
applied
sciences

Article

You Only Look Once, But Compute Twice: Service Function
Chaining for Low-Latency Object Detection in
Softwarized Networks †

Zuo Xiang 1,*,‡ , Patrick Seeling 2,‡ and Frank H. P. Fitzek 1,‡

����������
�������

Citation: Xiang, Z.; Seeling, P.;

Fitzek, F.H.P. You Only Look Once,

But Compute Twice: Service Function

Chaining for Low-Latency Object

Detection in Softwarized Networks.

Appl. Sci. 2019, 11, 2177. https://

doi.org/10.3390/app11052177

Academic Editor: Cheonshik Kim

Received: 22 December 2020

Accepted: 25 February 2021

Published: 2 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2019 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden,
01187 Dresden, Germany; frank.fitzek@tu-dresden.de

2 Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859, USA;
patrick.seeling@cmich.edu

* Correspondence: zuo.xiang@tu-dresden.de
† Extended version of Xiang, Z.; Zhang, R.; Seeling, P. Machine learning for object detection. In Computing in

Communication Networks; Fitzek, F.H., Granelli, F., Seeling, P., Eds.; Elsevier/Academic Press: Cambridge, MA,
USA, 2020.

‡ The authors contributed equally to this work.

Featured Application: Splitting of formerly only integrated inference from object recognition
and other trained (and potentially untrained) machine learning approaches has broad applicabil-
ity in all application scenarios that rely on these types of models, with connected autonomous
cars, smart city applications, and video surveillance being prominent examples.

Abstract: With increasing numbers of computer vision and object detection application scenarios,
those requiring ultra-low service latency times have become increasingly prominent; e.g., those
for autonomous and connected vehicles or smart city applications. The incorporation of machine
learning through the applications of trained models in these scenarios can pose a computational
challenge. The softwarization of networks provides opportunities to incorporate computing into
the network, increasing flexibility by distributing workloads through offloading from client and
edge nodes over in-network nodes to servers. In this article, we present an example for splitting
the inference component of the YOLOv2 trained machine learning model between client, network,
and service side processing to reduce the overall service latency. Assuming a client has 20% of the
server computational resources, we observe a more than 12-fold reduction of service latency when
incorporating our service split compared to on-client processing and and an increase in speed of more
than 25% compared to performing everything on the server. Our approach is not only applicable to
object detection, but can also be applied in a broad variety of machine learning-based applications
and services.

Keywords: object detection; latency optimization; mobile edge cloud; connected autonomous cars;
smart city; video surveillance

1. Introduction

Multimedia network traffic has permeated all types of networks, and its dominance
continues with increased adoptions of new connected services. Within the range of multi-
media network traffic types, video is typically the most dominant form, especially with
respect to bandwidth requirements. For example, Cisco forecasts in [1] that 82% of In-
ternet Protocol (IP) traffic will be comprised of video by the year 2022. Within the video
domain, specifically the object detection sub-category has an additional significant latency
requirement, especially when applied in certain scenarios, see, e.g., [2]. The object iden-
tification and understanding within an ongoing video stream is based on the Computer
Vision (CV) domain of real-time video analysis. Prominent examples for real-time object

Appl. Sci. 2019, 11, 2177. https://doi.org/10.3390/app11052177 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3814-1151
https://orcid.org/0000-0003-2770-0675
https://orcid.org/0000-0001-8469-9573
https://doi.org/10.3390/app11052177
https://doi.org/10.3390/app11052177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052177
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2177?type=check_update&version=2

Appl. Sci. 2019, 11, 2177 2 of 14

detection and analysis include Google Lens or smart city applications that perform video
surveillance [3–5] or for connected autonomous cars, as illustrated in Figure 1. Especially
for the latter, incorporating new sensor data such as from LIDAR and other on-board
sensors that goes beyond image data alone is also attracting interest [6–8].

(a) (b)
Figure 1. Object detection use cases including pedestrians and vehicles detection. (a) Pedestrian data
set detection by YOLOv2 (image from [9]). (b) Object detection on the street (image from [10]).

Significant challenges exist to reliably perform real-time video analysis on resource-
limited devices, such as mobile phones or ad-hoc deployed video monitoring, when
considering higher frame rates of live video captures. The requirements are typically
high when locally processing data, as captured image analysis and machine vision tasks
that comprise visual understanding commonly encompass involved Artificial Intelligence
(AI) approaches. The AI component of these types of systems has undergone steady
improvements in recent years as well, with increasing precision and recall, especially for
Deep Learning (DL) approaches [11]. As these approaches exceed traditional methods,
deep learning-based mechanisms have become increasingly popular, themselves commonly
based on Convolutional Neural Networks (CNN) [12]. This enables CV systems to more
reliably detect objects even in complicated scenes. The training of these models is typically
highly resource-intensive; however, continuous improvements in hardware alleviate some
of these problems and make a focus on the inference from these models more important.
Example approaches include R-CNN [13], Faster R-CNN [14], and YOLO [15] combine
precision with improved detection speed (also referred to as the inference speed).

