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Abstract: Remanufacturing is a key pillar of a circular economy and helps in recovering used prod-
ucts by extending their life cycle via remanufacturing them into new products. A vital aspect in a
remanufacturing system is the quality assessment of incoming worn-out products (cores) prior to
remanufacturing to ensure that non-conforming cores are discarded at an early stage in order to avoid
unnecessary processing. Therefore, quality sorting plays an important role in core acquisition for
remanufacturing systems when attempting to mitigate uncertain incoming core quality as an imme-
diate solution. The main problem is that it is difficult to acquire the important information required
to decide on the sorting of incoming cores, such as the core quality. The data are also commonly
limited, not always available, or inaccurate. Grey systems are powerful methods in decision making
when handling uncertainty with small data. In this paper, we consider the usefulness of grey systems
for handling uncertain quality information for sorting incoming cores in a remanufacturing system.
For this reason, we propose a multi-criteria quality sorting model based on an analytical hierarchy
process (AHP)-entropy model that is coupled with grey clustering using possibility functions. The
quality criteria for sorting the incoming cores are considered according to the technological, physical,
and usage conditions. To demonstrate the practical contribution of this research, a case study of the
quality sorting problem with a heavy-duty equipment remanufacturer is presented. The proposed
model consistently classifies the quality of used hydraulic cylinders into two grey classes.

Keywords: core acquisition; quality grading; grey decision making; analytical hierarchy process

1. Introduction

In the new global economy, the concept of a circular economy has become a central
issue of international concern. Many studies by researchers and policymakers in recent
years have focused on circular economies as possible solutions to pursue the global issue
of sustainable development goals. There are multiple definitions of a circular economy.
In general terms, a circular economy can be viewed as a closed-loop industrial system
that has activities for the reduction, reuse, and recycling of resources for the purpose of
developing sustainability. The feedback loops indicate that recycling and recovery are the
main concerns in a circular economy [1]. The strategy of a circular economy is to retain
services in use for as long as possible in order to gain maximum value from them during
use, and then to recover and restore them at the end of any lifetime of service [2].

Remanufacturing is the backbone of the circular economy, which helps in salvaging
used products via recovery strategies to extend product life cycles. Such processes start
with the acquisition of cores to be remanufactured into new products. The remanufactured
products should fulfill a performance that is at least equal to the original products as a
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representation of customer requirements. The three main activities in any remanufacturing
system include core acquisition, remanufacturing operations, and re-marketing. Core
acquisition is challenging for remanufacturers as remanufacturing in closed-loop supply
chains is characterized by uncertainty for the quality, time, and volume of returns. The
term uncertainty is generally understood to mean lack or incompleteness of information,
i.e., known only as incompletely or imprecisely. Incompleteness is characterized as a
measure of an inexistence of basic source data that should be provided to complete a given
business process of remanufacturing. As a result, uncertainty leads to economic (cost and
feasibility) and technical (remanufacturability, scheduling, and process planning) risks for
remanufacturing companies. Therefore, these uncertainties need to be mitigated to achieve
the desired performance.

The quality of a product is concerned with the degree to which the requirements are
fulfilled by a set of key characteristics. Quality variation of a new material is one of the
most significant factors causing non-conformance to the requirements for final product
quality in manufacturing systems. The important factor of the incoming core quality
in remanufacturing system is comparable to the new material quality in manufacturing
system. Quality is an essential criterion for the performance evaluation of used products
and is a key driver in remanufacturing decisions. The quality of incoming cores has a
significant effect on the remanufacturing cost and cost of quality. Whenever the sorting of
incoming cores is possible, it may lead to easy remanufacturing planning for minimizing
these costs. If the quality level of incoming cores is better, remanufacturing costs will be
low, and any used products can be saved at a value that increases with their level of quality.
In order to return the used products into a good functional state, the highest quality cores
may need a limited reconditioning process (thus entailing lower process costs), whereas
the worst quality cores will need comprehensive processes or part replacements [3]. An
example of this can be seen from study carried out by Behdad and Thurston [4], in which
they formulated a model to deal with the issue of upgrading a used part and bringing it
to a desired quality level at the end of its life by considering the current quality levels of
the parts. The evidence of the important role of quality inspection and sorting also can
be seen in the case of the decision-making process for upgrade planning, in which the
incoming products are classified into several different quality classes upon arrival, and
shortly after they are transferred to the remanufacturing unit [5]. A quantitative study
by Ferguson et al. [6] described the finding that over a wide range of parameter values
typically seen in the remanufacturing industry, a grading system increases profit and
consequently profit increases as the amount of returns increases. Therefore, sorting and
quality grading play major roles in core acquisition for remanufacturing systems when
considering the management of uncertain incoming core quality. Sorting operations in core
acquisition are vital for two important reasons. First, to identify the physical, usage, and
technological conditions of incoming cores, where they are sorted by their quality level
before any remanufacturing processes. Second, sorting operations represent an immediate
solution to mitigating quality uncertainty in the core acquisition [7–9].

Sorting problems can be broadly defined as a case where a sets of alternatives are
grouped in an ordinal manner according to the absolute evaluation, beginning with those
that include the most preferred alternatives to those that include the least preferred al-
ternatives [10]. Quality sorting in a remanufacturing system plays an important role for
grading cores according to their different conditions in order to plan the remanufacturing
process and the reduce the cost of remanufacturing. Cores with similar quality grades can
be remanufactured with dedicated processes such that the time and cost can be handled
efficiently. Quality classification and sorting policies are urgent and direct solutions that are
used in remanufacturing systems to handle the source variability in incoming products [8].
Unfortunately, a lack of information from end users can lead to inaccuracy in the quality
sorting process. Complete information is needed in order to determine the quality levels
of incoming cores. Moreover, when cores are sorted into different quality grades, limited
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quality data makes it difficult to estimate the associated quality level and the process
planning stage thus becomes difficult.

