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Abstract: Emerging 3D-related technologies such as augmented reality, virtual reality, mixed re-
ality, and stereoscopy have gained remarkable growth due to their numerous applications in the
entertainment, gaming, and electromedical industries. In particular, the 3D television (3DTV) and
free-viewpoint television (FTV) enhance viewers’ television experience by providing immersion.
They need an infinite number of views to provide a full parallax to the viewer, which is not practical
due to various financial and technological constraints. Therefore, novel 3D views are generated
from a set of available views and their depth maps using depth-image-based rendering (DIBR)
techniques. The quality of a DIBR-synthesized image may be compromised for several reasons, e.g.,
inaccurate depth estimation. Since depth is important in this application, inaccuracies in depth maps
lead to different textural and structural distortions that degrade the quality of the generated image
and result in a poor quality of experience (QoE). Therefore, quality assessment DIBR-generated
images are essential to guarantee an appreciative QoE. This paper aims at estimating the quality of
DIBR-synthesized images and proposes a novel 3D objective image quality metric. The proposed
algorithm aims to measure both textural and structural distortions in the DIBR image by exploiting
the contrast sensitivity and the Hausdorff distance, respectively. The two measures are combined
to estimate an overall quality score. The experimental evaluations performed on the benchmark
MCL-3D dataset show that the proposed metric is reliable and accurate, and performs better than
existing 2D and 3D quality assessment metrics.

Keywords: 3D image quality assessment; objective quality metric; view synthesis; 3D television

1. Introduction

Three-dimensional (3D) technologies, e.g., augmented reality, virtual reality, mixed
reality, and stereoscopy, have lately enjoyed remarkable growth due to their numerous
applications in the entertainment industry, gaming industry, for electro-medical equipment,
etc. 3D television (3DTV) and the recent free-viewpoint television (FTV) [1] have enhanced
users’ television experience by providing immersion. 3DTV projects two views of the
same scene from slightly different viewpoints to provide the depth sensation. The FTV,
in addition to the immersive experience, enables the viewer to enjoy the scene from
different viewpoints by changing his/her position in front of the television. To provide a full
parallax, FTV needs dozens of views, ideally an infinite number of views. Capturing, coding,
and transmitting such a large number of views is not practical due to various financial and
technological constraints, such as limited available bandwidth. Therefore, novel 3D video
(3DV) formats and representations have been explored to design compression-friendly and
cost-efficient solutions. The multiview video plus depth (MVD) format is considered to be
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the most suitable for 3D televisions. In addition to color images, MVD also provides the
corresponding depth maps, which represent the geometry of the 3D scene.

The additional dimension of the depth in MVD provides the ability to generate novel
views from a set of available views using the depth-image-based rendering (DIBR) tech-
nique [2], thus enabling the stereoscopy. The quality of the synthesized views is important
for a pleasant user experience. Since the depth maps are usually generated using stereo-
matching algorithms [3], they are not accurate. The inaccuracies in depth maps, when used
in DIBR, might introduce various distortions in the synthesized images degrading their
quality and resulting in a poor quality of experience (QoE). Thus, assessing the quality of
the DIBR-synthesized views is necessary to ensure a satisfactory user experience.

Inaccuracies in depth maps cause textural and structural distortions such as ghost
artifacts and inconsistent object shifts in the synthesized views [4–8]. Texture and depth
compression also introduce artifacts in the virtual images [9,10]. Another factor that causes
degradation in virtual image quality is occluded areas in the original view that become
visible in the virtual view, which are called holes. These holes are usually estimated using
image inpainting techniques that do not always produce a pleasant reconstruction. Figure 1a
shows the artifacts introduced in a synthesized view due to visible occluded regions. Note
the distorted face of a spectator in Figure 1b because of erroneous depth in DIBR.

(a) (b)

Figure 1. Effect of inaccurate depth maps on the depth-image-based rendering (DIBR)-synthesized
images. (a) Occluded regions becoming visible in the synthesized image and generating holes
highlighted in red rectangles, (b) structural distortions in the synthesized view distorting the face of
a spectator.

The various structural and textural distortions introduced in DIBR images may affect
the picture quality, the depth sensation, and the visual comfort, which are considered three
main factors of user quality-of-experience (QoE) [6]. Besides viewing experience, studies
show that the distortion in 3D images can affect the performance of various applications
designed for the 3D environment, such as image saliency detection, video target tracking,
face detection, and event detection [11–13]. This means that the image quality is very
important not only for viewer satisfaction in a stereoscopic environment but also for
various 3D applications built for this environment. Therefore, 3D image quality assessment
(3D-IQA) is an essential part of the 3D video processing chain.

