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Abstract: Transducer arrays are commonly analyzed by the finite element method (FEM) with high
accuracy, but it is costly, particularly when having flexible surrounding structures. In this study, we
developed an equivalent circuit (EC)-based model of an array of transducers with flexible surrounding
structures for effective analysis. The impedance matrix was first constructed by coupling the electrical,
mechanical impedance, and the acoustic radiation impedance obtained by the EC method and finite
element-boundary element (FE-BE) coupling method. The transfer matrix of far-field pressure
to the transducer response was then constructed by the FE-BE coupling method, and finally the
sound pressure of the external acoustic field was obtained. To verify the accuracy, the results of the
proposed method were compared with those of the conventional FEM. To evaluate the efficiency of
the proposed method, the reduction in the degrees of freedom (DOFs) of the proposed method from
the conventional FEM analysis was investigated. The simulation results of the proposed method are
highly accurate and efficient. The proposed method is expected to be useful for conceptual design.

Keywords: transducer array; equivalent circuit; finite element-boundary element coupling method;
multi-physics system; phased array

1. Introduction

Transducer arrays are usually applied for ultrasonic imaging [1–5] as they can detect
objects in an acoustic medium by combining the electrical signals from each transducer.

Therefore, it is important to precisely predict the array performance while taking into
account the multi-physical behavior in the transducer array.

FEM has been widely used for analyzing transducer array systems because of its
high accuracy and the detailed information it provides for the design of transducer arrays.
For example, Mestouri et al. [6] and Yamamoto et al. [7] used FEM to study the design of
low-frequency transducer arrays. Although FEM analysis is useful for final tuning, it is
inefficient in the concept design stage because of its high computational complexity.

To help with this problem, simpler models of transducer array systems have been
studied, such as EC models. The EC model of the transducer array can efficiently predict the
multi-physical response of an array using a small matrix equation. There have been many
studies on how to represent various types of transducers as EC models [8–17]. For example,
Harrie extensively described the EC representation of various types of electromechanical
transducers by using lumped parameter systems [8]. Later, he extended the theory and
described the EC representation using distributed parameter systems [9].

In addition, the acoustic interaction between the acoustic field and transducer should
be considered to apply the EC model to an array of transducers operating underwater, as
in the case of sonar. The acoustic interaction effect is often characterized by the acoustic
radiation impedance. For the calculation of acoustic radiation impedance, it is typical
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to use an analytical formulation or a numeric formulation. The analytical formulations
have an advantage of computational efficiency. Many researchers have theoretically calcu-
lated the acoustic radiation impedance of pistons in an infinite rigid baffle [18–30]. Then,
the underwater transducer array was tried to model using EC model with the acoustic
radiation impedance of pistons in an infinite rigid baffle calculated by the theoretical
formulation [10–12].

In many cases of actual sonar arrays, the acoustic radiation impedance usually cannot
be obtained analytically as sonar arrays are finite and are sometimes not large compared
to the wavelength in water [23]. To analyze the finite transducer arrays using the EC
model, studies have used approaches based on Green’s function to solve the Helmholtz
integral equation [13–16]. For example, Audoly [13] applied this method to an array of
circular pistons with a finite planar baffle to calculate the transmission characteristics of a
sonar array. Yokoyama [14] applied this method to an array of rectangular pistons with a
finite planar baffle to analyze the effects of acoustic interaction on the vibration velocity
of transducers. Meynier et al. [15] developed a model based on this method to study the
acoustic behavior of a capacitive micromachined ultrasonic transducer (CMUT) array.

However, the acoustic radiation impedance of an actual array having a complex shape
is mostly coupled with the influence of surrounding structures. Actual sonars are affected
by the acoustic effects of surrounding structures, such as baffles, enclosing domes, and
nearby reflecting surfaces [16]. Exceptionally, Anthony [16] proposed an analysis method
for array systems that reflects the influence of surrounding structures. He calculated the
acoustic radiation impedance using only the Helmholtz integral equation formula, and so
the surrounding structures were considered as rigid reflectors. Therefore, the influence of
the vibration mode of the surrounding structure cannot be considered. In addition, this
approach neglects the effects of sound waves that are transmitted through the acoustic
window. Due to this limitation, studies on EC models so far have not been able to precisely
predict the array performance while considering the flexibility of surrounding structures.

In this study, we developed an EC-based model of a transducer array system that can
consider the effects of the acoustic interaction and the vibration of the flexible surrounding
structures. With the proposed model, it is possible to precisely predict the response of the
transducer array, including the crosstalk phenomenon. Crosstalk is a phenomenon in which
the acoustic pressure generated by the projector is transferred to adjacent hydrophones
through the surrounding structures, and the transferred pressure generates noise signals
in the hydrophones. The performance of the transducer array is deteriorated due to this
acoustic interaction [31].