To manage quality uncertainty issues, the quality control of incoming cores has become
an important strategy for remanufacturing companies. The term quality control is used
here to refer to the part of core acquisition management focused on fulfilling quality require-
ments for incoming cores. Recent evidence suggests that fast sorting in long-term quality
control can be accomplished by installing information and communication technology, e.g.,
automatic sorting systems using radio frequency identification (RFID) or semi-automatic,
sensors, bar codes, and other technologies to automate product monitoring and testing in
order to acquire valuable usage data to assess remanufacturing feasibility [5,10,11]. For
instance, in order to record operating hours and speed, Bosch integrated chips into electric
motor power tools [12]. Afterward, they evaluated tool quality and sorted into two classes,
either remanufacturable or non-remanufacturable. Unfortunately, these methods do not
always guarantee usefulness for many remanufacturers. These technologies are only useful
for original equipment remanufacturers (OER) who have control over the product design
and wish to use such practice to invest in long-term payback if it is economically feasible.
These methods are an impractical option for independent or contract remanufacturers.

Alternative approaches are necessary to solve the problem of uncertain quality for
remanufacturing with short-term quality control. Quality sorting is used to directly control
and categorize incoming cores into several quality classes, from the most preferred class
to the less preferred class to justify the economic and technical viability for remanufactur-
ing. One can expect that cores with a similar quality class will need similar re-processing
operations. In this context, quality uncertainty refers to the required information to be
used to assess which conditions of the incoming core are not precisely known. Several
methods currently exist to deal with uncertainty. A well-known example is the probability
for randomness behavior which is based on a density function, and fuzzy sets for fuzzy
problems according to a membership function for ambiguity. The key differences between
probabilistic and fuzzy sorting are that precise classifications for the number of alternatives
each class has is given by fuzzy sorting and the percentage chances that an alternative is
held by each class is given by probability sorting [13]; however, the probability statistic
approach requires large sample data quantities to determine the probability density func-
tion. By way of illustration, Gavidel and Rickli [14] showed how large data quantities were
required for triage as an agile sorting strategy in extreme core arrival scenarios. Obtaining
large data quantities can be time-consuming and is often technically difficult to perform.
On the other hand, the fuzzy mathematical method depends on experience and cognitive
aspects to develop a fuzzy membership function.

The quality sorting problem for incoming cores can be subjectively or objectively
uncertain depending on the facts. For example, the classification of physical condition
based on damage level as determined by visual inspection is subjective, as it can change
from one inspector to another. In contrast, the classification of cores according to their usage
conditions according to the frequency of use is objective. As a result, there remains a need
for an efficient method that can handle quality uncertainty with small data quantities in
the sorting problem of incoming cores for remanufacturing. Quality sorting problems with
incoming cores may have multiple and conflicting criteria as per the technological, physical,
and usage conditions. To overcome the conflicting criteria, a multi-criteria decision-making
methodology was constructed using an analytical hierarchy process (AHP). The primary
benefit of the use of an AHP is that it can be used for criteria which are quantitative and
qualitative, and additionally the capacity to consider the subjective views of decision-
makers.

In 1982, grey system theory (GST) was first proposed by Professor Julong Deng from
Huazhong University of Science and Technology as a quantitative model for limited and
incomplete data [15]. Incompleteness and inadequacy of data is a basic feature of uncertain
systems [16]. GST has been widely used in various fields for decision-making problems
with uncertainty. This paper sets out to investigate the usefulness of grey systems for
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handling uncertain quality information for sorting incoming cores in a remanufacturing
system. The concern with grey system theory is that uncertainty issues arising from limited
or missing data are difficult to address with probability theory.

In grey systems, grey sets employ the basic concept of grey numbers and deal with
the characteristic function values of a set as grey numbers. A grey number is a number
that has clear upper and lower limits, but which has an unknown location within the
limits. Moreover, grey clustering is a method that may be defined as the branch of grey
system theory, which is concerned with the classification of observation indices or ob-
servation objects into definable groups using grey incidence matrices or grey possibility
functions [17]. Grey clustering evaluation models using possibility functions have been
extensively studied for uncertain systems analysis. If a grey number’s value data are
known to some degree, we may use the possibility function to explain the possibility of the
potential values that should be taken up by the grey number. Many recent studies [18–20]
have shown that a method based on grey clustering was helpful for classification problems
in remanufacturing operations with uncertain conditions because grey classification has
moderate computation complexity. Difficulties arise when an attempt is made to consider
multi-level criteria when making decisions regarding grey sorting problems. Moreover, the
current major challenges in quality sorting are addressed in the research questions listed in
Table 1. The table also provides relevant research objectives.

Table 1. Relevant research questions for research objectives.