In this paper, we propose a 3D-IQA metric to estimate the quality of DIBR-synthesized
images. The proposed metric aims to measure the structural and textural distortions in-
troduced in the synthesized image due to depth-image-based rendering and combines
them to predict the overall quality of the image. The structural details in an image are
considered important for their quality as the human visual system (HVS) is more sensitive
to them [14,15]. It is the difference between luminance or color that makes the represen-
tation of an object or the main features of an image distinguishable. The distortion in
these features, referred to as textural distortion, is also important for a true image quality
estimation. The textural and structural metric scores are combined to obtain an overall
quality score.
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The rest of the paper is organized in the following way. Section 2 reviews the related
literature, Section 3 presents the proposed 3D-IQA technique. The experimental evaluation
of the proposed metric is carried out in Section 4 and we conclude the research in Section 5.

2. Related Work

The quality of an image can be either assessed through subjective tests or by using
an automated objective metric [16]. As human eyes are the ultimate receiver of the image,
a subjective test is certainly the best and the most reliable way to assess the visual image
quality. In such tests, a set of human observers assigns quality scores to the image, which
are averaged to get one score. This method, however, is a time-consuming and expensive
approach. Therefore, it was felt necessary to introduce an automatic and fast way to
assess the quality of an image. This provides the opportunity for researchers to introduce
objective metrics for quantitative image quality evaluation, which proves to be a significant
improvement in the field of image quality assessment.

Objective image and video quality metrics can be grouped into three classes based
on the availability of the original reference images: full-reference (FR), no-reference (NR),
and reduced-reference (RR) [17]. The IQA metric that requires the original reference image
to evaluate the quality of its distorted version is referred to as a full-reference metric.
The IQA approach that assesses the quality of an image in the absence of a corresponding
reference image is classified as the no-reference metric. The reduced-reference metrics lie
between the two categories, they do not require the reference images but some of their
features must be available for comparison.

In the literature, several 2D and 3D objective quality assessment metrics have been
proposed to assess visual image quality. Initially, 2D metrics were used to assess the quality
of 3D content, however, the use of conventional 2D metrics was found inappropriate to
assess the true quality of 3D images due to several additional factors of 3D videos that
were not considered by 2D-IQA algorithms [18–20]. Therefore, novel IQA algorithms were
needed to evaluate the quality of 3D videos. Such algorithms, in addition to 2D-related
artifacts, must also consider artifacts introduced due to the additional dimension of depth
in the videos.

In recent years, several algorithms have been proposed to evaluate the quality of 3D
images. Many of them utilize the existing 2D quality metrics for this purpose, e.g., [21–24].
Since these algorithms rely on metrics especially designed for 2D images, they do not
consider the most important factor of 3D images, i.e., depth, and therefore they are not
accurate and reliable.

Many 3D-IQA techniques consider depth/disparity information while assessing the
quality of 3D images, e.g., [25–28]. You et al. [19] adopted a belief-propagation-based method
to estimate the disparity and combined the quality maps of distorted image and distorted
disparity computed using conventional 2D metrics. The method proposed in [25] exploits the
disparity as well as binocular rivalry to determine the quality. It uses the Multi-scale Structural
Similarity Index Measure (MSSIM) [29] metric to evaluate the quality of disparity of stereo
images. Zhan et al. [26] presented a machine-learning-based method that works by learning
the features from 2D-IQA metrics and specially designed 3D features using the Scale Invariant
Feature Transform (SIFT) flow algorithm [30], and was used to obtain the depth information.
The different features of disparity and three types of distortions (blur, noise, and compression)
were used by [28] in evaluating the quality of 3D images. These features were used to train
a quality prediction model by using the random forest regression algorithm. The method
proposed in [18] addressed the issue of structural distortion in a synthesized view due to DIBR,
but the method is limited to structural distortions so it cannot be used to evaluate the overall
quality of the image.

The 3D-IQA method presented in [31] identifies the disocclusion edges in the synthe-
sized image and inversely maps them to the original image, and the corresponding regions
are then compared to assess the quality. The algorithm in [32] uses feature matching points
in the synthesized and reference images to compute the quality degradation. The Just
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Notice Difference (JND) model is exploited in [33] to compute the global sharpness and
distortion in holes in the DIBR image to assess its quality. The quality metric proposed
in [34] identifies the critical blocks in the DIBR synthesized image and the reference image.
The texture and color contrast similarities between these blocks are compared to estimate
the quality of the synthesized image. The method in [35] works by extracting the features
of energy-weighted spatial and temporal information and entropy. Then, support vector
regression uses these features for depth estimation. Gorley et al. proposed a stereo-band-
limited contrast method in [36] that considers contrast sensitivity and luminance changes
as important factors for the assessment of image quality. The method presented in [37] ex-
tracts the natural scene features from a discrete cosine transform (DCT) domain, and a deep
belief network (DBN) model was trained to get the deep features. These generated deep
features and DMOS values were used to train a support vector regression (SVR) model to
predict the image quality. The learning framework proposed in [38] also uses a regression
model to learn the features and besides assessing the quality, it also improves the quality
of stereo images. The method proposed in [39] considers the global visual characteristics
by using structural similarities and the local quality was evaluated by computing the local
magnitude and local phase. The global and local quality scores were combined to get the
final score.