The proposed analysis procedure can be roughly divided into two parts: One is
the construction of the impedance matrix using the EC model and the FE-BE coupling
model [32–35] and then using it to obtain the response of each transducer. To be more
specific, the impedance matrix equation is derived based on the T-network EC model. The
acoustic radiation impedance is calculated from the FE-BE coupling model. The FE-BE
coupling model consists of the FE model of the surrounding structure, the BE model of
the fluid between the array and the surrounding structure, and the BE model of the fluid
outside the surrounding structure. The other part is the construction of an acoustic transfer
matrix using the FE-BE coupling method and then the calculation of the sound pressure of
the external acoustic field. With the proposed method, the array performance including
the far-field directivity pattern and transmitting voltage response (TVR) can be estimated
with less computational resources than the conventional FE analysis.

Section 2 presents methods for constructing the impedance matrix equation and
acoustic transfer matrix equation. In Section 3, a case of a cylindrical array with an enclosed
dome is evaluated and compared to the result of multi-physics FEM to verify the accuracy
and focus on a practical problem. We also evaluate the efficiency of the proposed method
by comparing it with a conventional method based on Multiphysics FEM in terms of the
reduction of DOFs. Conclusions are presented in Section 4.
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2. Mathematical Formulation
2.1. Impedance Matrix Equation
2.1.1. Single Transducer

Tonpilz transducers are piezoelectric transducers mainly used for relatively low fre-
quencies and high-power sound emission. Figure 1 shows a free body diagram of a tonpilz
transducer. The transducer consists of its four basic components: the piston head mass,
piezoelectric stack, tail mass, and stress rod. u1, u2, and u3 are the velocities, and I is the
current of a transducer. F1, F2, and F3 are the forces, and V is the driving voltage. Here,
each force can be written as

F1 = Fr + F1,Head + F1,PZT + F1,st
F2 = F2,PZT + F2,Tail
F3 = F3,Tail + F3,st

(1)

where Fr is the reaction force of the medium to the motion of the wet surface (the radiating
surface) of the head mass, and F1,Head is the inertia force of the head mass. F1,PZT and F2,PZT
are the forces exerted by the piezoelectric stack on the top and bottom of the piezoelectric
stack, respectively. F1,st and F3,st are the forces exerted by the stress rod on the top and
bottom of the stress rod, respectively. F2,Tail and F3,Tail are the forces exerted by the tail
mass on the top and bottom of the tail mass, respectively.
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Figure 1. Free body diagram of a tonpilz transducer.

The transducer’s head mass is assumed to be rigid because it needs to provide uniform
longitudinal motion, and its first flexural resonance should be significantly above the
operating frequency band. Thus, the force F1,Head and the mechanical impedance of the
head mass Z1 are expressed using the Lumped Parameter Model (LPM):

F1,Head = Z1 u1 where Z1 = jω MHead (2)

where j =
√
−1, ω is the circular frequency, and MHead is the mass of the head.

2Zc, 2Zb, 3Zc, 3Zb, 4Zc and 4Zb denote the mechanical impedances of the components
of the transducer other than the head, obtained by the T-network. The right subscripts b
and c indicate the shunt arm impedance and the sum of the shunt arm impedance and
series arm impedance of the T-network, respectively. The left subscripts 2, 3, and 4 denote
the components of the transducer: piezoelectric elements, tail, and stress rod, respectively.
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The free body diagram and EC model of a piezoelectric stack are shown in Figure 2.
From the EC model shown in Figure 2b, the following equations can be obtained.

I = N(u1 − u2) + (1/Z0)V
F1,PZT = +2Zcu1 − 2Zbu2 − NV where 2Zc = 2Za + 2Zb
F2,PZT = −2Zbu1 + 2Zcu2 + NV

(3)
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Using Equation (3), the following equations can be obtained.

F1,PZT =
(
+2Zc + N2Z0

)
u1 +

(
−2Zb − N2Z0

)
u2 − NZ0 I

F2,PZT =
(
−2Zb − N2Z0

)
u1 +

(
+2Zc + N2Z0

)
u2 + NZ0 I

V = −NZ0u1 + NZ0u2 + Z0 I
(4)

For a segmented 33 bar, the shunt electrical impedance Z0 can be obtained from
the geometry and material properties of the PZT (lead zirconate titanate) elements using
the LPM:

Z0 = 1/jωC0
C0 = C f (1− k2

33)

C f = nPZTεT
33 APZT/tPZT

k2
33 = d2

33/sE
33εT

33
N = d33 APZT/tsE

33

(5)

where C0 is the clamped capacitance, C f is the free capacitance, k2
33 is the coupling coeffi-

cient, nPZT is the number of rings in the drive stacks, tPZT is the thickness of each ring, d33
is the piezoelectric coefficient, APZT is the cross-sectional area, sE

33 is the elastic compliance
coefficient, εT

33 is the permittivity coefficient, and N is the electromechanical turn ratio.
As shown in Figure 2b, the mechanical part of the EC model of a piezoelectric stack

is represented using a T-network12 based on a simple longitudinal bar model. The T-
network is one of the ways to express a distributed parameter system as an EC model. The
mechanical impedances of piezoelectric element 2Zc, 2Zb can be written as

2Zc = −jρPZTcPZT APZT cot(kPZTLPZT)

2Zb = −jρPZTcPZT APZT/sin(kPZTLPZT)
(6)
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where ρ, c, A, and L are the density, wave velocity, cross-sectional area, and longitudinal
length of the part, respectively. k is the wave number. The subscripts PZT denote the
piezoelectric stack.