Research Questions Research Objectives

a. How does one overcome the sorting
problem when the incoming cores feature
uncertain quality?

b. What criteria should be considered in the
quality evaluation of incoming cores?

c. How does one evaluate the relative
importance among the quality criteria
with incomplete data?

d. How does one assign the set of incoming
cores into pre-determined quality
classes?

a. To develop a multi-criteria sorting model
with uncertain quality.

b. To identify and propose the criteria for
the quality evaluation of incoming cores.

c. To determine the weights of the
considered criteria.

d. To establish the effective method for
cores assignment associated with the
sorting methods

This paper proposes an effective sorting model suitable for core quality classifica-
tion. In the present study, we propose the use of an AHP for structuring the problem in
addition to Shannon entropy and grey clustering for handling quality uncertainty. The
clustering weights could be found through different methods with subjective and objective
weighting within multiple quality criteria. Subsequently, the development of the model
will be accomplished by assigning the incoming cores into different quality classes for
remanufacturing. The rest of this paper is organized into the following sections. Following
the above introduction, Section 2 presents a literature review. Subsequently, Section 3
describes the conceptualization and construction of the sorting model by combining grey
clustering and the AHP approach. A case study is presented in Section 4 to demonstrate the
application of the proposed model for the problem of the quality sorting of incoming cores
in heavy-duty equipment parts. Multi-criteria sorting for incoming cores into predefined
quality classes based on their dominant attributes is proposed in this section. The results,
findings, and managerial insights are also included in this section. Finally, conclusions and
further areas for study are presented in Section 5.

2. Literature Review

Researchers and practitioners have recognized uncertainty as one of the most challeng-
ing elements in making decisions regarding remanufacturing [21]. The term “uncertain”
has been used to refer to situations in which something is not known or something is not
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complete or not certain. Such situations may include physical measurements or unknown
variables [22]. Table 2 lists several techniques that have been developed to deal with
distinct kinds of uncertainties. The use of probability statistics is one of the most common
methods for investigating uncertainty conditions.

Table 2. Comparative overview of the approaches for modeling uncertainty [17].

Uncertainty
Approaches

Research
Objects Primary Set Description

Method Procedure Data
Prerequisite Objective Data

Availability

Probability
statistics Stochastics Cantor set Density

function Frequency Known
distribution Historical law Large

Fuzzy set
system Cognitive Fuzzy set Membership

function Cut set Known
membership

Cognitive
expression

Based on
experience

Rough set Boundary Approximate
set

Upper and
lower Dividing Equivalent

relationship Approximation Information
form

Grey system
theory

Poor
information

Grey number
set

Possibility
function

Sequence
operator

Possibility
function Law of reality Small

Unfortunately, such methods require large sample data quantities based on historical
law for determining probability density function. Fuzzy systems are the most popular
methods for investigating subjective uncertainty in terms of vagueness or ambiguity in
linguistic statements. Fuzzy systems concern the study of cognitive uncertainty issues,
where the research objects have the characteristics of clear and unclear information. Differ-
ent from fuzzy sets, a rough set approximates a set of numbers using two definable upper
and lower sets. In terms of data granularity (referring to the quality of information), a
rough set is described and a finer granularity provides a more accurate approximation [15].
Meanwhile, the grey system approach has many attractive features, notably, to support
for any data distribution requirement with a small data size. Further, compared to other
methods applied to handle uncertainty, grey systems do not require extensive data and
are more pragmatic and efficient in complex systems and require fewer mathematical
calculations [23].

The following presents a brief description of the literature analysis regarding un-
certainty in remanufacturing systems. It can be seen in Figure 1 that the front end in
remanufacturing systems is the acquisition of worn-out products (usually referred to as
cores). Product acquisition acts as a gatekeeper in remanufacturing for obtaining used
products or parts from end users/customers for further reprocessing. This task affects all
remanufacturing operations but is complicated by the high uncertainty about the quality,
timing, and quantity of returns. Used product returns in remanufacturing may show
extremely uncontrolled product condition variability, varying from minor to major damage
and sometimes requiring repair in advance. In addition, the conditions of incoming cores
are unknown to the remanufacturer in advance, and because of variations in usage patterns,
they differ from one another. In order to identify quality levels of products and to justify the
economic feasibility of remanufacturing operations, the recovery, inspection, and sorting of
cores is worth implementing. In summary, quality uncertainty needs to be considered in
the decision-making process of core acquisition.

Several factors are known to influence quality uncertainty during core acquisition
in remanufacturing. First, the usage patterns and the end of life conditions of used prod-
ucts are not known or fully understood in detail, and this contributes to the increase in
uncertainty. Many usage conditions, like maintenance history and operating conditions,
are processes that the remanufacturer does not fully understand, and it would be expen-
sive and time-consuming to obtain all the relevant data. Second, the measurement errors
that arise between inspectors or from improper gauging are generally seen as a strong
contributor to quality uncertainty.
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There are a number of studies that have suggested an application of grey system
theory to handle uncertainty in remanufacturing. These methods are effective in evaluation
processes and for reducing uncertainty in decision-making processes regarding reman-
ufacturing systems. Golinska et al. [18] proposed a tool for decision-making based on
grey system theory to provide the classification of the sustainability level of remanufac-
turing. They categorized three classes of remanufacturers, which related to the different
sustainability levels. This tool aids to define the existing state of remanufacturing and then
recognize and prioritize company activities that need to be improved. Following their
previous research, Golinska et al. [25] developed a mixed method for the sustainability
assessment of remanufacturing processes by employing grey decision making for small-
and medium-sized remanufacturers. The levels of sustainability were classified into three
levels, namely, acceptable (requires minor improvement actions), conditionally acceptable
(major corrective actions), and unacceptable (full corrective actions). Xin [19] evaluated the
remanufacturability of used automotive components based on a grey fixed weight cluster-
ing approach. The results showed that the proposed indices could be applied for effective
evaluation. Most studies in the field of grey system theory for handling uncertainty in
remanufacturing have only focused on remanufacturing operations. The above literature
review presents some gaps in the research on the application of grey system theory to
handle quality uncertainty regarding sorting during core acquisition in remanufacturing, as
detailed in Table 3. The differences between the scopes and proposed models from the past
studies are evident in the table. One of the substantial differences between the proposed
model and previous works is that in the present study, the evaluation criteria for incoming
core quality are considered in the sorting model. In achieving the research objectives,
this study contributes to filling the gap in the scope of core acquisition management and
determining quality evaluation criteria for incoming cores by considering technological,
physical, and usage conditions in remanufacturing in the context of a circular economy.