Binocular perception or binocular rivalry is an important factor in 3D image quality
assessment [40,41]. Humans perceive images with both eyes and it is obvious that there is
a difference between the perceptions of the left and the right eye in relation to an image.
Indeed, binocular rivalry is the visual perception phenomenon in which there exists a
difference in the perception of an image when it is seen from the left eye and the right
eye. This difference is called the binocular parallax or binocular disparity. The binocular
disparity can be divided into horizontal and vertical parallax. The horizontal parallax
affects depth perception and the vertical parallax affects visual comfort [37]. This binocular
perception was taken into account in [42] and a binocular fusion process was proposed
for quality assessment of stereoscopic images. The 3D-IQA metric proposed in [41] is
also based on binocular visual characteristics. A learning-based metric [43] uses binocular
receptive field properties for assessing the quality of stereo images. Shao et al. [44] proposed
a metric that simplifies the process of binocular quality prediction by dividing the problem
into monocular feature encoding and binocular feature combination.

Lin et al. combine binocular integration behaviors such as binocular combination and
binocular frequency integration with conventional 2D metrics in [45] to evaluate the quality
of stereo images. Binocular spatial sensitivity influenced by binocular fusion and binocular
rivalry properties was taken into consideration in [46]. The method proposed in [47] uses
binocular responses, e.g., binocular energy response (BER), binocular rivalry response
(BRR), and local structure distribution, for 3D-IQA. Quality assessment of asymmetrically
distorted stereoscopic images was targeted in [48]. The method is inspired by binocular
rivalry and it uses estimated disparity and Gabor filter responses to create an intermediate
synthesized view whose quality is estimated using 2D-IQA algorithms. A multi-scale
model using binocular rivalry is presented in [49] for quality assessment of 3D images.
Numerous other 3D-IQA algorithms use binocular cues for evaluating the quality of 3D
images, e.g., [50–52].

3. The Proposed Technique

In multiview video-plus-depth (MVD) format, depth-image-based rendering (DIBR)
is used to generate virtual views at novel viewpoints to support 3D vision in stereoscopic
and autostereoscopic displays. The DIBR obtains the virtual view by warping the original
left and right views to a virtual viewpoint with the help of the corresponding depth maps.
As discussed earlier, when the virtual view is generated its quality may degrade due to
several structural or textural distortions introduced during synthesis. The major cause
of these distortions is the inaccurate depth. This inaccuracy in the depth estimates and
other compression-related artifacts can cause several distortions in the synthesized image,
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such as ghost artifacts, holes, and blurry regions, as shown in Figure 1. These distortions
degrade the image quality and eventually result in poor overall user quality of experience
(QoE). Estimating the quality of the synthesized image is therefore important to ensure better
QoE. We propose a 3D-IQA metric that attempts to estimate the distortions introduced in
synthesized images. Specifically, the proposed metric is a combination of two measures:
one estimates the variations in the texture and the other calculates the deterioration in the
structures in the image.

3.1. Estimating the Textural Distortion

Textures are complex visual patterns, composed of spatially organized entities that
have characteristic brightness, color, shape, and size. The texture is an important discrimi-
nant characteristic of an image region [53] and can be used for various purposes such as
segmentation, classification, and synthesis [54]. Image texture gives us information about
the spatial arrangement of color or intensities in an image or a selected region of an image.
During the process of DIBR, the texture of the synthesized image can be adversely affected
due to object shifting, incorrect rendering of textured areas, and blurry regions [55]. Object
shifting may cause translation or changes in the size of the region in the synthesized view.
Due to the translation of objects, the occluded areas in the original view may become visible
in the synthesized view, and these are known as holes. These holes are usually estimated
using image inpainting techniques that do not always produce accurate reconstruction and
result in the incorrect rendering of texture areas and blurry regions in the synthesized view.
Given a DIBR-synthesized image and its corresponding reference, the proposed metric
estimates the texture distortion by computing the local variations in their contrasts.

Image contrast is an important feature of texture, a basic perceptual attribute and also
an important characteristic of the human visual system (HVS) [56,57]. Contrast sensitivity
is one of the dominating factors in the research of visual perception [58]. It can be defined
as the difference between luminance or color that makes the representation of an object
distinguishable. The most famous contrast computation methods are the Michelson and
Weber contrast formulas [58]. There are a few methods that use some form of contrast to
assess the quality of images [36,59–61].

The proposed metric captures the local variation in contrast of the synthesized image
and its reference image. The two images are low-pass filtered to smooth their high spatial
frequencies. This is achieved with a small Gaussian filter w of size 3× 3.

wij =
1
αg

exp(
i2 + j2

2σ2
g

) (1)

where αg is a normalization term that ensures ∑ wi,j = 1 and σg is Gaussian variance, which
controls the weight distribution and the filter size. Let I and R be the filtered synthesized
image and its reference image of size M × N. Let xij represent a block of size m× n in
image I centered at pixel (i, j), and yij be its corresponding block in reference image R
centered at pixel location (i, j). Let xi and yi represent the i-th corresponding blocks of I
and R. The mean µ, variance σ2, and standard deviations σ of a block xij are computed.

