854 0.852 0.858 0.860 0.862 0.857 0.00370

Table 11. Validation accuracy of ten-fold cross-validation on Dataset6.

Accuracy m m m m m m m m m m mean std

LR 0.938 0.921 0.947 0.923 0.938 0.925 0.938 0.922 0.932 0.941 0.933 0.00868

DT 0.953 0.930 0.938 0.935 0.955 0.930 0.946 0.935 0.948 0.948 0.942 0.00876

SVM 0.968 0.973 0.979 0.975 0.979 0.984 0.976 0.971 0.983 0.978 0.977 0.00484

RF 0.940 0.948 0.961 0.949 0.953 0.955 0.956 0.951 0.955 0.956 0.952 0.00527

XGBoost 0.978 0.972 0.970 0.976 0.969 0.978 0.978 0.980 0.972 0.979 0.975 0.00383

LightGBM 0.981 0.976 0.973 0.975 0.973 0.971 0.971 0.980 0.975 0.975 0.975 0.00316

CatBoost 0.952 0.956 0.963 0.958 0.959 0.956 0.960 0.961 0.959 0.953 0.958 0.00335

CNN 0.852 0.854 0.855 0.863 0.864 0.860 0.874 0.870 0.872 0.873 0.864 0.00789

LSTM 0.862 0.859 0.864 0.867 0.868 0.867 0.875 0.873 0.874 0.878 0.869 0.00583

Finding the best model with eight-fold cross-validation, we feed testing data into the
best model for obtaining testing accuracy. The result is displayed in Table 12. To begin
with, comparing the results of Dataset1, Dataset2, Dataset3, and Dataset4, we find that
feeding benign certificates with a high Alexa rank of subject domain names to models
can result in a tiny improvement to testing accuracy. Furthermore, as the number of
certificates increases in Dataset5, Dataset6, and Dataset7, the promotion of testing accuracy
is various. SVM has the largest improvement, and ensemble learning models have a small
boost with more training data. As we can see, the highest testing accuracy is obtained
by SVM in Dataset7. What is more, compared with classical and deep learning models,
ensemble learning models have higher average testing accuracy, which indicates ensemble
models are the most efficient. Finally, the average testing accuracy of different models
in seven datasets is 92.7%, and all models can achieve a relatively high testing accuracy,
which shows the effectiveness and necessity of features extracted by the VFE.
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Table 12. Testing accuracy of the best model.

Accuracy Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7 Average

LR 0.938 0.930 0.928 0.934 0.933 0.938 0.934 0.934

DT 0.955 0.941 0.954 0.954 0.971 0.966 0.950 0.956

SVM 0.835 0.827 0.812 0.821 0.976 0.978 0.982 0.890

RF 0.960 0.943 0.955 0.953 0.968 0.965 0.954 0.957

XGBoost 0.963 0.947 0.958 0.957 0.968 0.971 0.965 0.961

LightGBM 0.967 0.951 0.953 0.951 0.973 0.974 0.966 0.962

CatBoost 0.957 0.946 0.954 0.955 0.970 0.965 0.954 0.957

CNN 0.872 0.860 0.859 0.862 0.865 0.866 0.872 0.865

LSTM 0.869 0.857 0.860 0.863 0.865 0.868 0.873 0.865

Average 0.924 0.911 0.915 0.917 0.943 0.943 0.939 0.927

What is more, the ANalysis Of Variance (ANOVA) results in Table 13 show differ-
ent models have a significant influence on testing accuracy with a high F-Statistic score.
During calculation, each group includes the best models’ testing accuracy with different
datasets under one algorithm. The ANOVA calculation detail is illustrated on the website
(Calcualtion of ANOVA: https://goodcalculators.com/one-way-anova-calculator/).

Table 13. The ANOVA results of different models.

Source Degree of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Statistic

Between Groups 8 0.0989 0.0124 15.0821

Within Groups 54 0.0443 0.0008

Total: 62 0.1432

6.3.2. Importance Analysis

In addition to the validation and testing accuracy of different models, we analyze
the importance values of the features in the best model of DT, RF, XGBoost, LightGBM,
and CatBoost. Figure 5 shows the top 10 important features in XGBoost and their scores.
The score is the improvement of accuracy brought by a feature to the branches it is on.

Figure 6 shows the top 10 important features in LightGBM and their scores. The score
is the relative number of times a particular feature occurs in all splits of the model’s trees.

Figure 7 shows the top 10 important features in CatBoost and their scores. Refer to of-
ficial document (LightGBM document: https://catboost.ai/docs/concepts/fstr.html#fstr_
_regular-feature-importance), the score is computed with following Formula (1) and (2).
c1, c2 are the number of objects in each leaf and v1, v2 are the formula values in the left and
right leaves.

f eature_importanceF = ∑
trees,lea f sF

(v1 − avr)2 ∗ c1 + (v2 − avr)2 ∗ c2 (1)

avr =
v1 ∗ c1 + v2 ∗ c2

c1 + c2
(2)

Figure 8 shows the top 10 important features in DT and their scores. The score is
computed as the (normalized) total reduction of the criterion brought by that feature, which
is known as the Gini importance (Gini importance: https://medium.com/the-artificial-
impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3).

https://goodcalculators.com/one-way-anova-calculator/
https://catboost.ai/docs/concepts/fstr.html#fstr__regular-feature-importance
https://catboost.ai/docs/concepts/fstr.html#fstr__regular-feature-importance
https://medium.com/the-artificial-impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3
https://medium.com/the-artificial-impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3
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Figure 5. Important features of XGBoost.

Figure 6. Important features of LightGBM.

Figure 9 shows the top 10 important features in RF and their scores. The score is the
average feature importance of trees in the forest. The feature importance of each tree is
computed with Gini importance.