The focus on latency optimization in a mobile context has to combine several re-
quirements, such as resource usage and low latency of detection. Common resources
considered include memory, CPU, and bandwidth on the computing side, however, overall
system costs commonly need to be factored into solutions as well. For example, future
intelligent transport system and connected autonomous vehicle applications of object
detection are highly latency sensitive and mission-critical at the same time. Current ap-
proaches commonly are limited in realizing the full potential that upcoming network
softwarization provides:

• Object detection as outlined above is resource demanding and commonly not suitable
for prolonged execution on mobile (i.e., battery-limited) devices and can overwhelm
the computational resources of embedded solutions.

• Instead, cloud computing typically offers flexible resource management for computa-
tionally intensive tasks through computational offloading, see, e.g., [16,17].The need
to communicate with far-away cloud computing resources in traditional network
infrastructures, however, increases the overall service latency significantly.

• One approach to overcome the limitations of mobile processing while providing
low latency services is to combine local processing and geographically close cloud
services for more computationally expensive processing. While current communica-
tion networks infrastructure does not typically allow for in-network computing, new
softwarized networks provide this flexibility.

Appl. Sci. 2019, 11, 2177 3 of 14

• In this article, we focus on the latency optimization aspects of mobile object detection
by combining on-device and in-network computing. Our approach can be applied in
5G and beyond networks (as well as any network that has in-situ computing enabled).

In this article, we describe the implementation and performance analysis for a real-
time object detection method that incorporates this network softwarization and computing
resource provisioning.

The current trend to edge computing [18,19] and network softwarization in general
enables the flexible service and application deployment under tight latency constraints,
such as the one we consider here. Typically, deployments in softwarized networks include
a combination of technologies to fulfill the requirements of real-time use cases: Software-
Defined Networking (SDN) [20], Network Function Virtualization (NFV) [21], and Service
Function Chaining (SFC) [22]. As the network becomes softwarized, Computing in the
Network (COIN) and the Mobile Edge Cloud (MEC) [23] become powerful concepts to
combine mobile, local, and far computing resources in a flexible fashion per use-case.
Computing in the network will significantly reduce latency and issues that stem from
extended packet switching across multiple networks, such as congestion. Virtualized
resources can be flexibly deployed at various locations closer to the user, follow the user,
and be reallocated in a dynamic fashion. In such a setup, initial pre-processing could be
performed at edge nodes and reduce the subsequent nodes’ latency requirements for real-
time services. This split of overall service processing needs is enabled by the layer-based
approach used in object detection neural networks and the ability to split the location of
processing by connecting the different layers flexibly over the network.

We describe the overall approach in the following Section 2, which contains informa-
tion about the general on-device or on-server object recognition approach. Additionally,
we describe the implementation of a single service function split between an initial service
client and the server, noting that multiple splits could be performed as well. We follow
with the description of results for a latency-focused performance evaluation in Section 3
and discussion in Section 4 before concluding in Section 5.

2. Materials and Methods

In this manuscript, we employ the You Only Look Once (YOLO) object detection
library as a concrete example, noting that similarities with other neural networks can be
exploited to modify our described approach with those models and mechanisms as well.
In this section, initially discuss the general approach before describing YOLO and our
setup in greater detail.

2.1. CNN Object Detection Model Split

CNN approaches for object detection generally feature several types of interconnected
layers: convolutional layers, pooling layers, fully-connected layers, and batch normaliza-
tion layers. These layers are typically stacked in a pattern of convolutional layers and
activation functions followed by pooling layers, which (in multiple iterations) reduces the
overall size of the image to a smaller size. Once a desired small size has been reached, fully
connected layers are used, whereby the final layer contains the output. The output of each
convolutional or pooling layer is an intermediate representation of the original image data
relying on convolutional filters, their parameters derived via CNNs. The parameters (or
weights) are dynamic while the feature maps representing different features of an image
remain static and the overall outcome depends on the image input. Typically, the weights
and resulting output data types are floating-point numbers. After a convolution layer,
activation functions such as ReLU [24] are applied. To simplify the overall process, it is
also common that the overall image will be initially pre-processed, as multi-layer models
typically were trained for and assume a specific image size.

The limitations of computing resources (here, processing and memory) of edge nodes
motivates a split of the overall processing to take place via different levels of offloading. For
example, should traditional cloud computing approaches be involved, the entire sequence

Appl. Sci. 2019, 11, 2177 4 of 14

of images (or video frames) generated at the client on the network edge would have to be
forwarded to centralized cloud servers. In compute-and-forward networks, on the other
hand, computing resources are available inside the network which enables intermediate
processing. In turn, reduced amounts of data alleviate network congestion and can improve
overall service latency. We assume that deep learning frameworks such as Tensorflow [25]
can be deployed as VNFs inside the network as well as on the centralized server. We
additionally note that here, we consider a general CPU-based baseline evaluation, which
can greatly be enhanced with additional accelerators, such as GPUs or FPGAs.