µij =
1

mn

m
2

∑
a=−m

2

n
2

∑
b=− n

2

x(i + a, j + b) (2)

σ2
ij =

1
mn− 1

m
2

∑
a=−m

2

n
2

∑
b=− n

2

(x(i + a, j + b)− µxij)
2 (3)
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These statistics for yij are computed analogously. The variation in contrast ψij between
the blocks xij and yij is then computed.

ψij =
2σijσij + c

σ2
ij + σ2

ij + c
(4)

where c is a small constant used to stabilize the equation. The ψ scores of all pixels in I are
computed and averaged to obtain the texture distortion score T of the synthesized image.

T =
1

MN

M

∑
i=1

N

∑
i=1

ψij (5)

3.2. Estimating the Structural Distortion

The study presented in [14] shows that the human visual system (HVS) is highly
adapted for extracting structural information from the image. The inaccuracies and com-
pression artifacts in the depth map adversely affect the structural details of the image during
the process of DIBR, generally distorting the edges and gradients in the images [55,60].
The depth compression may cause the pixels to be lost or wrongly projected in the syn-
thesized view. Similarly, the estimation inaccuracies in the depth cause ghost artifacts,
inconsistent object shift, and distortion of edges in the synthesized view. These distortions
in the image affect both the texture and the structure of the image. Therefore it is equally
important to compute the structural dissimilarities in the image to assess its quality. Several
methods are proposed to compute the structural similarity in 2D images, e.g., [29,60,62–65].

We used the Hausdorff distance [66] to compute the structural similarity score.
The Hausdorff distance measures the degree of mismatch between two sets [66,67]. Similar
to a texture distortion metric, this mismatch is also computed locally. The Hausdorff dis-
tance can be computed for grayscale images, e.g., [68], and for binary images [66,67]. In the
proposed metric, since we want to estimate the distortion in the structural details in the
warped image compared to the reference image, the edges in the two images are detected
and these edge images are used to estimate the degree of mismatch. Any edge detector can
be used for this purpose, however, similar to [66], in our study we used the Canny edge
detector [69] to compute the edge maps. The Hausdorff distance between two image blocks
xij and yij of size m× n centered at location (i, j) in image I and R, respectively, as defined
in the preceding section, is computed as follows:

HD(xij, yij) = max(hd(xij, yij), hd(yij, xij)) (6)

The function hd(xij, yij) is called the directed Hausdorff distance from xij to yij and it
can be defined as

hd(xij, yij) = max
a∈xij

min
b∈yij
||a− b||. (7)

Equation (7) identifies the point a in xij that is the farthest from any point in yij and
measures its distance from the nearest neighboring point in yij. The function hD(xij, yij)
then ranks each point of xij according to its distance from the nearest neighbor in yij
and picks the largest distant point from these ranked distances because it is the most
mismatched point between the reference and distorted image blocks. Similarly, the directed
Hausdorff distance from yij to xij is computed. In hd(xij, yij) and hd(yij, xij), the former
represents the degree of mismatch between the synthesized and original image block and
the latter represents the degree of mismatch between the original and the synthesized
image blocks. Then the largest of the two is chosen as the mismatch score (Equation (6)).
The obtained value is normalized.

HDij =
HD(xij, yij)

255×
√

mn
(8)
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The value of HDij falls in the interval [0, 1]. Recall that HDij is the degree of mismatch,
and the structural similarity score is computed by subtracting this normalized Hausdorff
score (HDij) from 1.

ηij = 1− HDij (9)

The structural scores for all k blocks are computed and averaged to obtain a single
score S.

S =
1

MN

M

∑
i=1

N

∑
i=1

ηij (10)

3.3. Final Quality Score

The textural and structural scores of the synthesized image computed using Equations (5)
and (10), respectively, are combined to compute the overall quality score Q.

Q = αT + (1− α)S. (11)

The parameter α is used to adjust the relative importance of textural and structural
scores. Its value is empirically set to 0.7. Figure 2 shows the results of the proposed metric
on a few sample images from the testing dataset. In a stereoscopic environment, the quality
scores obtained by the proposed metric for both views are averaged to get a single quality
score. Figure 2b–e are images obtained by DIBR synthesis from the two source color
and depth images, the source view images were artificially degraded by introducing
additive white noise (AWN) at four different levels, with noise control parameters 5, 17, 33,
and 53, respectively. Figure 2a shows the corresponding ground truth image. Below each
image, the scores estimated by the proposed metric and the respective subjective scores are
reported. It can be noted that the visual quality of the synthesized images degrades as the
noise in the source color and depth images increases and our metric effectively captures
this quality degradation.