Table 3. Comparison of previous works with the proposed models. AHP: analytical hierarchy process.

References Methods

Research Contribution

Remanufacturing Activities Evaluating Criteria

Cores
Acquisition

Remanufacturing
Operations Sustainability Remanufacturability Quality

Golinska et al.
[18] Grey clustering

√
1. Economic
2. Environment
3. Social
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Table 3. Cont.

References Methods

Research Contribution

Remanufacturing Activities Evaluating Criteria

Cores
Acquisition

Remanufacturing
Operations Sustainability Remanufacturability Quality

Golinska et al.
[25] Grey clustering

√
1. Economic
2. Environment
3. Social

Xin [19] Grey clustering
√

1. Economy
2. Technical
3. Resource
4. Energy and

environ-
ment

Proposed model AHP-entropy and
grey clustering

√

1. Technological
condition

2. Physical
condition

3. Usage condition

3. Materials and Methods

An approach to deal with uncertain core quality during acquisition is the use of a
multi-criteria decision-making model that employs an AHP-entropy approach in combi-
nation with grey clustering. The development of a quality sorting model was performed
by combining AHP-Shannon entropy and grey clustering methods. These methods are
particularly useful for studying multi-criteria quality evaluation for a set of incoming cores
to be categorized into several classes with uncertain information. A descriptive flowchart
depicting the major steps of the proposed methodology is depicted in Figure 2.
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One of important parts of a multi-criteria quality sorting model is the weighting
method. The broad use of the term “method” in multi-criteria decision-making is some-
times equated with a mathematical procedure to solve a problem by addressing and
combining various routines and techniques [26]. Clustering weights could be obtained
through different methods. Several methods currently exist for the measurement of weights.
The pairwise comparison analysis facilitates a useful method to the handle relationship
preferences for problems in subjective weighting. On the other hand, Shannon entropy
weight is used as a measure of information uncertainty that is probabilistic in nature. En-
tropy basically means “loss”, thus, the higher entropy, the lower content of the information,
which represents unrecoverable information [26]. A major advantage of this method is that
determining the weight allows an objective assessment. Later, in order to minimize the
difference between subjective and objective weights, and additionally the deviation of the
evaluation results [27], it is necessary to combine these weighting methods.

The development of a multi-criteria quality sorting model based on AHP-entropy and
grey clustering for incoming cores in remanufacturing is illustrated in Figure 3. With the
incoming core quality sorting problem, the key principle of a fixed grey clustering weight
is used to consider the assessment data. These data were interpreted as object clusters,
while the information collected was represented as distinct indicators.Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 28 
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There are several important data differences between quantitative and qualitative
indicators. Quantitative data can be measured using a regular formula, whereas qualitative
data need to be quantified by assessment instruments according to expert experience.
Experts may include middle to senior professionals (managers or assistance managers) at
a remanufacturing company with industrial experience not less than ten years. Experts
may be from various departments, namely, production, quality control, and maintenance.
For the collection of their subjective judgments based on a pair-wise questionnaire and
concerns, a Likert scale should be used to answer such questions.

Generally speaking, the quality sorting model based on AHP-entropy grey clustering
is divided into three stages, namely, problem structuring, evaluation, and class assignment.
The method of clustering based on grey possibility functions is primarily used to verify
whether or not the observational objects belong to pre-determined classes [17]. Overall, the
decision model can be described as follows.

First, the structuring problem focuses on the development of effective structuring
for the problem situation into a hierarchical structure of decisions, thereby defining the
criteria to be evaluated for the goal when using AHP and entropy weighting. The purpose
of problem structuring in the methodology is to help decision-makers better understand
the problem, better explain and justify the conclusions, and finally ease the validation
process. The development of an effective structure for the sorting problem hierarchy
requires criteria to evaluate the incoming core quality in order to divide the cores into
several classes and determine core alternatives. With this problem, “criteria” refers to the
quality conditions of products, i.e., the technological, physical, and usage conditions. To
classify the incoming core quality, J quality classes are considered, and we refer to the
quality class j in subscript to differentiate between the different qualities of cores, i.e., j =
1, 2, . . . , J. Moreover, classifying the sth core into the jth grey class based on the observed
value Xsr of the sth core judged against the rth criterion is referred to as grey clustering. The
smaller j is, the better the quality class of the core. The quality levels of the cores in the
same quality class indicate the same remanufacturing process requirements.

Secondly, the evaluation process is a systematic process of collecting data, comparing
preferences, and weighting to determine the clustering coefficient. Once the data are
obtained, the next step is to assess the relative importance between criteria and sub-criteria
at each level. For this reason, the AHP uses pairwise comparison judgement and entropy
weighting to evaluate the strengths of importance. The following process can be carried
out via adjustment of the whitenization weight functions. The classification of S incoming
cores into J grey classes using the rth criterion is known as the rth criterion sub-classification
by the whitenization weight function of the rth criterion jth sub-class referred as f j

r (·).
When the whitenization weight function f j

r (·) takes the typical form as can be seen as
Figure 4, then X j

r(1), X j
r(2), X j

r(3), X j
r(4) denotes the turning points of f j

r (·). The second
step in the evaluation process is determining the whitenization weight functions of each
sub-criterion. Moreover, in the grey weight clustering process, the whitenization weight
function can be grouped into subclass j of criterion r. Then, the third step in the evaluation
process is determining a clustering weight for each criterion r (ηr). When assessing the
quality levels of incoming cores, it is important to understand how important each criteria
and sub-criteria are. In general, the weights between criteria have to be calculated by
experts or inspectors. To obtain the weights, the AHP and Shannon entropy methods
are used. Pairwise comparisons are generated using a nine-point scale with a standard
AHP system that transforms expert preferences into available alternatives, such as equal,
moderately, strongly, very strongly, or extremely preferred. Once the estimation of the
relative preferences of the pairwise comparison matrix and entropy weights are obtained,
it is necessary to compromise between them to determine the clustering weights of each
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criterion. Following determination of the clustering weight, calculation of the grey fixed
weight clustering coefficient (σs) is carried out as follows:

σs =
R

∑
r=1

f j
r (Xsr)·η j

r, (s = 1, · · · s, · · · S; r = 1, · · · r, · · · R) (1)Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 28 
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Subsequently, the clustering weight vector is calculated by each class’s weight coeffi-
cient (σj

s):
σs =

(
σ1

s , · · · σj
s , σJ

s

)
=

(
R
∑

r=1
f 1
r (Xsr)·η1

r , · · ·
R
∑

r=1
f j
r (Xsr)·η j

r,
R
∑

r=1
f J
r (Xsr)·η J

r

) (2)

The results are transformed into a clustering coefficient matrix based on the calculation
of the clustering weight vectors:

∑ =
(

σ
j
s

)
=


σ1

1 · · · σ
j
1 σJ

1
...

. . . · · · · · ·
σ1

s · · · σ
j
s σJ

s

σ1
S · · · σ

j
S σJ

S

 (3)

The final step in this model is to assign the core (object) alternatives into classes by
determining the class based on the clustering coefficient matrix. Therefore, core s belongs
to class j* if:

σ
j∗
s A = max1≤j≤3

{
σ

j
s

}
(4)

The symbol of asterisk (*) is used to refer local maximum within clustering coefficient
vector. Finally, we can determine the priority orders of cores based on the classes and
values of the clustering coefficients.

4. Results and Discussion

In the heavy-duty equipment market, remanufacturing is likely to be associated with
high-value parts in mechanical products. Many researchers [28–32] have utilized a case
study of heavy-duty equipment remanufacturing to show the theoretical and practical
contributions of their research. A case study was recently reported by Jiang et al. [32]
that showed the feasibility of a proposed approach to achieve remanufacturing ecolog-
ical efficiency assessment via a study of remanufacturing for hydraulic cylinders from
remanufacturing enterprises in China.

In the case of Indonesia, the limited national supply of heavy-duty equipment manu-
facturers represents about 20% of the total demand for heavy equipment [33], where one of
the problems is that the basic materials for machines and hydraulic parts in heavy equip-
ment are still imported by the state. This has led companies to prefer to remanufacture the
used parts to shorten lead times and increase part availability. The following emergent
case study was identified from an Indonesian remanufacturer company for heavy-duty
equipment parts. A used hydraulic cylinder is considered in this study to validate the
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proposed model. The used hydraulic cylinder has a high added value and a strong oppor-
tunity for remanufacturing. In business practice, many remanufacturing companies have
recovered used hydraulic cylinders for heavy-duty equipment parts (front suspension, rear
suspension, and hoist cylinders) for mining and heavy-duty equipment construction.

4.1. Problem Structuring

Although eight dimensions of quality for new products have been successfully pro-
posed by Garvin (1987), these dimensions cannot always be recognized when evaluating
the quality levels of used products. This is due to the fact that when used products are at
the end of their life phase, they cannot fulfill their main operating characteristics. Therefore,
there remains a need for compatible quality criteria with used products. In order to provide
quality criteria for used products in remanufacturing, Mustajib et al. [34] established that
the quality criteria for sorting incoming cores can be assessed based on technological, phys-
ical, and usage conditions. The technological condition is a crucial criterion for assessing
used products since it indicates the particular state of ability and complexity of technology
that would influence the quality of end life product. Physical condition is also a very
important criterion in the quality sorting of incoming cores because it is used to describe
the body of the used product as can be seen and measured, i.e., it is a measure of physical
damage. Meanwhile, the usage condition is a vital criterion for assessing the period of
use and the maintenance that happens within a particular period. Moreover, these criteria
can be used for quality evaluation of the remanufacturing of heavy-duty equipment parts,
such as sorting for hydraulic cylinders. In successive steps, these criteria and sub-criteria
may then be organized into a hierarchy descending from the overall goal or objective to
the different stages and corresponding sub-criteria, as can be seen in Figure 5.
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Sub-criteria were selected here as defined from previous works on the basis of both the
literature review and practical considerations. The sub-criteria indicators can be calculated
in a simplified way based on the expertise of decision-makers in the absence of detailed
data for estimation, as seen in Tables A1 and A2. Furthermore, the sub-criteria for each
criterion are defined as follows.

4.1.1. Technological Condition
Obsolescence

Rapid innovation and technology development has led to a significant factor to shorten
the life cycles of products and thus obsolescence. A product has technical or functional
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obsolescence when customers are more interested in new products with better quality
performance as a result of the introduction of new technology. To assess grades for technical
obsolescence, Gao et al. [35] proposed five criteria to guide the qualitative evaluation of
used products.

Upgradability

An upgrade is technical mitigation to handle the uncertain quality of used products.
Meanwhile, the term “upgradeability” here refers to the potential level of used products to
be upgraded efficiently and effectively to maintain an admissible presence on the market.
Upgradeability represents the relative technological ease or viability of fostering continuous
system renewal and enhancement at the level of engineering characteristics, parts, and the
overall system. Remanufacturing with component upgrades may be an efficient alternative
to used product obsolescence. In addition, an upgrade action in remanufacturing will
improve the reliability of the used product. To evaluate the feasibility of upgrading,
Du et al. [36] proposed an index that could be assessed by an accuracy improvement.