The tail mass and stress rod have the same form of T-network EC model as the PZT
stack, except that there is no electrical part. Thus, the following equations can be obtained
in a similar way:

F2,Tail = +3Zcu2 − 3Zbu3
F3,Tail = −3Zbu2 + 3Zcu3
F1,st = +4Zcu1 − 4Zbu3
F3,st = −4Zbu1 + 4Zcu3

(7)

The mechanical impedances of tail mass 3Zc, 3Zb and the mechanical impedances of
stress rod 4Zc, 4Zb can be written as

3Zc = −jρTailcTail ATail cot(kTailLTail)

3Zb = −jρTailcTail ATail/ sin(kTailLTail)

4Zc = −jρstcst Ast cot(kstLst)

4Zb = −jρstcst Ast/ sin(kstLst)

(8)

Here, the subscripts Tail, and st denote the parts of the transducer.
The reaction force of the medium to the motion of the head surface Fr is

Fr =
x

S

p(
→
r )dS (9)

where S is the wet surface (the radiating surface) of the transducer head,
→
r is the position

vector on the radiating surface, and p(
→
r ) is the pressure produced by the transducer head.

For a single transducer, Fr can be expressed in terms of the self-radiation impedance Zr by
dividing by the velocity of the head u1:

Zr =
Fr

u1
where Zr =

1
u1

x

S

p(
→
r )dS (10)

By using the Equations (1), (2), (4), (7) and (10), the impedance matrix equation for a
single tonpilz transducer can be expressed as

Zu=F (11)

where Z is the impedance matrix, u is a vector of velocities and current of the transducer,
and F is a vector of the external forces and voltage of the transducer. They can be written as

Z =


Zr + Z1 + 2Zc + 4Zc + N2Z0 −2Zb − N2Z0 −4Zb −NZ0

−2Zb − N2Z0 2Zc + 3Zc + N2Z0 −3Zb +NZ0
−4Zb −3Zb 3Zc + 4Zc 0
−N Z0 +NZ0 0 Z0

 (12)

u =
[

u1 u2 u3 I
]T, F =

[
F1 F2 F3 V

]T (13)

2.1.2. Array of Transducers

For an array of transducers, depending on where the transducer is in the array, the
reaction force of the medium, Fr, has different characteristics. The force exerted on the ith
transducer, Fr,i, by the pressures from all the transducers is

Fr,i =
n

∑
k=1

x

S

pk(
→
r ik)dSi (14)
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where n is the number of transducers that make up the array, Si is the wet surface of the ith
transducer head, pk(

→
r ik) is the pressure produced by the kth transducer at the designated

point on ith transducer, and rik is the distance from the center of the kth transducer to the
designated point. This force, Fr,i, can be expressed in terms of the radiation impedance,
Zr,i, of the ith transducer by dividing by the velocity of that transducer head, u1,i, as was
done for a single transducer in Equation (10):

Zr,i =
Fr,i
u1,i

= 1
u1,i

n
∑

k=1

s

S
pk(
→
r ik)dSi =

1
u1,i

n
∑

k=1
u1,kZr,ik where Zr,ik =

1
u1,k

s

S
pk(
→
r ik)dSi (15)

Here, Zr,ik is defined as the mutual radiation impedance between the ith and kth
transducer, and u1,k is the velocity of kth transducer head. Equation (15) shows that the
coupling between transducers occurs in the acoustic region and can be expressed as mutual
radiation impedance.

Generally, the transducers that make up an array are all the same transducers, so when
constructing the impedance matrix of an array, all transducers have the same electrical and
mechanical impedance. Thus, the impedance matrix equation of the ith transducer can be
expressed as

Ziui=Fi (16)

where Zi is the impedance matrix of the ith transducer, ui is a vector of velocities and
current of the ith transducer, and Fi is a vector of the forces and voltage of the ith transducer.
They can be written as

Zi =


Zr,i + Z1 + 2Zc + 4Zc + N2Z0 −2Zb − N2Z0 −4Zb −NZ0

−2Zb − N2Z0 2Zc + 3Zc + N2Z0 −3Zb +NZ0
−4Zb −3Zb 3Zc + 4Zc 0
−N Z0 +NZ0 0 Z0

 (17)

ui =
[

u1,i u2,i u3,i I i

]T
, Fi =

[
F1,i F2,i F3,i Vi

]T (18)

where u1,i, u2,i and u3,i are the velocities, and Ii is the current of the ith transducer. F1,i,
F2,i and F3,i are the forces, and Vi is the driving voltage of the ith transducer. Substituting
Equation (15) into Zr,i of Equation (17), the impedance matrix equation for the array of
transducers can be derived as

~
Z11 · · ·

~
Z1n

...
. . .