A significant initial consideration is how and where to perform a potential split
between the on-device, edge, and centralized server processing in this overall architecture.
Table 1 provides the initial layers for YOLOv2 [26], SSD [27], VGG16 [28], and Faster
R-CNN [14].

Table 1. Initial 10-layer designs for example object detection models.

Model Structure of first 10 layers

YOLOv2 Conv. + Pool. + Conv. + Pool. + 3 Conv. + Pool. + 2 Conv.

SSD 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

VGG16 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

Faster R-CNN 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

Comparing these entries, all feature different combinations of similar layers that can
be evaluated to determine a favorable point to split the original model such that the part
before a split can be executed on a network device and bandwidth savings result. This
requires limiting the number of layers prior to a split. Consequently, the number of layers
before the split point should not be too high and the output data of the front part should
be smaller than the original input image size in order to realize bandwidth savings.

Given a particular split to enable the offloading of processing parts, the structure
of the pipeline for evaluating the performance of deploying object detection services in
edge computing such as MEC is presented in Figure 2 with a detailed visualization of
basic components.

SF3Data
Processor YOLO-1 Encoder

VNF

Users store&forward
compute&forward

YOLO-2

 Server

Classifier SFF1 SFF2 SFF3

SF1

Figure 2. Overview of the distributed architecture, here for the example employing YOLO [29].

The implementation of this example is focused on the VNF, which supports both
store-and-forward and compute-and-forward to adapt to the network state. The outer
Service Function Path is not modified during computation, i.e., the VNF will not affect
other protocols or the SFC architecture.

The VNF is employed to offload part of the overall computational burden of the CNN
related computations in the object detection from centralized servers to the network edge.

Appl. Sci. 2019, 11, 2177 5 of 14

We employ YOLOv2 as example for such object detection methods. YOLOv2 is deployed
in the VNF at the edge and the server. As described, we follow the outlined approach of
splitting the CNN model into two parts. The first part is deployed in the VNF and the
second part is deployed on the server. Following the overall desire to reduce the overall
service latency under the computational constraints, the complexity of the first part is lower
than that of the second part, where in our case, the first part will be the pre-processor for
video frames.

2.2. You Only Look Once (YOLO), But Twice

We now focus on the concrete implementation employed in the remainder of this
article. YOLOv2 is mainly constructed of convolutional layers and max-pooling layers [26],
similar to several other approaches highlighted in Table 1 and illustrated in Figure 3.

Conv/ReLU/Pool

+Result

Input

Figure 3. Combined Model structure of YOLOv2 as executed as a single instance.

Following our assumption of computational resource availability at clients, edge
nodes, and centralized cloud computing servers, increasing distance from the network edge
corresponds to higher computational resources. Subsequently, splitting workloads should
focus on the initial layers, provided that the split takes place at an advantageous processing
step in the neural network. Similarly, not too many layers should have been processed at
the initial nodes to improve the overall service latency and adhere to computing resource
restrictions. Figure 4 illustrates the different layer outputs in relation to the initial input
image for YOLOv2. Figure 4 additionally contains the reference input size (i.e., 1× 608×
608× 3).

While some initial layers clearly outsize the original input, the outputs of the latter
layers are very small. For example, the final convolutional layer has only 13% of the
original input size. In the first 10 layers, the output size of max_8 and conv_10 are both
66% of the input size, which are both candidates for a potential early split. To expedite the
processing, we here consider the first candidate max-pooling layer’s output as a split point.
This provides a possibility to compress the resulting feature maps (which should result in
smaller sizes than the input images). The resulting model’s split is illustrated in Figure 5,
showcasing how the outputs are communicated further into the network.

Appl. Sci. 2019, 11, 2177 6 of 14

Figure 4. Output size of each layer in YOLOv2 for conv-olutional and max-pooling layers [29].

+

Result Input
max_8

conv_9

Figure 5. YOLOv2 split into two separate instances with the output of the eighth layer communicated
over the network.

In our particular example, the VNF consists of the following three components pack-
aged as container:

Data Processor The data processor collects the incoming video packets and performs rel-
evant pre-processing tasks. These tasks could encompass video decoding, image
manipulations (especially reshaping to proper input dimensions), or pixel representa-
tion changes.

YOLO Part 1 The initial part of YOLO as VNF provides initial detection model process-
ing as outlined in this section. The resulting feature maps contain the extracted
information from the original image.

Encoder The encoder ecodes (compresses) the resulting feature maps before sending
them to the server to reduce bandwidth requirements even further. As the feature
maps themselves are representable as image data data, we consider several image
compression approaches.