Multiple Life Cycles

The principle of multiple life cycles for products is a key technique in product de-
velopment for remanufacturing. Since it is one of the strategies for prolonging a product
life cycle after the end of life. Durable products are more effective for multiple life cycles.
To assess the average life cycle number for a component, Geyer et al. [37] proposed a
quantitative approach by dividing the average component life by the average product use.

Disassemblability

Disassembly is characterized as a complete assembly being dismantled down to its
parts. Meanwhile, disassemblability can be loosely described as a level of ease with which a
used product could be disassembled. The prerequisite of disassembly for remanufacturing
is that it is non-destructive. Difficulty in obtaining parts may also contribute to a long
time and high cost of disassembly. The principle of ease of disassemblability represents
disassembly without force and via simple mechanisms [38]. For this reason, Gao et al. [35]
and Xing et al. [39] used five criteria to provide a qualitative assessment of disassemblability.
Meanwhile, Nof et al. [40] recommended a guideline for easy disassembly. On the contrary,
Du et al. [36] quantified the index of ease of disassembly. Similarly, Ali [41] has suggested
comprehensive methods to quantitatively evaluate disassemblability based on product
design, process technology, and incoming quality assessment.

4.1.2. Physical Condition
Damage Level

Used products may have degraded features with different degrees of damage. This
indicator is typically calculated by fault features such as corrosions, cracks, wear, and
so on. The damage level can be quantified and classified according to the degree of
damage [32,33,42,43].

Component Completeness

Completeness is defined by Yoe [44] as all the necessary parts being accounted for
and included. It means that the incoming core should not be broken down into constituent
parts and should be delivered entirely without missing parts. In case of any uncertainty as
to the completeness of the incoming core, an extended inspection is carried out to verify
the inner structure of the used product [25].

Traceability of Identity

Product identification and traceability are essential for the quality acceptance of
used products. The core should have original equipment such as the manufacturer’s
identification number (e.g., manufacturer stickers) because of the wide variety of products,
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allowing the model, type, and parameters to be recognized [25]. The availability of a used
product’s identity, such as text, readable labels, and barcodes that are not missing or fading
over the use phase of a product’s life, allows easy recognition for quality sorting.

Dimensional and Geometrical Tolerance

The term dimensional tolerance is generally understood as the minimum and max-
imum values allowable for the dimension of the parts to work properly. Meanwhile,
geometric tolerance is a significant assessment factor that depends on the consistency of
the body shapes of used products. When classified, the sorted parts of used products will
be reprocessed based on the quality loss degree according to an allowable tolerance. If the
used products have the highest deformation from ideal dimension and shape (exceeding
the acceptable tolerance), they cannot be reconditioned to their original performance by
remanufacturing and they are then recycled [45].

4.1.3. Usage Condition
Frequency of Use

The usage condition is influenced by user behavior during the use phase of a product.
During the middle of a product’s life, a product’s performance deteriorates with the
frequency of use and operating conditions. This is evident in the case of the quality of used
parts in heavy equipment that is evaluated based on hours of operation.

Remaining Useful Life

The term remaining useful life (RUL) has been used to refer to prediction for deter-
mining whether used parts can be reused. When used for a while, the remaining life of a
used part can be defined as within a residual operational lifetime that can be predicted. To
assess the degree of the remaining life of the used product, products can be categorized into
several levels according to the minimum and maximum values of the obtained remaining
useful life values [32,46]

Maintenance History

Maintenance characterizes a set of actions taken to allow a product to work at a pre-
determined level during the use phase. A proper maintenance strategy will extend the
original life of a product and make it compatible with remanufacturing [47]. Due to the
potentially lower reliability of used products, an appropriate maintenance strategy is re-
quired. Moreover, Stadnicka et al. [48] have proposed criteria to carry out the classification
of equipment based on the failure frequency (amount of failure registry entries each year).

4.2. Evaluation Processes

To measure subjective weights, experts were asked to estimate relative preferences
for criteria and sub-criteria based on their expert knowledge. Table 4 provides pairwise
comparisons among the three core quality condition criteria. The estimations for the
relative preferences for sub-criteria are presented in Tables 5–7 as follows. Thereafter, based
on the previous data from the pairwise comparison matrix, then get global weights for each
sub-criterion are shown in in Tables 8–10. In this study, four experts were selected to serve
as evaluators in order to estimate subjective weights. The criteria for selecting the experts
were the following: middle to senior professionals of a heavy-duty manufacturing company,
with industrial experience not less than ten years in a respective field of production, quality,
or maintenance.

Table 4. Matrix for pairwise comparisons for the main criteria.

c1 c2 c3

c1 1 5 3
c2 1/5 1 3
c3 1/3 1/3 1
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Table 5. Matrix for pairwise comparison of the sub-criteria of the technological conditions.

c11 c12 c13 c14

c11 1 1/5 1/9 3
c12 5 1 1/7 1/7
c13 9 7 1 9
c14 1/3 7 1/9 1

Table 6. Matrix for pairwise comparison of the sub-criteria of the physical condition.

c21 c22 c23 c24

c21 1 1/3 5 5
c22 3 1 1/3 5
c23 1/5 3 1 5
c24 1/5 1/5 1/5 1

Table 7. Matrix for pairwise comparison of the sub-criteria of the usage condition.

c31 c32 c33

c31 1 1 3
c32 1 1 7
c33 1/3 1/7 1

Table 8. Weights of sub-criteria related to the technological condition.