...
~
Zn1 · · ·

~
Znn




u1
...

un

 =


F1
...

Fn

 or
n
∑

k=1

~
Zikuk=Fi

where
~
Zik =


Zr,ik 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

+


Z1 + 2Zc + 4Zc + N2Z0 −2Zb − N2Z0 −4Zb −NZ0
−2Zb − N2Z0 2Zc + 3Zc + N2Z0 −3Zb +NZ0
−4Zb −3Zb 3Zc + 4Zc 0
−N Z0 +NZ0 0 Z0

δik

(19)

where δik is the Kronecker delta, and
~
Zik is an impedance matrix representing the relation

between the ith transducer and the kth transducer.

2.2. Acoustic Radiation Impedance

In this study, an FE-BE coupling method has been developed to calculate the acoustic
mutual-radiation impedance, Zr,ik, for an array of transducers with surrounding structures.
This is done to reflect the influence of the vibration mode of the elastic surrounding
structures and the influence of sound wave transmission and refraction by the surrounding
structures on the impedance.

In this section, the formulations used are based on the coupling of the FE for the
structure and the BE for the fluid. The FE/BE coupling method leads to reduction of the
computational resources compared to when using the conventional FE model.
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When an elastic structure of arbitrary shape is immersed in the fluid as shown in
Figure 3a, the finite element modeling of the structure is given by the following discretized
governing equation [34]:

Zsvs=Fs −GQSp where Zs = jωM + C +
K
jω

(20)

where M, C and K are the mass, damping, and stiffness matrices of the elastic structure
obtained by the FEM, respectively. vs is a velocity vector corresponding to all DOFs of the
structure. Fs is the harmonic load vector for the structure. G is a matrix that is used to find
nodes on the surface (wet surface) where the elastic structure is in contact with the acoustic
medium. Q is a transformation matrix that converts the outward unit normal force of the
nodes on the wet surface to the force of the node in the fixed coordinate system (the global
coordinate system). S is a diagonal matrix where the diagonal elements are the areas of
each element on the wet surface of the elastic structure. p is the surface pressure acting on
the radiating surface.
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In this study, Equation (20) has been developed in the form necessary to obtain
the acoustic radiation impedance of an array. When an elastic surrounding structure of
arbitrary shape is placed around the radiating surface of the array as shown in Figure
3b, the finite element modeling of the surrounding structure is given by the following
discretized governing equation:

Zsvs=Fs −G2Q2S2p2 −G3Q3S3p3 (21)

where p2(s2 × 1) is the surface pressure acting on the radiating surface when the elastic
structure and fluid 1 come into contact, as shown in Figure 3b. p3(s3 × 1) is the surface
pressure acting on the radiating surface when the elastic structure and fluid 2 come into
contact. S2(s2 × s2) and S3(s3 × s3) are the area matrices of the inner and outer surfaces
of the elastic surrounding structure, respectively. G2(s0 × 3s2) and G3(s0 × 3s3) are trans-
formation matrixes of the inner and outer surfaces of the elastic surrounding structure,
respectively. Q2(3s2 × s2) and Q3(3s3 × s3) are transformation matrixes of the inner and
outer surfaces of the elastic surrounding structure, respectively. Using this transformation
matrix, the velocities vn2(s2 × 1) and vn3(s2 × 1) in the normal direction of the radiating
surface can be expressed as the following equation in the fixed coordinate system:

vn2=QT
2 v2 , vn3=QT

3 v3 (22)

where v2 and v3 are the velocity vectors corresponding to the DOFs of the structure on the
inner and outer wet surfaces of the structure, respectively. As these velocity vectors are
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included in vs, the velocity vector vs and the corresponding harmonic load vector Fs can
be expressed as follows:

vs=[v2, vin, v3]
T, Fs=[F2, Fin, F3]

T (23)

The subscript in denotes that the value is not on the wet surface. s0, s1, s2 and s3,
indicating the sizes of each matrix, are the DOFs of the structure, the DOF of the fluid on
the outer surface of the array, the DOFs of fluid 1 on the inner surface of the surrounding
structure, and the DOFs of fluid 2 on the outer surface of the surrounding structure,
respectively.