Appl. Sci. 2019, 11, 2177 7 of 14

The alternative approach to the YOLO service function split is the monolithic deploy-
ment on the central cloud server. A significant benefit is that cloud servers are generally
assumed to have an abundance of computing resources at their disposal. In our example
implementation, the server deploys the regular (full as in Figure 3) YOLOv2. Additionally,
the server also deploys the remaining layers of the split YOLOv2 service (as in Figure 5). To
enable separation of the server-side service to use, the VNF adds a small header indicating
which approach to use. Should the received data be pre-processed by the VNF, the poten-
tially compressed feature maps are decoded and entered in the remaining chain of layers.
Alternatively, should the received data be simply forwarded data from user equipment, the
traditional YOLOv2 pre-processing chain commences (employing the same mechanisms as
in the VNF). In either case, the object detection result is obtained on the server and sent
back to the user equipment after processing is completed.

2.3. Testbed Input Data Performance Metrics

Our example evaluation is based on the COCO data set [30], employing YOLOv2 [26]
as described in this section. We consider three different object detection scenarios, namely
(i.) on-device, (ii.) server-based, and (iii.) service function split. In addition to pre-
processing and subsequent YOLOv2 object detection fully deployed on the client/server,
we also perform a split with only layers after the max_8 on the server, and the layers and pro-
cessing before being implemented as VNF. In our example, the input images are normalized
to the range [0–1], i.e., the data type of all feature maps will be 32-bit float. For the overall
testbed, we employ a generic computer system with an i7-6700T CPU with 16GB RAM
using Ubuntu 18.04 LTS and implement the system in the Communication Networks Emu-
lator (ComNetsEmu), see [31]. The Tensorflow library v1.13 is used to implement the object
detection function of VNF and server. All programs and measurement scripts are imple-
mented in Python 3.6 and are publicly accessible in the repository of ComNetsEmu [32]. All
source code can be found in the folder: app/machine_learning_for_object_detection.
Detailed descriptions (for reproducible measurements) of all the libraries and environments
used can be found in the Dockerfile included in the repository. Provided the nature of
non-accelerated performance evaluation here, our results provide an upper first limit to
attainable latency, which can be improved upon, e.g., with GPU accelerations. The client,
VNF and server are running on different physical CPUs (using Linux cpuset_cpus) to min-
imize interference. For the latency measurements, a multi-hop topology is used connecting
client to in-network service function (processing or forwarding as illustrated in Figure 2)
and server. All links in the topology have the same homogeneous bandwidth is limits of to
10 Mbit/s with a fixed propagation delay of 150 ms. The same source image data is sent by
the client (pedestrian.jpg with a original size of 48 kB) for 30 repeated measurements. All
measurements were performed utilizing JPEG compression for the original and in-network
computation’s intermediate result forwarding.

As not only latency performance, but also the actual prediction outcome performance
are important for object detection services, a careful trade-off between the two should be
made. For the 8th layer (split point) of YOLOv2, the output data shape is 1 × 78 × 78 × 128,
which results in approximately 92% as a baseline average precision for the entire COCO
data set without YOLOv2 modifications. We select compression format and working point
following our reasoning in [29], with results illustrated in Figure 6 for multiple compression
approaches’ compression factor versus the average attainable precision.

As illustrated, only JPEG and WebP result in higher attainable average precision
beyond the 92% baseline. Subsequently, we select JPEG compression of about 50% to be
applied to the 7th layer output; the compressed data is about half of the original image
data (also in JPEG format).

Appl. Sci. 2019, 11, 2177 8 of 14

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

Average Precision(%)

0

20

40

60

80

100

120

S
iz

e
o
f

co
m

p
re

ss
ed

im
a
g
e/

S
iz

e
o
f

o
ri

g
in

a
l

im
a
g
e(

%
)

JPEG

WEBP

H264 slower

H264 medium

H264 faster

H264 ultrafast

80.0 82.5 85.0 87.5 90.0

20

30

40

50

Figure 6. Image-based compression methods for JPEG input assumption, from [29].

We initially assume that the client features a limited processing capacity that is 20% that
of the server/service function in a common scenario. We base this split on the CoreMark
Benchmark [33] values per MHz for the Samsung Exynos 5422 (15.077 for four cores at 2.1
GHz) and the Intel Core i5-8500 (57.207 for four cores at 3 GHz). The Samsung Exynos
as a popular mobile device CPU and representative for a low-power fixed smart city
device or smartphone at just below 20% performance of the i5-8500. Similar comparisons
for other benchmarks confirm this general approach, e.g., the Passmark Average CPU
Mark [34] results for the entire CPU of current Android phones are around 6000 while
current dual CPU server systems are rated around 90,000. Based on single thread ratings, it
would require 1/10th of a modern server’s threads to replicate the entire available CPU
performance of a smartphone. Similarly, multi-core benchmarks from Geekbench v5 for a
Google Pixel 5 smartphone range around 1500 while the AMD Threadripper 3990X is rated
at around 27,000. Again, the idea of providing fractional resources for NFV would allow
us to serve 18 phones at full virtualized CPU performance in this foundational comparison.
In turn, we reason that our split is representative of the common performance differences
between mobile and short-term available edge computing resources. As we perform our
evaluations in the ComNetsEmu environment with the above settings, we note that during
the experimentation, the server is always allocated with 100% CPU time while the client
is allocated a dynamic portion of the server’s CPU time, denoted as α. With the overall
service latency T as the main focus of this article, we determine it as

T = tClient
CPU + tServer

CPU + 2 · tprop + tup
tran + tdown

tran . (1)

where intuitively tClient|Server
CPU denotes the required CPU times for client and server, respec-

tively. Similarly, we denote the fixed propagation delay as tprop and the up- or downstream

transmission delays as tup|down
tran .