Technological Condition, c1 (Weight 0.62)

Sub-criteria c11 c12 c13 c14

Local weights 0.10 0.13 0.62 0.16
Global weights 0.062 0.080 0.384 0.099

Table 9. Weights of sub-criteria related to the physical condition.

Physical Condition, c2 (Weight 0.24)

Sub-criteria c21 c22 c23 c24

Local weights 0.34 0.32 0.29 0.05
Global weights 0.082 0.077 0.070 0.012

Table 10. Weights of sub-criteria related to the usage condition.

Usage Condition, c3 (Weight 0.14)

Sub-criteria c31 c32 c33

Local weights 0.39 0.51 0.10
Global weights 0.055 0.072 0.014

Nine (S = 9) incoming cores of used hydraulic cylinders were acquired by a remanu-
facturer and needed to be classified according to the criteria which were then expanded
into 11 sub-criteria (R = 11). One common classification for used parts in heavy-duty
equipment remanufacturing is to have three quality classes, such as in Toromon Cat [49].

Moreover, the used hydraulic cylinders were sorted into three distinctive grey classes
(J = 3), namely, namely, either best, middle, or worst quality. In fact, these classes were
associated with three groups of core acceptance criteria for used hydraulic cylinders based
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on visual/mechanical inspection, along with a full core refund for the best quality class,
partial core refund for the middle quality class, and no core refund for the worst quality
class. These classes are in line with the recommendations of previous research. For example,
Thierry et al. [50] suggested three different quality categories for product reuse, recovery,
and waste management.

The classification for the sth core into the jth grey class according to the observed
value of the sth core judged against the rth criterion is denoted by Xsr. Due to the high
uncertainty in the core conditions, sometimes it is very difficult to determine the technical
index quantitatively for each criterion due to the complexity and difficulty. Therefore, it
can only be measured qualitatively by expert assessment as can be seen in Table A1. The
assessment value of the incoming core quality condition data is shown in Table 11.

Table 11. The observed values of each criterion for each incoming core (Xsr).

Incoming
Core Set (as)

Sub-Criteria (cro) and the Global Weights (η)

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33

0.062 0.080 0.384 0.099 0.082 0.077 0.070 0.012 0.055 0.072 0.014

a1 3 3 4 2 2 0.8 3 2 3 4 4
a2 4 3 3 3 1 0.9 4 2 2 3 3
a3 2 4 5 2 2 0.9 4 1 2 4 4
a4 3 3 5 2 2 0.8 5 3 3 3 5
a5 3 4 4 2 2 0.9 3 2 1 4 4
a6 4 4 3 3 3 0.85 4 1 2 3 3
a7 4 2 4 2 2 0.88 4 2 2 4 4
a8 5 3 5 3 1 0.9 3 3 2 3 5
a9 2 4 5 2 3 0.95 3 2 3 3 4

Furthermore, to assess the qualitative indicators, the expert assessments shown in
Table A2 were used. Thus, the values for the upper, middle, and lower classes could be
obtained by applying the whitenization weight function (Figure 6) as proposed by Formula
(5) to (13) as follows.
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For example, criterion c22 with the whitenization weight functions is given as:

f 1
r (Xrs) =


0, X < 0%
X
80 , 0% ≤ X < 80%
1, 80% ≤ X ≤ 100%

(5)

f 2
r (Xrs) =


0, X < 0
X
75 , 0 ≤ X ≤ 75%
100−X

25 , 75% < X ≤ 100%
0, X > 100%

(6)
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f 3
r (Xrs) =


0, X < 0
100−X

100 , 0% ≤ X ≤ 100%
0, X > 100

(7)

Meanwhile, for the criteria with r c11, c12, c13, c14, c23, c32, c33, the whitenization
weight functions are expressed as:

f 1
r (Xrs) =


0, X < 0
X
5 , 0 ≤ X < 5
1, X ≥ 5

(8)

f 2
r (Xrs) =


0, X < 0
X

2.5 , 0 ≤ X ≤ 2.5
5−X
2.5 , 2.5 < X ≤ 5

0, X > 5

(9)

f 3
r (Xrs) =


0, X < 0
1, 0 ≤ X ≤ 2.5
5−X
2.5 , 2.5 < X ≤ 5

0, X > 5

(10)

Moreover, for the criteria with r c21, c24 c31, the whitenization weight functions are
expressed as:

f 1
r (Xrs) =


0, X < 0
5−X

5 , 0 ≤ X < 5
1, X ≥ 5

(11)

f 2
r (Xrs) =


0, X < 0
X

2.5 , 0 ≤ X ≤ 2.5
5−X
2.5 , 2.5 < X ≤ 5

0, X > 5

(12)

f 3
r (Xrs) =


0, X < 0
1, 0 ≤ X ≤ 2.5
X
5 , 2.5 ≤ X ≤ 5
0, X > 5

(13)

4.3. Assignment to the Classes

Based on the whitenization weight function f j
r (·) formulated in Equations (5)–(13)

and the clustering global weights η, the grey fixed weight cluster coefficients for each
class (σj

s) can be found. The calculation of the grey fixed weight clustering coefficients as
decision indicators is summarized in Table 12. What stands out in Table 12 is that cores
a1, a3, a4, a5, a6, a8, a9 were mostly classified into class 1. Meanwhile, cores a2, a7 were
essentially classified into class 2. Noticeably, no core was classified to class 3. These results
indicate that the majority of the used hydraulic cylinders were of considerable quality.
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Table 12. The value of the grey fixed weight cluster coefficient for each class
(

σ
j
s

)
with subjective

weighting.