(a) Reference image (b) Score: 0.9978, MOS: 10.75 (c) Score: 0.9613, MOS: 7.92

(d) Score: 0.8653, MOS: 6.08 (e) Score: 0.7656, MOS: 3.08

Figure 2. Results of the proposed quality assessment metric on sample images from the test dataset.
(a) Original reference image, (b–e) are the images generated using DIBR from color and depth images
polluted with additive white noise (AWN) at four different levels, with noise control parameters 5,
17, 33, and 53, respectively. The objective quality scores estimated by the proposed method and the
subjective scores of these images are shown below them.



Appl. Sci. 2021, 11, 2666 8 of 17

4. Experiments and Results

The performance of the proposed 3D video quality assessment metric was evaluated
on the benchmark stereoscopic Media Communications Lab – MCL-3D dataset [70] and
compared with other 2D and 3D-IQA metrics. We conducted multiple experiments of
different types to evaluate the performance and statistical significance of our proposed
method. The results were also compared with existing 2D- and 3D-IQA algorithms.

4.1. Dataset

The MCL-3D dataset was used to evaluate the performance of the proposed quality
metric. The dataset analyzes the impact of different distortions on the quality of depth-
image-based rendering (DIBR) synthesized images. MCL-3D dataset was created by Media
Communication Lab, University of Southern California, and is publicly available [70].
The dataset was created from 9 multiview-video-plus-depth (MVD) sequences. The resolu-
tion of 3 MVD sequences is 1024× 768 whereas the remaining 6 sequences have a resolution
of 1920× 1080. The dataset reports 648 mean opinion scores (MOSs) of stereo image pairs
generated using DIBR from distorted texture and/or depth images. Six different types
of distortions (Gaussian blur (Gauss), additive white noise (AWN), down-sampling blur
(Sample), JPEG compression (JPEG), JPEG 2000 compression (JP2K), and transmission loss
(transloss)) with four different levels are applied either on texture images, depth images, or
both. The distorted texture images and depth maps are used to generate the intermediate
middle virtual images by using view synthesis reference software (VSRS) [71], a benchmark
DIBR technique for generating synthesized views. Sample reference and distorted DIBR
images are shown in Figure 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Top row: sample reference images from Balloon (a), Dancer (b), Love_bird1 (c), Poznan_Hall2 (d), and Poznan
Street (e) 3D sequences, from the MCL-3D dataset. Bottom row: top image with AWN (f), Gauss (g), Sample (h), JPEG (i),
and JP2K (j) distortions, respectively.

4.2. Performance Evaluation Parameters

To evaluate the performance of the proposed method we used different statistical
tools, including the Pearson linear correlation coefficient (PLCC), Spearman rank-order
correlation coefficient (SROCC), Kendall rank-order correlation coefficient (KROCC), root-
mean-square error (RMSE), and mean absolute error (MAE). Before computing these
parameters, the scores obtained by objective quality metrics were mapped to subjective
deferential mean opinion score (DMOS) values using the nonlinear logistic regression
described in [72]:

DMOSp = β1

(
1
2
− 1

1 + exp(β2(o− β3))

)
+ β4o + β5 (12)
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where o is the score obtained by the objective quality metric, DMOSp is the mapped score,
and β1, . . . , β5 are the regression parameters.

The Pearson linear correlation coefficient (PLCC) is used to determine the linear
correlation between two continuous variables. Since this method is based on covari-
ance computation, it is considered the best method for measuring statistical relationships.
The method was used in the prediction accuracy test. Let x represent the MOS values, y
represent the mapped scores, and x̄ and ȳ represent the mean values of x and y, respectively.
PLCC is computed as

PLCC =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(13)

The Pearson correlation coefficient describes how strong the relationship between
subjective MOS and evaluated objective scores is. The value lies between −1 and 1. Values
closer to 1 represent a strong relationship.

The Spearman rank-order correlation coefficient (SROCC) is a nonparametric measure
of rank correlation. It assesses how well the relationship between two variables can be
described using a monotonic function. The difference between PLCC and SROCC is
that the former only assesses linear relationships whereas the latter assesses monotonic
relationships that may or may not be linear. For n observations, the SROCC can be
computed as

SROCC = 1− 6 ∑n
i=1(xi − yi)

2

n(n2 − 1)
(14)

The Kendall rank correlation coefficient (KROCC) is another nonparametric measure
to determine the relationship between two continuous variables. Like SROCC, it assesses
associations based on the ranks of data. It is used to test the similarities in data when they
are ranked by quantities.

KROCC =
nc − nd

1
2 n(n− 1)

(15)

where n is the sample size, nc is the number of concordant pairs and nd is the number
of discordant pairs.

Root-mean-square error (RMSE) is the most widely used performance evaluation
measure and it computes the prediction error [73]. Since the method takes the square of
the error before computing the average, it gives a relatively high weight to a large error
and that is why it is considered an important method for performance evaluation.

RMSE =

√
∑n

i=1(xi − yi)2

n
(16)

Mean absolute error (MAE) is another method to compute the difference between two
continuous variables. MAE is a linear score that means that all the individual differences
are weighted equally in average.