3. Results

In this section, we describe the obtained service latency results for the three evaluated
scenarios of on-device, server-based, and service function split object detection service
with YOLOv2 as described in prior sections. We initially present our overarching results in
Table 2.

Appl. Sci. 2019, 11, 2177 9 of 14

Table 2. Overview of obtained service latency T results for YOLOv2 performed on-device (with varying degrees α of server
computation resource), store-and-forward networking with server-side processing, and compute-and-forward with α = 0.2
client-side processing up to layer 8 of YOLOv2 and remainder processing server-side. All results are in seconds.

Client, α Store Compute

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (α = 0.2)

Min 116.498 74.990 50.103 28.381 16.132 11.883 9.517 8.229 7.368 6.575 8.937 6.012
Median 150.701 81.901 54.140 31.276 16.693 12.359 9.984 8.735 7.678 6.882 9.170 6.581
Average 147.884 81.656 53.902 31.275 16.746 12.406 9.964 8.695 7.712 6.904 9.242 6.643
Max 155.296 85.397 57.722 34.629 17.996 13.049 10.623 9.319 8.228 7.370 9.772 7.496
StdDev 8.952 2.565 1.844 1.639 0.450 0.320 0.313 0.296 0.253 0.226 0.237 0.408

We first observe that for the two scenarios of fully on-device (α = 1) and fully on-server
(Store), the server-side processing incurs a delay of just over 2 seconds. For the client-only
service latency, we notice an exponential increase as the performance of the client in relation
to the server diminishes. At α = 0.2, the client requires almost a 12-fold increase to process
the image. As outlined in the motivation in Section 2.3, we employ this as a comparison
point to the server for the compute-and-forward scenario. The compute-and-forward case
provides a total service latency that is just below that of the client having the full server
resources itself. We additionally notice from the table that the median and average are
fairly close to another, with generally less than one percent difference. A visual comparison
of these three service approaches is illustrated in Figure 7.

Figure 7. Service latency likelihood for YOLOv2 performed on-device only (with device com-
putational resources equal to server-side resources, α = 1), store-and-forward networking with
server-side processing only, and compute-and-forward with α = 0.2 client-side processing up to
layer 8 of YOLOv2 and remainder processing server-side.

We observe that the store-and-forward approach is in this comparison not desirable at
all, as it exhibits the highest service latency. The comparison of an assumed full server-level
CPU performance on the client side with the compute-and-forward approach with only
20% server-side equivalent resources on the client side showcases a significant overlap in
service time distributions. Particularly, we notice that 50% of the compute-and-forward
latency times observed are lower than any local processing, while the remaining 50% are
spread over the entire client-side processing range. In comparison, the store-and-forward

Appl. Sci. 2019, 11, 2177 10 of 14

approach yields a lower spread of latency values and is more comparable to the on-client
processing in this regard.

We now consider the impact of different local processing capabilities of the client in
comparison to the server. We illustrate the outcomes for the overall service latency for
different client computational resources in Figure 8. We initially note the increase in service
latency as the evaluation moves from compute-and-forward over store-and-forward to
the scenario of α = 0.5 in Table 2, assuming the client’s processing resources are 50% of
the server resources. We observe that the visual difference to the other two server-side
approaches is significant. We additionally observe the continuous increase of service
latency to the α = 0.2 case, which is the alternative to the compute-and-forward case and
showcases the immense benefit that can be obtained from our described approach visually.
Overall, we derive that the split between in-network processing and server-side processing
heavily favors the service function split, especially for scenarios where clients have low
computational resources when compared to available server-side resources.

Figure 8. Overall service latency times for YOLOv2 object detection for on-client (with client com-
putation resources equal to 20–50% server resources), traditional store-and-forward of image data
to the server for object detection, and service split between in-network computing and forwarding
to server.

4. Discussion

Overall, our results are indicative of significant service latency reductions that can
be attained through splitting the inference workload in the multi-layer YOLOv2 object
recognition model. Some of our results have show an increasing spread across service
latency values, especially in scenarios where the client has only smaller fractional CPU
times. This spread can be attributed to the increased burden on the CPU of performing
multiple operations and the overhead, especially when considering the computational
burden of the various layers in the YOLOv2 model. It is particularly noteworthy that the
emulation framework employed (ComNetsEmu) was not designed for ultra-low latency
usage and is originally a prototyping and teaching tool and we expect additional gains can
be realized when implementing our approach on production-level systems.