Next, fluid 1 between the array and the surrounding structure and fluid 2 outside the
surrounding structure satisfy the Helmholtz equation. The radiating surface is divided
into boundary elements, and the fluid is modeled and formulated. Using the acoustic BEM,
the relation between the surface pressure and the normal surface velocity of the radiating
surface is given by the following equation:[

B1,11 B1,12
B1,21 B1,22

]{
vn1
vn2

}
−
[

A1,11 A1,12
A1,21 A1,22

]{
p1
p2

}
=
{

0
0

}
where [B1] =

[
B1,11 B1,12
B1,21 B1,22

]
, [A1] =

[
A1,11 A1,12
A1,21 A1,22

] in f luid 1 (24)

B2 vn3 −A2 p3={0} in f luid 2 (25)

where vn1(s1 × 1) and p1(s1 × 1) are the normal velocity and the surface pressure acting on
the radiating surface on the array, respectively. [A1] and [B1] are the dipole and monopole
matrices obtained by the BEM for the fluid 1 between the array and the surrounding
structure, respectively. [A2] and [B2] are the dipole and monopole matrices obtained by
the BEM for the fluid 2 outside the surrounding structure, respectively. These matrices are
dependent on the frequency, geometry, and fluid properties.

Finally, the governing matrix equation of the structure–fluid coupling system can be
obtained by combining Equations (21), (24) and (25):



0 0
0 Zs 0 G2Q2S2 G3Q3S3
0 0

B1,11 B1,12QT
2 0 0 −A1,11 −A1,12 0

B1,21 B1,22QT
2 0 0 −A1,21 −A1,22 0

0 0 0 B2QT
3 0 0 −A2





vn1
v2
vin
v3
p1
p2
p3


=



F2
Fin
F3
0
0
0


(26)

Assuming that there is no external force to excite the structure (Fs ={0}), moving
known values (vn1) to the right side it can be expressed as the following equation.

0
Zs 0 G2Q2S2 G3Q3S3

0
B1,12QT

2 0 0 −A1,11 −A1,12 0
B1,22QT

2 0 0 −A1,21 −A1,12 0
0 0 B2QT

3 0 0 −A2





v2
vin
v3
p1
p2
p3


=−



0
0
0

B1,11
B1,21

0

{vn1} (27)

Now, Zr,ik can be obtained by the following process. First, by putting vn1 in Equa-
tion (28) and substituting it into the equation above, we can obtain the dynamic behavior
of the elastic surrounding structure vs, the pressures of the radiating surface of the sur-
rounding structures p2 and p2, and the pressure on the array surface p1.

vn1,j =

{
1, j is on the surface of the kth transducer head
0, j isn′t on the surface of the kth transducer head

(28)
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where vn1,j is the jth element of {vn1}. Then, Zr,ik can be obtained by postprocessing the
obtained surface pressure p1 according to the definition of the acoustic mutual radiation
impedance as follows:

Zr,ik =
s1
∑

j=1
Sj p1j∆j

where ∆j =

{
1, j is on the surface of the the ith transducer head
0, j isn′t on the surface of the the ith transducer head

(29)

where Sj is the area of the jth boundary element.

2.3. Transfer Matrix for Field Point Pressure Calculation

The acoustic pressure field radiated from an array can be obtained by the acoustic
transfer matrix and the velocity distribution over the transducer heads calculated by the
impedance matrix equation in Equation (19). The transfer matrix, H, indicates the transfer
function between the surface velocity of transducer heads, uh, and the pressure of field
points, Pf:

Pf = Huh where uh =
[

u1,1 u1,2 · · · u1,n
]T (30)

The vector Pf(m× 1) is the pressure of the field points located in the area of interest.
The vector uh(n× 1) is the velocity of the transducer heads. The relation between the
velocity of the transducer heads, uh, and the surface normal velocity, vn1, is shown in
Equation (31):

vn1 = Lhuh (31)

where Lh(s1 × n) is a matrix for finding nodes on the surfaces of the transducer head on
the radiating surface of the array.

The pressure of the field points, Pf, can be determined using the surface normal
velocity vn3 and the surface pressure p3:

Pf=C2 p3+D2 vn3 (32)

where [C2] and [D2] are the dipole matrix and monopole matrix, respectively, for fluid
2 corresponding to the field points, obtained by the acoustic BEM. Equation (33) shows
the relationship between the surface normal velocity, vn1, and the structure velocity of
outer surface, v3. The transformation matrix T between vn1 and v3 can be obtain from
Equation (27).

v3=Tvn1 (33)

By using Equations (22), (25), (31) and (33), Equation (32) can be expressed as

Pf=
(

C2A−1
2 B2+D2

)
QT

3 T Lh uh (34)

Thus, when there are surrounding structures, the transfer matrix H is

H=
(

C2A−1
2 B2+D2

)
QT

3 T Lh (35)

3. Validation
3.1. Analysis Model

The results of a general-purpose package (Multiphysics FEM software) were compared
with the results obtained by the proposed method for a model with surrounding structures
to confirm the validity of the proposed method.