As a result that the feature importance property is not provided in every model
implementation, we cannot obtain all models’ feature importance. Therefore, we analyze
the feature importance of XGBoost, LightGBM, CatBoost, DT, and RF. From the top 10
important features in each model, we can see that “valid_time_so_far” is the most important
feature in three out of five models. If the certificate is not expired, “valid_time_so_far” is
the hours from the issue date to the feature extraction date. If the certificate is expired,
“valid_time_so_far” means valid hours when it is not expired. The result exposes that
“valid_time_so_far” is the most important feature in our experiments. In addition, we
count feature occurrence in the top 10 important features of all five models. Figure 10
shows the results. We can see that there are many common features in the top 10 important
features of all five models, which indicates the coincidence of important characteristics
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to some extent. What is more, the features in Figure 10 appear in the top 10 important
features of all five models more than one time. Therefore, we regard these features as
vital features. Among these features, “20” represents the appearance of “ou” in the subject
information of certificates, and other features are illustrated on our website (Our website:
https://github.com/fight-think/features-extraction).

Figure 7. Important features of CatBoost.

Figure 8. Important features of Decision Tree (DT).

https://github.com/fight-think/features-extraction
https://github.com/fight-think/features-extraction
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Figure 9. Important features of Random Forest (RF).

Figure 10. Feature occurrence count in top 10 important features of five models.

6.3.3. Time Consumption

Time consumption is an important metric of models, which reflects the computation re-
source consumption of training models. We record the time cost of eight-fold cross-validation
and test the best model with testing data within one dataset, shown in Formula (3). Among the
formula, n is the number of folds in experiments. Time(i) presents the training model’s time
cost with n-1 folds data and validation on remaining fold data. Test_time means the time cost
of feeding testing data into the best model of cross-validation. In our experiments, we use
eight-fold cross-validation, and n is eight.

Time_consumption = Σi=n
i=1 time(i) + test_time (3)
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Table 14 shows the time consumption of training Dataset6, reflecting the total time
cost. It shows training models with deep neural network spends far more time than
classical models and ensemble models. Among different classical models, SVM is the most
time-consuming. In addition, in different ensemble learning models, XGBoost takes more
time than the other two ensemble models. What is more, the average time consumption of
ensemble models is 74.47 s, which is faster than 90.51 s in classical models and 10,502.52 s
in deep models. The result shows ensemble models demand less time for training, which
means less computation resource consumption.

Table 14. Time consumption of different models.

Dataset6 LR DT SVM RF XGBoost LightGBM CatBoost CNN LSTM

Time(s) 53.05 21.32 278.49 9.19 157.52 10.91 54.97 10449.32 10555.80

7. Conclusions

In this paper, we design and implement a system called VFE for obtaining and
recording essential characteristics of X.509 certificates. With the help of the VFE, we extract
a large number of features for model training. Furthermore, we train different types of
models to distinguish between malicious and benign certificates. All the models have
a relatively high score of validation accuracy and testing accuracy, which indicates the
robustness of the VFE. In addition, the average testing accuracy of different models in all
datasets is 92.7%, and the validation accuracy of different models in Dataset6 is 93.8%,
which indicates the features extracted by the VFE are essential and crucial. Analyzing the
five models’ top 10 important features, we find some important common features vital
for detecting malicious certificates. The ensemble learning models have higher average
testing accuracy and lower average standard deviation of testing accuracy than classical
and deep models, which indicate ensemble models are the most stable and efficient models.
Furthermore, ensemble models reach an average testing accuracy of 95.9%. What is more,
we obtain an SVM-based detection model with a testing accuracy of 98.2%, which is the
highest accuracy.
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Appendix A. Detail of CNN-Based and LSTM-Based Models

We construct CNN-based and LSTM-based models with the help of Pytorch. The de-
tails of the CNN-based model are illustrated in Figure A1. The details of the LSTM-based
model are illustrated in Figure A2. In order to make it easier to reproduce this work, we
use functions in Pytorch to illustrate the hidden layers of each deep learning model.

https://github.com/fight-think/features-extraction
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Figure A1. Details of the CNN-based model.
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Figure A2. Details of the LSTM-based model.

References
1. Cooper, D.; Santesson, S.; Farrell, S.; Boeyen, S.; Housley, R.; Polk, W. RFC 5280: Internet X. 509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile. RFC 5280, May 2008. Available online: https://www.rfc-editor.org/info/rfc5280
(accessed on 27 February 2021). [CrossRef]

2. Ghafir, I.; Prenosil, V.; Hammoudeh, M.; Han, L.; Raza, U. Malicious SSL certificate detection: A step towards advanced persistent
threat defence. In Proceedings of the International Conference on Future Networks and Distributed Systems, Cambridge, UK,
19–20 July 2017.

3. Mishari, M.A.; De Cristofaro, E.; Defrawy, K.E.; Tsudik, G. Harvesting SSL certificate data to identify Web-fraud. arXiv 2009,
arXiv:0909.3688.

4. Dong, Z.; Kane, K.; Camp, L.J. Detection of rogue certificates from trusted certificate authorities using deep neural networks.
ACM Trans. Priv. Secur. 2016, 19, 1–31. [CrossRef]

5. Torroledo, I.; Camacho, L.D.; Bahnsen, A.C. Hunting malicious TLS certificates with deep neural networks. In Proceedings of the
11th ACM Workshop on Artificial Intelligence and Security, Toronto, ON, Canada, 19 October 2018; pp. 64–73.

https://www.rfc-editor.org/info/rfc5280
http://doi.org/10.17487/RFC5280
http://dx.doi.org/10.1145/2975591


Appl. Sci. 2021, 11, 2164 24 of 24
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