We note that our assumptions were based around similar architectures employed on
client and server implementations here, which could be even further abstracted across
different platforms and, most importantly, through the utilization of GPUs on the server
side rather than the CPU-driven approach we are evaluating here. Indeed, the comparison
between server and client is based on a generic viewpoint and does not account for potential

Appl. Sci. 2019, 11, 2177 11 of 14

additional gains due to parallel processing and multi-threading. Significant increases in
server core density also will increase the potential for the server side having significantly
more computational resources available for bursty operations such as individual image
operations even without GPUs.

Indeed, moving into ultra-low latency application scenarios will require changes to
the current approach to networked services, such as with a ChAin-based Low latency
VNF ImplemeNtation (CALVIN) [35], which significantly reduced processing times at
the network’s MEC. While negative effects can result [36], we showcased that in the
generic scenario we considered this was not the case. While commonly, specific hardware
is required to provide speed-up factors for learning, not inference, recent research has
also evaluated the possibility to employ commodity hardware for these scenarios [37,38].
Specifically, in [39], the authors were able to achieve a throughput of 19 decisions per
second for autonomous line following on a smart network interface. While the task at hand
is different, the overall concept of offloading potrtions or all of the computer vision tasks
into the network is similar.

Ongoing research takes place that continues on the various facets of object detection
mechanisms as well – in our context with continuous upgrades of the YOLO model. In [40],
the authors describe and improve upon YOLOv3 for the outlined significant ITS scenario.
They derive processing times of just below 10 ms, which reaches service latency levels
that are suitable for real-time object detection. Indeed, the interest for improvement
and implementation for YOLO at the network edge is continuously attracting research
interest [41–43] to improve upon the continuously developed YOLO, including hardware
implementations [44]. Comparing these optimized approaches to our evaluation base don
CPU processing alone is limited, as mostly, GPU or specialized hardware is employed for
this type of task. In turn, our results can be seen as a ceiling evaluation of the resulting
service latency for cases where no specialized hardware is available and processing needs
to be performed on the CPU.

5. Conclusions

There will be an increased need for object detection as well as other machine learning-
based approaches that are performed in a low-latency fashion in future application scenar-
ios. For example, future Intelligent Transport Systems (ITS) will rely on pedestrian and car
detection mechanisms to avoid loss of life and damage to property. Similarly, in connected
autonomous driving, an object detection service is helpful for decision-making, such as for
braking and obstacle avoidance. In the driver view, for example, object detection services
can help the car to protect vulnerable road users (VRUs) such pedestrians and bicycles as
we originally illustrated in Figure 1b.

Approaches that rely on machine learning commonly require significant processing,
which is not always available on device, but becomes available in the softwarized 5G and
beyond cellular networks. We present an approach to implement a service that splits the
traditional YOLOv2 model between an on-device client and centralized server component
by performing only the initial layers’ processing on the client and the remainder on the
server. Comparing our approach with traditional on-client and on-server processing with
varying degrees of client computational resources, we find that a 12-fold reduction of
the service latency can be achieved when the client has 20% of the server’s resources—
a scenario we deem likely in future connected device scenarios, especially for battery-
limited devices.

The approach to split the intermediate results in systems incorporating neural network
layers is not limited to object recognition tasks alone, but can be applied for all such systems.
The increased embedding of AI approaches in modern networked systems provides broad
opportunities to employ approaches such as ours to improve service levels and decrease
their latency times. A particularly interesting future avenue here would be the reliance on
partially pre-determined outcomes from prior cached results for distributed edge systems.

Appl. Sci. 2019, 11, 2177 12 of 14

Another venue currently under consideration is the combination of the service function
split we showcased here together with network coding.

Author Contributions: Conceptualization, Z.X., P.S., and F.H.P.F.; methodology, Z.X., P.S., and
F.H.P.F.; software, Z.X.; validation, Z.X. and P.S.; formal analysis, Z.X.; investigation, Z.X.; resources,
F.H.P.F.; data curation, Z.X.; writing—original draft preparation, Z.X.; writing—review and editing,
Z.X., P.S., and F.H.P.F.; visualization, Z.X.; supervision, F.H.P.F.; project administration, F.H.P.F.;
funding acquisition, F.H.P.F. All authors have read and agreed to the published version of the
manuscript.

Funding: Partially funded by the German Research Foundation (DFG, Deutsche Forschungsge-
meinschaft) as part of Germany’s Excellence Strategy–EXC 2050/1–Project ID 390696704 –Cluster
of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Univer-
sität Dresden.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth-Generation Cellular Networks
AI Artificial Intelligence
CNN Convolutional Neural Network
COIN COmputing In the Network
CPU Central Processing Unit
CV Computer Vision
DL Deep Learning
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
IP Internet Protocol
ITS Intelligent Transport System
JPEG Joint Photographic Experts Group
LIDAR Light Detection and Ranging
MEC Mobile Edge Cloud
NFV Network Function Virtualization
RAM Random Access Memory
ReLU Rectified Linear Unit
SDN Software-Defined Network
SFC Service Function Chaining
UDP User Datagram Protocol
VNF Virtual Network Function
VRU Vulnerable Road User
YOLO You Look Only Once
WebP Web Picture

References
1. CISCO. VNI Global Fixed and Mobile Internet Traffic Forecasts. Available online: https://www.cisco.com/c/en/us/solutions/

service-provider/visual-networking-index-vni/index.html (accessed on 28 February 2021).
2. Kim, J.; Cho, J. Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced Real-Time Object Detection. Appl. Sci.