The analysis model is a cylindrical array of 96 piston transducers arranged in 24
staves surrounded by an acoustic window, as shown in Figure 4. Figure 4a shows the
geometry, and Figure 4b shows a FE-BE coupling model used in the proposed method
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to obtain the acoustic radiation impedance, Zr,ik, and the transfer matrix H. In Figure 4b,
only the ellipsoid-shaped acoustic window is the structural finite element, the fluid 1
between the array and the acoustic window and the fluid 2 outside the acoustic window
are the boundary elements. The input boundary condition of the FE-BE coupling analysis
is shown in Equation (28). The acoustic radiation impedance, Zr,ik, can be obtained by
postprocessing the analyzed surface sound pressure result as Equation (29). Although
the transfer matrix H can be obtained using Equation (35), it is often difficult to access
the system matrices (e.g., M, C, K, A1, B1, A2 and B2) of the general-purpose package. In
that case, it can be obtained by setting the input boundary condition as Equation (28) and
postprocessing the sound pressure result in the point of interest field. For example, the kth
column of the transfer matrix H can be obtained by setting the input boundary condition
as Equation (28). Figure 4c shows the conventional FE model. In the conventional FE
model, an open boundary condition, such as perfectly matched layer (PML), is given to the
surface of the sphere that is the external fluid domain. Moreover, each transducer is given
a boundary condition that allows it to move in only piston mode without rocking mode
because the transducer is designed so that the rocking mode does not occur.
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Figure 5a shows the tonpilz transducer used in the array, and Figure 5b shows the
transducer FE model used for the conventional analytical method. The material of the
piezo-stack is PZT-4, and that of the tail and stress rod is AISI 4340 steel. The density of the
head is 2700 [kg m−3]. The material properties and dimensions of the analytical model are
given in Tables 1 and 2, respectively. The spacing between transducers is set to tenths of
“the length of one side of the square transducer head surface”.
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Table 1. Material properties of the analysis model.

Component Property Symbol Value

Piston Head (Rigid) Density ρ 2700 [kg/m3]

PZT Ceramic (PZT-4)

Compliance coefficient

sE
33 1.55 × 10−11 [1/Pa]

sE
11 1.23 × 10−11 [1/Pa]

sE
12 −4.05 × 10−12 [1/Pa]

sE
13 −5.31 × 10−12 [1/Pa]

sE
44 3.90 × 10−11 [1/Pa]

Piezoelectric coefficient
d33 2.89 × 10−10 [C/N]
d31 −1.23 × 10−10 [C/N]
d15 4.96 × 10−10 [C/N]

Relative permittivity
coefficient

εT
33/ε0 1300

εT
11/ε0 1475

Density ρ 7500 [kg/m3]

Tail Mass & Stress
Rod (Steel AISI 4340)

Density ρ 7850 [kg/m3]
Young’s Modulus E 205 × 109 [Pa]

Poisson’s Ratio υ 0.28

Acoustic Window
Density ρ 1500 [kg/m3]

Longitudinal wave speed CP 2400 [m/s]
Shear wave speed CS 1230 [m/s]
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Table 2. Dimensions of the analysis model.

Component Dimensions Symbol Value

Piston Head
Cross-sectional area AHead 0.04 [m2]
Longitudinal length LHead 0.06 [m]

PZT Ceramic

Cross-sectional area APZT 3.77 × 10−3 [m2]
Longitudinal length LPZT 0.08 [m]

Number of rings nPZT 10
Thickness of each ring tPZT 8.00 × 10−3 [m]

Tail Mass
Cross-sectional area ATail 7.12 × 10−3 [m2]
Longitudinal length LTail 0.192 [m]

Stress Rod
Cross-sectional area Ast 7.80 × 10−5 [m2]
Longitudinal length Lst 0.272 [m]

Array Height Harray 0.88 [m]
Diameter Darray 1.68 [m]

Acoustic Window

Thickness twindow 0.025 [m]
awindow 1.25 [m]

half-length of the
principal axes bwindow 1.25 [m]

cwindow 0.75 [m]

3.2. Analysis Condition

This section describes how to determine the input vector Fi of the impedance matrix
equation. It is assumed that no external forces are applied to the array as the example
analysis model is a projector array. The conditions are expressed by Equation (36).

F1,i = 0
F2,i = 0 where i = 1, · · · , 96
F3,i = 0

(36)

Phase shifting the applied voltages is done to steer a projected beam. Normally, about
120◦ of the cylindrical surfaces is used for beam steering [36]. Thus, only 8 of the 24 staves
are used in this model, which means that 32 of 96 transducers are operated, as shown in
Figure 6.
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The phase shifts must be proportional to the perpendicular distance from each trans-
ducer to the plane. The beam can also be steered in the elevation angle θ by phase shifting.
The applied voltage of each transducer has the phase shown in Equation (37).

Vi =
√

2Vrmsejkdi [V] where i = 1, · · · , 32
Vi = 0 [V] where i = 33, · · · , 96

(37)

where di is the perpendicular distance from each transducer to the plane, and Vrms is the
RMS value of the applied voltage.