MAE =
∑n

i=1|yi − xi|
n

(17)

Since PLCC, SROCC, and KROCC are the correlations and MAE and RMSE are the
errors, large values of correlations and small values of errors indicate a better performance
of the quality metric.

4.3. Performance Comparison with 2D and 3D-IQA Metrics

To evaluate the effectiveness of the proposed method, we compared its performance
with various existing 2D and 3D-IQA metrics. We compared the performance of the pro-
posed metric with widely used 2D quality assessment metrics: PSNR, SSIM [60], VSNR [74],
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IFC [75], MSSIM [29], VIF [76], and UQI [77]. Before computing the performance parame-
ters, the objective scores computed by these metrics were also mapped to MOS values by
using the same logistic function mentioned in Equation (12). In all experiments, the imple-
mentation of the method provided by the authors or other parties was used. The compari-
son in terms of all five performance parameters is presented in Table 1. The best results
are highlighted in bold for convenience. The results reveal that the proposed algorithm
outperforms all the compared 2D-IQA algorithms in all performance parameters. Specifi-
cally, the proposed method achieves PLCC 0.8909, SROCC 0.8979, and KROCC 0.7095 with
minimum RMSE 1.1816.

Table 1. Overall performance comparison of the proposed and the compared 2D image quality
assessment metrics on MCL-3D dataset. The best results are highlighted in bold.

Metric PLCC SROCC KROCC RMSE MAE

PSNR 0.8226 0.8400 0.6393 1.4794 1.1830
SSIM 0.7656 0.7777 0.5796 1.6737 1.2810
VSNR 0.8287 0.8368 0.6357 1.4560 1.1520
IFC 0.5104 0.7423 0.5495 2.2376 1.8331
MSSIM 0.8666 0.8762 0.6852 1.2983 1.0188
VIF 0.7983 0.7933 0.5999 1.5668 1.2240
UQI 0.7537 0.7564 0.5595 1.7099 1.3066
Ours 0.8909 0.8979 0.7095 1.1816 0.9245

We also evaluated the performance the proposed metric with thirteen well-known
and recent 3D image quality assessment metrics. They include 3DSwIM [55], StSD [78],
Chen [25], Benoit [79], Campisi [21], Ryu [50], PQM [80], Gorley [36], Youl , Youg [19],
SIQM [73], NIQSV [81], and ST-SIAQ [82]. The evaluation results presented in Table 2 show
that the proposed method outperforms all the compared methods in each performance
parameter and achieves the best PLCC (0.8909) with the minimum RMSE (1.1816). The other
measures, SROCC, KROCC, and MAE, also reveal that the proposed method performs
better than other 3D-IQA metrics.

Table 2. Overall performance comparison of the proposed and the compared 3D image quality
assessment metrics on MCL-3D dataset. The best results are highlighted in bold.

Metric PLCC SROCC KROCC RMSE MAE

3DSwIM 0.6497 0.5683 0.4088 1.9777 1.4902
StSD 0.6995 0.7008 0.5084 1.8593 1.4563
Chen 0.8615 0.8708 0.6769 1.3212 1.0362
Benoit 0.7425 0.7518 0.5589 1.7429 1.3480
Campisi 0.7656 0.7777 0.5796 1.6737 1.2810
PQM 0.8612 0.8646 0.6729 1.3225 1.0029
Gorley 0.7099 0.7196 0.5270 1.8323 1.4749
Youl 0.7504 0.7567 0.5600 1.7196 1.3325
SIQM 0.7744 0.7756 0.5648 1.6461 1.2757
Youg 0.3650 0.6609 0.4938 2.4222 2.0123
Ryu 0.8752 0.8824 0.6923 1.2584 0.9859
NIQSV 0.6783 0.6208 0.4384 1.9118 1.6032
ST-SIAQ 0.7133 0.7034 0.5118 1.8233 1.4028
Ours 0.8909 0.8979 0.7095 1.1816 0.9245
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To further investigate the effectiveness of the proposed method, its performance with
the compared 2D and 3D-IQA metrics was also evaluated for individual distortion types,
i.e., AWN, Gauss, Sample, Transloss, JPEG, and JP2K. Recall that the stereopair images in
the dataset were generated through DIBR from the polluted depth and/or the color images
with these types of noise. The results of the comparison with 2D and 3D quality metrics
in terms of PLCC are reported in Tables 3 and 4. These results show that the proposed
metric performs better than the compared method for most individual distortion types.
Similar observations were made when evaluated using other performance parameters, i.e.,
SROCC, KROCC, RMSE, and MAE, which are not shown here to save space.

Table 3. Comparison of the proposed and the compared 2D image quality assessment (2D-IQA)
metrics on individual distortion types in terms of Pearson linear correlation coefficient (PLCC).
The best results are highlighted in bold.