2020, 10, 612. [CrossRef]
3. Yoon, C.S.; Jung, H.S.; Park, J.W.; Lee, H.G.; Yun, C.H.; Lee, Y.W. A Cloud-Based UTOPIA Smart Video Surveillance System for

Smart Cities. Appl. Sci. 2020, 10, 6572. [CrossRef]
4. Mandal, V.; Mussah, A.R.; Jin, P.; Adu-Gyamfi, Y. Artificial Intelligence-Enabled Traffic Monitoring System. Sustainability 2020,

12, 9177. [CrossRef]

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://doi.org/10.3390/app10020612
http://dx.doi.org/10.3390/app10186572
http://dx.doi.org/10.3390/su12219177

Appl. Sci. 2019, 11, 2177 13 of 14

5. Wei, P.; Shi, H.; Yang, J.; Qian, J.; Ji, Y.; Jiang, X. City-Scale Vehicle Tracking and Traffic Flow Estimation Using Low Frame-Rate
Traffic Cameras. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2019 ACM International Symposium on Wearable Computers; UbiComp/ISWC ’19 Adjunct; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 602–610. [CrossRef]

6. Yang, W.; Zhang, X.; Lei, Q.; Shen, D.; Xiao, P.; Huang, Y. Lane Position Detection Based on Long Short-Term Memory (LSTM).
Sensors 2020, 20, 3115. [CrossRef]

7. Kim, W.; Cho, H.; Kim, J.; Kim, B.; Lee, S. YOLO-Based Simultaneous Target Detection and Classification in Automotive FMCW
Radar Systems. Sensors 2020, 20, 2897. [CrossRef]

8. Castelló, V.O.; del Tejo Catalá, O.; Igual, I.S.; Perez-Cortes, J.C. Real-time on-board pedestrian detection using generic single-stage
algorithms and on-road databases. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420929175. [CrossRef]

9. Dominguez-Sanchez, A.; Cazorla, M.; Orts-Escolano, S. Pedestrian Movement Direction Recognition Using Convolutional Neural
Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3540–3548. [CrossRef]

10. Hui, J. Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3. Available online: https://medium.com/@jonathan_
hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 (accessed on 28 February 2021).

11. Sze, V.; Chen, Y.; Yang, T.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

12. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. doi:10.1016/j.patcog.2017.10.013. [CrossRef]

13. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June
2014; pp. 580–587.

14. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2015, arXiv:1506.01497.

15. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640.

16. Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [CrossRef]
17. Melendez, S.; McGarry, M.P. Computation offloading decisions for reducing completion time. In Proceedings of the 2017 14th

IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 160–164.
[CrossRef]

18. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.
[CrossRef]

19. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [CrossRef]

20. Haleplidis, E.; Pentikousis, K.; Denazis, S.; Salim, J.H.; Meyer, D.; Koufopavlou, O. Software-Defined Networking (SDN): Layers
and Architecture Terminology. RFC 7426, RFC Editor. 2015. Available online: http://www.rfc-editor.org/rfc/rfc7426.txt
(accessed on 28 February 2021).

21. Duan, Q.; Ansari, N.; Toy, M. Software-defined network virtualization: An architectural framework for integrating SDN and
NFV for service provisioning in future networks. IEEE Netw. 2016, 30, 10–16. [CrossRef]

22. Intel. Internet Engineering Task Force (IETF). Available online: https://tools.ietf.org/html/rfc7665 (accessed on 28 February
2021).

23. Doan, T.V.; Fan, Z.; Nguyen, G.T.; You, D.; Kropp, A.; Salah, H.; Fitzek, F.H.P. Seamless Service Migration Framework for
Autonomous Driving in Mobile Edge Cloud. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–2. [CrossRef]

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red
Hook, NY, USA, 2012; pp. 1097–1105.

25. Tensorflow Official Website. Available online: https://www.tensorflow.org (accessed on 15 December 2020).
26. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 21–27 July 2017; pp. 6517–6525. [CrossRef]
27. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer

Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 21–37.

28. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In
Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November
2015; pp. 730–734. [CrossRef]

29. Xiang, Z.; Zhang, R.; Seeling, P. Chapter 19—Machine learning for object detection. In Computing in Communication Networks;
Fitzek, F.H., Granelli, F., Seeling, P., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2020; pp. 325–338. [CrossRef]

30. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft
COCO: Common Objects in Context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014.

http://dx.doi.org/10.1145/3341162.3349336
http://dx.doi.org/10.3390/s20113115
http://dx.doi.org/10.3390/s20102897
http://dx.doi.org/10.1177/1729881420929175
http://dx.doi.org/10.1109/TITS.2017.2726140
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1109/JPROC.2019.2922285
http://dx.doi.org/10.1109/CCNC.2017.7983099
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/COMST.2017.2705720
http://www.rfc-editor.org/rfc/rfc7426.txt
http://dx.doi.org/10.1109/MNET.2016.7579021
https://tools.ietf.org/html/rfc7665
http://dx.doi.org/10.1109/CCNC46108.2020.9045586
https://www.tensorflow.org
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/ACPR.2015.7486599
http://dx.doi.org/10.1016/B978-0-12-820488-7.00034-7

Appl. Sci. 2019, 11, 2177 14 of 14

31. Xiang, Z.; Pandi, S.; Cabrera, J.; Granelli, F.; Seeling, P.; Fitzek, F.H.P. An Open Source Testbed for Virtualized Communication
Networks. IEEE Commun. Mag. 2021, 1–7. in print

32. ComNetsEmu Public Repository. 2020. Available online: https://git.comnets.net/public-repo/comnetsemu (accessed on 28
February 2021).

33. (EMBC), E.M.B.C. CoreMark CPU Benchmark Scores. Available online: https://www.eembc.org/coremark/ (accessed on 28
February 2021).

34. Software, P. PassMark CPU Benchmark Datasets. Available online: https://www.cpubenchmark.net/ (accessed on 28 February
2021).

35. Xiang, Z.; Gabriel, F.; Urbano, E.; Nguyen, G.T.; Reisslein, M.; Fitzek, F.H.P. Reducing Latency in Virtual Machines: Enabling
Tactile Internet for Human-Machine Co-Working. IEEE J. Sel. Areas Commun. 2019, 37, 1098–1116. [CrossRef]

36. Yang, F.; Wang, Z.; Ma, X.; Yuan, G.; An, X. Understanding the Performance of In-Network Computing: A Case Study. In
Proceedings of the 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing,
Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen,
China, 16–18 December 2019; pp. 26–35. [CrossRef]

37. Xiong, Z.; Zilberman, N. Do Switches Dream of Machine Learning? Toward In-Network Classification. In Proceedings of the
18th ACM Workshop on Hot Topics in Networks; HotNets ’19; Association for Computing Machinery: New York, NY, USA, 2019;
pp. 25–33. [CrossRef]

38. Sanvito, D.; Siracusano, G.; Bifulco, R. Can the Network Be the AI Accelerator? In Proceedings of the 2018 Morning Workshop on
In-Network Computing; NetCompute ’18; Association for Computing Machinery: New York, NY, USA, 2018; pp. 20–25. [CrossRef]

39. Glebke, R.; Krude, J.; Kunze, I.; Rüth, J.; Senger, F.; Wehrle, K. Towards Executing Computer Vision Functionality on Programmable
Network Devices. In Proceedings of the 1st ACM CoNEXT Workshop on Emerging In-Network Computing Paradigms; ENCP ’19;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 15–20. [CrossRef]

40. Cao, J.; Song, C.; Peng, S.; Song, S.; Zhang, X.; Shao, Y.; Xiao, F. Pedestrian Detection Algorithm for Intelligent Vehicles in Complex
Scenarios. Sensors 2020, 20, 3646. [CrossRef] [PubMed]

41. Han, B.G.; Lee, J.G.; Lim, K.T.; Choi, D.H. Design of a Scalable and Fast YOLO for Edge-Computing Devices. Sensors 2020,
20, 6779. [CrossRef]

42. Zhao, H.; Zhou, Y.; Zhang, L.; Peng, Y.; Hu, X.; Peng, H.; Cai, X. Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection
Method. Sensors 2020, 20, 1861. [CrossRef]

43. Yang, Y.; Deng, H. GC-YOLOv3: You Only Look Once with Global Context Block. Electronics 2020, 9, 1235. 081235. [CrossRef]
44. Wang, Z.; Xu, K.; Wu, S.; Liu, L.; Liu, L.; Wang, D. Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for

YOLOv2. IEEE Access 2020, 8, 116569–116585. [CrossRef]

https://git.comnets.net/public-repo/comnetsemu
https://www.eembc.org/coremark/
https://www.cpubenchmark.net/
http://dx.doi.org/10.1109/JSAC.2019.2906788
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00016
http://dx.doi.org/10.1145/3365609.3365864
http://dx.doi.org/10.1145/3229591.3229594
http://dx.doi.org/10.1145/3359993.3366646
http://dx.doi.org/10.3390/s20133646
http://www.ncbi.nlm.nih.gov/pubmed/32610635
http://dx.doi.org/10.3390/s20236779
http://dx.doi.org/10.3390/s20071861
http://dx.doi.org/10.3390/electronics9081235
http://dx.doi.org/10.1109/ACCESS.2020.3004198

	Introduction
	Materials and Methods
	CNN Object Detection Model Split
	You Only Look Once (YOLO), But Twice
	Testbed Input Data Performance Metrics

	Results
	Discussion
	Conclusions
	References