By changing the Equation (19) as following equation, and fill the input force vector,[
F1 · · · Fn

]T, with Equations (36) and (37), the responses of the array can be obtained

from the output vector,
[

u1 · · · un
]T.


u1
...

un

 =


~
Z11 · · ·

~
Z1n

...
. . .

...
~
Zn1 · · ·

~
Znn


−1

F1
...

Fn

 (38)

3.3. Analysis Result
3.3.1. Response of Each Transducer

This section presents the electrical current and the vibration velocity obtained from
the impedance matrix equation in the form of a transfer function for the applied voltage.
The results are compared to the FE analysis results. The 32 operated transducers and their
numbers are shown in Figure 7. Each operating transducer has a unique transfer function
depending on its position and the direction of the projected beam.
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Figures 8–11 show the resulting electrical and mechanical transfer functions for ran-
domly selected transducers #7 and #9. In each graph, the x-axis is the normalized frequency,
ka, for the size of the transducer, where a is the length of one side of the radiating surface of
the head (0.2 m in this case). The amplitudes of the electrical admittances of transducers #7
and #9 are shown in Figures 8 and 9, respectively. The amplitudes of the transfer function
between the applied voltage and the head velocities of transducers #7 and #9 are shown
in Figures 10 and 11, respectively. Graphs are shown for elevation angles of the projected
beam of 0◦ and 30◦. Here, the analyzed frequency range is approximately ka = 1.5 ∼ 4.2.
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Figure 8. Electrical admittance of transducer #7 calculated by the proposed method (solid line) and
the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.
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Figure 9. Electrical admittance of transducer #9 calculated by the proposed method (solid line) and
the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.
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Figure 10. Voltage-to-velocity transfer function of transducer #7 calculated by the proposed method
(solid line) and the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.
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Figure 11. Voltage-to-velocity transfer function of transducer #9 calculated by the proposed method
(solid line) and the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.

The conventional FEM results and the results of the proposed method match well. The
validity of the proposed method can be confirmed by the fact that the transfer functions of
each transducer obtained by the two methods are very similar. In Figures 8–11, the analysis
results are rather complex. This occurs because the sound diffraction, transmission, and
vibration mode of the acoustic window have complex effects on the acoustic field produced
by the sonar (the crosstalk phenomenon).

3.3.2. Array Performance

In this section, the beam pattern and TVR results calculated by the proposed method
are compared with the conventional FEM results. The beam pattern and TVR are obtained
by postprocessing the pressure at the field point of the far field. In this example, as the
sound field at a distance of 100 m from the array has sufficiently developed into the far
field, the field points are placed on a circle with a radius of 100 [m] on the y-z plane as
shown in the Figure 12. TVR is defined as

TVR = 20 log

[
Prms(r)

Pre f

r
Vrms

]
where Pre f = 1[µPa] (39)

where Prms(r) is the rms sound pressure measured at a distance r from the source along
the acoustic axis. Here, r is multiplied to Prms(r) as TVR is normalized over distance r.
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Figure 12. Location of field points for calculating beam pattern.

The resulting TVR is shown in Figure 13. Results are shown for elevation angles of
the projected beam of 0◦ and 30◦. Typically, the operating frequency band of the array is
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designed as the frequency band near the maximum peak of the TVR. As shown in Figure 13,
the maximum peak of TVR occurs between about ka = 3.0 and ka = 3.5, so the resulting
beam patterns at ka = 3.0 and ka = 3.5 are shown in Figures 14 and 15, respectively.
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Figure 13. Comparison of transmitting voltage responses (TVRs) calculated by the proposed method
(solid line) and the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.
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Figure 14. Comparison of beam patterns at ka = 3.0 calculated by the proposed method (solid line)
and the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.
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and the conventional FEM (thick dashed line) when (a) θ = 0◦ and (b) θ = 30◦.

The validity of the proposed method confirms that the array performances obtained
by the two methods match. These analysis results for the exterior acoustic field are rather
complex. In particular, the TVR results have several small peaks as shown in Figure 13.
This occurs because the sound diffraction, transmission, and vibration mode of the acoustic
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window have a complex effect on the acoustic field produced by the transducer array (the
crosstalk phenomenon).

3.4. Evaluation of Numerical Performance (in Terms of DOFs Reduction)

This section describes the numerical performance of the proposed method in terms of
DOFs reduction. For numerical models such as FE model or FE-BE coupling model, DOFs
is the number of unknown variables of the matrix equation for calculating the dynamic
behavior of a physical system. The higher the DOFs, the greater the computational effort.
Therefore, from the reduction rate of DOFs, we evaluated how high numerical performance
the method proposed in this study has compared to the conventional full FEM.