Metric AWN Gauss Sample Tansloss JPEG JP2K

PSNR 0.9125 0.9047 0.9051 0.8602 0.7491 0.8719
SSIM 0.8652 0.8594 0.8535 0.8542 0.7849 0.8052
VSNR 0.8943 0.8533 0.8449 0.7571 0.7352 0.6150
IFC 0.9114 0.7116 0.7733 0.6004 0.8394 0.5985
MSSIM 0.9103 0.9077 0.9106 0.9011 0.9097 0.8963
VIF 0.9555 0.9285 0.9128 0.8168 0.9417 0.9155
UQI 0.8501 0.8669 0.8608 0.8494 0.8896 0.7537
Ours 0.9081 0.9332 0.9310 0.8195 0.9502 0.9369

Table 4. Comparison of the proposed and the compared 3D image quality assessment (3D-IQA)
metrics on individual distortion types in terms of PLCC. The best results are highlighted in bold.

Metric AWN Gauss Sample Tansloss JPEG JP2K

3DSwIM 0.4640 0.8218 0.8127 0.7566 0.6431 0.6478
StSD 0.7472 0.8429 0.8392 0.6527 0.7372 0.7836
Chen 0.9058 0.8978 0.9088 0.8842 0.9078 0.8928
Benoit 0.9102 0.8600 0.8544 0.6796 0.8044 0.8064
Campisi 0.8652 0.8594 0.8535 0.8542 0.7849 0.8052
Ryu 0.9343 0.9409 0.9163 0.8685 0.8935 0.9284
PQM 0.8653 0.9346 0.9337 0.8052 0.8732 0.9027
Gorley 0.7735 0.8550 0.8544 0.6043 0.8326 0.9051
Youl 0.9278 0.8560 0.8564 0.7930 0.7934 0.8071
SIQM 0.7798 0.8738 0.8673 0.6851 0.8858 0.7057
NIQSV 0.8184 0.9156 0.8862 0.719 0.2798 0.7070
ST_SIAQ 0.7884 0.8215 0.8070 0.8264 0.742 0.7884
Youg 0.8856 0.8685 0.7138 0.5373 0.8599 0.9121
Ours 0.9081 0.9332 0.9370 0.8195 0.9502 0.9369

4.4. Variance of the Residual Analysis

Variance is the squared deviation of a measure from its mean. It is generally used
in evaluating the efficiency of an image quality assessment metric by finding how much
the scores computed by an objective IQA metric are closer to the subjective scores. This
is achieved by computing the difference between the predicted scores and actual scores.
A small difference indicates that the results computed by the metric are reliable and close
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to the actual scores. To compute this variance σ2, first the residual difference between the
DMOS and predicted scores after non-linear mapping (DMOSp) is computed:

R̂(i) = DMOSp(i)− DMOS(i) (18)

The variance σ2 of each compared 2D and 3D quality metric was computed from its
residuals R̂ and the statistics are presented in Table 5. The results show that our method
achieves the smallest variance among all compared methods, which means the scores
estimated by the proposed method are highly correlated with the subjective ratings.

Table 5. Variance of the residuals of subjective ratings and the mapped objective scores of the
proposed and the compared 2D and 3D quality metrics. The best results are highlighted in bold.

2D-IQA Metrics 3D-IQA Metrics

Metric Variance Metric Variance

3DSwiM 3.9174 PSNR 2.1919
StSD 3.4625 SSIM 2.8056
Chen 1.7483 VSNR 2.1232
Benoit 3.0423 IFC 5.0145
Campisi 2.8056 MSSIM 1.6881
Ryu 1.5860 VIF 2.4588
PQM 1.7518 UQI 2.9281
Gorley 3.3626
Youl 2.9615
Youg 5.8762
SIQM 2.7138
ST_SIAQ 3.3297
NIQSV 3.6606

Ours 1.3983

4.5. Statistical Significance Test

The statistical significance test [16,72] helps to determine whether a quality metric
is statistically better than the other metric. We conducted this test to statistically verify
the performance of the proposed metric. In this experiment, we considered only the
3D-IQA metrics as the previous evaluations have shown that the 2D-IQA algorithms
perform rather poorly compared to 3D-IQA approaches in assessing the quality of DIBR-
synthesized images. The F-test procedure was used to test the significance of the difference
between two quality assessment metrics. In the F-test, we compared the variances of residuals
(Equation (18)) of two metrics i and j with the F-ratio threshold to find the statistical
significance. The F-ratio threshold was obtained from the F-distribution look-up table with
α = 0.05.

σ2
j

σ2
i
> F− ratio (19)

If the
σ2

j

σ2
i

ratio is greater than the F-ratio then the metric i is said to be significantly

superior to the metric j. Similarly, the metric i is said to be significantly inferior to the
metric j if this ratio is less than the p-value. The two metrics are said to be statistically
indistinguishable if this ratio lies between the p-value and the F-ratio threshold. The F-ratio
is called the right-tail critical value and the p-value is called the left-tail critical value. Both
of these values were obtained from the F-distribution look-up table at a 95% significance
level. The results of the test are presented in Table 6. Each entry in the table is a codeword
of 6 characters corresponding to symbols A, G, J, j, S, and T, which represent the distortions
AWN, Gauss, JP2K, JPEG, Sample, and Transloss, respectively. In the codeword, the value
‘1’ means that the performance of metric in the row is significantly superior to the metric
in the column, the value ‘0’ means that the metric in the row is significantly inferior to
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the metric in the column, and −’ means that the performance of metric in the row and
column is equivalent or statistically indistinguishable. The results demonstrate that except
AWN and Transloss, the performance of the proposed metric is significantly superior or
equivalent to all the compared 3D-IQA metrics in all distortion types.

The experimental evaluations performed on the benchmark DIBR synthesized image
dataset showed that the performance of the proposed 3D-IQA metric is appreciably better
than the compared 2D and 3D-IQA algorithms. Moreover, the variance and the statistical
significance tests also showed that our metric is significantly superior or equivalent to most
of the compared 3D-IQA metrics. All these performance analyses reveal that the proposed
metric is reliable and accurate in estimating the quality of the DIBR-synthesized views.

Table 6. Statistical significance tests of proposed and other 3D-IQA metrics on MCL-3D dataset. Value ‘1’ means the metric
in the row is significantly superior to that of the column. Value ‘0’ means the metric in the row is significantly inferior to
that of the column and ‘-’ means both the metrics are significantly equivalent. The symbols A, G, J, j, S, and T represent the
distortions for AWN, Gauss, JP2K, JPEG, Sample, and Transloss, respectively.

MetricMetricMetric 3DSwIMDSwIMDSwIM BenoitBenoitBenoit CampisiCampisiCampisi GorleyGorleyGorley PQMPQMPQM RyuRyuRyu SIQMSIQMSIQM StSDStSDStSD YouYouYoul ChenChenChen NIQSVNIQSVNIQSV ST_SIAQST_SIAQST_SIAQ YouYouYoug OursOursOurs

AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST AGJjST

3DSwIM ------ 0-00-- 0-00-0 0-00-1 00000- 000000 0--0-- 0-0--- 0-00-- 000000 00-10- 0-0--- 0-0011 00000-

Benoit 1-11-- ------ 1----0 1-0--- 100000 -00000 1-10-- 1----- -----0 --0000 1011-- 1----0 --0-1- -00000

Campisi 1-11-1 0----1 ------ 1-0--1 -0000- 00000- 1-10-1 1----1 0----- 0-000- -011-1 1----- --0011 00000-

Gorley 1-11-0 0-1--- 0-1--0 ------ 00--00 00-000 --10-- --11-- 0-1--0 00-000 -011-- --11-0 0---1- 000000

PQM 11111- 011111 -1111- 11--11 ------ 0-0--0 111-11 111111 01111- 01-0-0 --111- 11111- -1--11 0-00--

Ryu 111111 -11111 11111- 11-111 1-1--1 ------ 111-11 111111 -11111 111--- 1111-1 11111- 11--11 1--0--

SIQM 1--1-- 0-01-- 0-01-0 --01-- 000-00 000-00 ------ ---1-- 0-01-0 0-0-00 -0-1-- ---110 0-0-1- 000000

StSD 1-1--- 0----- 0----0 --00-- 000000 000000 ---0-- ------ 0----0 000000 -0-10- -----0 0-001- 000000

Youl 1-11-- -----1 1----- 1-0--1 10000- -00000 1-10-1 1----1 ------ -00000 1011-- 1----- 1-0011 -0000-

Chen 111111 --1111 1-111- 11-111 10-1-1 000--- 1-1-11 111111 -11111 ------ 1-11-1 111111 ---111 -000-1

NIQSV 11-01- 0100-- -100-0 -100-- --000- 0000-0 -1-0-- -1-01- 0100-- 0-00-0 ------ -1-010 010011 0-0000

ST_SIAQ 1-1--- 0----1 0----- --00-1 00000- 00000- ---001 -----1 0----- 000000 -0-101 ------ 0-0011 00000-

Youg 1-1100 --1-0- --1100 1---0- -0--00 00--00 1-1-0- 1-110- 0-1100 ---000 101100 1-1100 ------ -0-000

Ours 11111- -11111 11111- 111111 1-11-- 0--1-- 111111 111111 -1111- -111-0 1-1111 11111- -1-111 ------

5. Conclusions

In this paper, a novel 3D-IQA metric was proposed to assess the quality of DIBR-
synthesized images. The proposed method merges two metrics, one computing the dete-
rioration in the texture of the synthesized image and the other computing the structural
distortions introduced in the synthesized image due to DIBR and various other types of
noise. The two measures are weighted-averaged to obtain the overall quality indicator.
Experimental evaluations were performed on the MCL-3D dataset, which contains DIBR-
synthesized images generated from color and depth images that were subject to different
types of noise. The experimental results and comparisons with existing 2D and 3D-IQA
metrics demonstrate that the proposed metric is accurate and reliable in assessing the
quality of DIBR-synthesized 3D images.
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