We modeled cylindrical arrays as shown Figure 4a and configured four different sets
of row and stave numbers, NC and NR to consider various sizes of problems: NC = 24
and NR = 4; NC = 36 and NR = 6; NC = 48 and NR = 8; and NC = 60 and NR = 10. We also
considered four different analysis frequencies represented by ka: ka = 2, 3, 4, and 5. The
following are basic schemes for generating the FE-BE coupling model for the proposed
method and the FE model for the conventional method:

1. The size of one side of the acoustic element is set to about λ/8 [37].
2. The FE of the structure should be generated so that the mode shapes that are within 2

times the maximum analysis frequency can be well represented.
3. The shape of the acoustic window is assumed to be an oblate spheroid, and its size is

set to increase in proportion to the array size. Here, the sizes of the half-length of the
principal axes are assumed to be awindow = 1.5RArray and cwindow = 1.7NR(a + d)/2.
RArray is the radius of the array.

4. For the conventional full FEM, an adequate amount of space is required between
the array and the outer surface in order to apply an open boundary condition to the
surface of the acoustic region. The free space of the open boundary is assumed to be
set to 300% of the size of the structure. Thus, the radius of the open boundary is three
times the half-length of the principal axes.

The DOFs for the two models (FE-BE coupling model and the conventional FE model)
were obtained using the general-purpose software’s DOF calculation function. The DOFs
required for a reliable solution are summarized in Table 3. The DOFs of the proposed
method are denoted by DOFFE−BE, and that of the conventional full FEM are denoted by
DOFFullFE.

Table 3. Degrees of freedom (DOFs) of the FE-BE coupling model and full FE model.

ka = 2.0 ka = 3.0 ka = 4.0 ka = 5.0

Array Size DOFFE−BE DOFFullFE DOFFE−BE DOFFullFE DOFFE−BE DOFFullFE DOFFE−BE DOFFullFE

NC = 24,
NR = 4 0.5576× 105 0.1943× 107 1.232 × 105 0.5055× 107 2.197 × 105 1.109 × 107 3.408 × 105 2.102 × 107

NC = 36,
NR = 6 1.251 × 105 0.5805× 107 2.763 × 105 1.621 × 107 4.931 × 105 3.642 × 107 7.648 × 105 6.968 × 107

NC = 48,
NR = 8 2.220 × 105 1.287 × 107 4.907 × 105 3.744 × 107 8.757 × 105 8.517 × 107 13.58 × 105 16.38 × 107

NC = 60,
NR = 10 3.467 × 105 2.411 × 107 7.664 × 105 7.198 × 107 13.68 × 105 16.51 × 107 21.22 × 105 31.84 × 107

DOFFullFE/DOFFE−BE is an indicator of how many times the DOFs have been reduced
when using the proposed hybrid method. Figure 16 shows the ratio of DOFs of the proposed
method to the conventional method. The dashed-dotted line, the dotted line, the broken
line, and the solid line represent the cases of the transducer arrays corresponding to “NC =
24 and NR = 4”, “NC = 36 and NR = 6”, “NC = 48 and NR = 8”, and “NC = 60 and NR = 10”,
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respectively. As shown in Figure 16, higher frequency and a larger size of the array result
in higher values of DOFFullFE/DOFFE−BE.
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4. Conclusions

This study developed a hybrid modeling method for an effective analysis of an
acoustic transducer array with arbitrarily shaped flexible surrounding structures. More
precisely, the proposed analysis procedure is divided into two parts: The first part is
for the construction of the impedance matrix using an EC model and a FE-BE coupling
model. We derived the electro-mechanical-acoustic coupling impedance matrix equation
and established the procedure of calculation of the impedance matrices. Specifically, the
mechanical and electrical impedances were derived from the LPM and T-network, a type
of the EC model. The acoustic radiation impedances were calculated from the FE-BE
coupling model, which represented the surrounding structure and acoustic coupling. The
second part is dedicated to the construction of the acoustic transfer matrix using the FE-BE
coupling method. Here, the acoustic pressure on each head surface can be calculated using
the acoustic radiation impedance and the head velocities. The far-field acoustic pressure
can be also evaluated by the acoustic transfer matrix equation and the head velocities.

The proposed method was applied to sonar with 96 tonpliz transducers and sur-
rounding structures. The response of each transducer was calculated (such as the electrical
admittance and the vibration velocity) along with the array performance (such as the far-
field directivity pattern and the TVR). The results were compared with the results of FEM
software. The results showed good agreement. To evaluate the numerical performance of
the proposed method, the DOFs of the FE-BE models and the full FE model were investi-
gated and compared. The DOF reduction rate of the proposed method to the conventional
FEM is increased as the analysis frequency, array size, or size of the surrounding structures
increased.

The main conclusion is that this proposed hybrid method can be used to effectively
estimate the performance of the array while taking into account the surrounding structure
and acoustic medium coupling. The computational effort is significantly reduced with the
equivalent accuracy to the conventional FE analysis. Therefore, the proposed method is
expected to be useful for conceptual design that require frequent design changes.
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