as
σ

j
s =

R
∑

r=1
fj
r(Xr)·ηr

Maximum
Coefficient Value Grey Class

j = 1 j = 2 j = 3 σ
j∗
s = max1≤j≤3{σj

s}

a1 0.7092 0.5945 0.6804 0.7092 j∗ = 1
a2 0.6778 0.7249 0.6399 0.7249 j∗ = 2
a3 0.7888 0.4601 0.4443 0.7888 j∗ = 1
a4 0.789 0.4862 0.4078 h0.789 j∗ = 1
a5 0.7362 0.5405 0.5071 0.7362 j∗ = 1
a6 0.6798 0.6757 0.65815 0.6798 j∗ = 1
a7 0.598 0.671 0.57804 0.671 j∗ = 2
a8 0.833 0.4037 0.57412 0.833 j∗ = 1
a9 0.7478 0.42325 0.43905 0.7478 j∗ = 1

The clustering weights also could be achieved through the objective weighting method,
i.e., the Shannon entropy method. To establish the clustering weights for each criterion
r (ηr), the Shannon entropy weights (we

ro) were used. The Shannon entropy weights are
summarized by the three steps given as follows [26,27]:

Step 1. Normalization
At the beginning, due to the data having different scales and units, the data should

first be normalized into dimensionless data as follows:

psr =
xsr

∑S
s=1 xsr

(14)

The results are presented in Table 13.

Table 13. The normalized values of each criterion (psr) for each incoming core.

Core (as)
Sub-Criteria (cro)

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33

a1 0.100 0.100 0.133 0.067 0.067 0.027 0.100 0.067 0.100 0.133 0.133
a2 0.133 0.100 0.079 0.111 0.100 0.097 0.083 0.067 0.067 0.100 0.100
a3 0.067 0.133 0.132 0.056 0.100 0.129 0.111 0.033 0.067 0.133 0.133
a4 0.100 0.100 0.132 0.167 0.150 0.097 0.139 0.100 0.100 0.100 0.167
a5 0.100 0.133 0.105 0.111 0.050 0.129 0.111 0.067 0.033 0.133 0.133
a6 0.167 0.133 0.079 0.056 0.100 0.097 0.083 0.033 0.067 0.100 0.100
a7 0.133 0.067 0.105 0.111 0.100 0.129 0.111 0.067 0.067 0.133 0.133
a8 0.167 0.100 0.132 0.167 0.100 0.097 0.139 0.100 0.067 0.100 0.167
a9 0.067 0.133 0.132 0.111 0.150 0.097 0.111 0.067 0.100 0.100 0.133

Step 2. Calculation of the entropy (Er) and the degree of diversity (dr)
Afterwards, entropy within the data of the normalized decision matrix for the rth

criterion can be obtained using Equation (15). Meanwhile, the results are given in Table 14.

Er = −c
S

∑
s=1

psr ln(psr) (15)

where the constant c is defined as:
c =

1
ln(S)

(16)

Later on, in order to calculate the amount of uncertainty, it can be stated by the degree
of divergence (dr), which is calculated as follows:

dr = 1− Er (17)
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Table 14. The entropy values (Er) of each criterion for each incoming core.

Core (as)
Sub-Criteria (cro)

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33

a1 −0.100 −0.100 −0.117 −0.078 −0.078−0.042 −0.100 −0.078−0.100 −0.117 −0.117
a2 −0.117 −0.100 −0.087 −0.106 −0.100−0.098 −0.090 −0.078−0.078 −0.100 −0.100
a3 −0.078 −0.117 −0.116 −0.070 −0.100−0.115 −0.106 −0.049−0.078 −0.117 −0.117
a4 −0.100 −0.100 −0.116 −0.130 −0.124−0.098 −0.119 −0.100−0.100 −0.100 −0.130
a5 −0.100 −0.117 −0.103 −0.106 −0.065−0.115 −0.106 −0.078−0.049 −0.117 −0.117
a6 −0.130 −0.117 −0.087 −0.070 −0.100−0.098 −0.090 −0.049−0.078 −0.100 −0.100
a7 −0.117 −0.078 −0.103 −0.106 −0.100−0.115 −0.106 −0.078−0.078 −0.117 −0.117
a8 −0.130 −0.100 −0.116 −0.130 −0.100−0.098 −0.119 −0.100−0.078 −0.100 −0.130
a9 −0.078 −0.117 −0.116 −0.106 −0.124−0.098 −0.106 −0.078−0.100 −0.100 −0.117

Er 0.777 0.763 0.763 0.698 0.699 0.713 0.751 0.537 0.590 0.803 0.835

Step 3. Calculation of objective weights (we
ro)

The last step is the linear normalization of dr to find the relative weight of each criterion
is calculated using Equation (18). The results are presented in Table 15.

we
ro =

dr

∑R
r=1 dr

(18)

Table 15. The divergence (dr) and entropy weights (we
ro ) of each criterion for each incoming core.

Sub-Criteria (cro)

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33

Divergence 0.223 0.237 0.237 0.302 0.301 0.287 0.249 0.463 0.410 0.197 0.165
Entropy weights 0.073 0.077 0.077 0.098 0.098 0.093 0.081 0.151 0.134 0.064 0.054

Finally, according to the AHP global weights
(

wh
ro

)
which are equal to ηro in Table 11

and the entropy weights (we
ro) in Equation (18), the weight of each criterion can be acquired

on the principle of combined weighting methods as established by Equation (15). The
weights of each criterion were derived by the combined weighting methods (wc

ro) given in
Table 16.

wc
ro =

wh
ro × we

ro

∑R
r=1 wh

ro × we
ro

(19)

Table 16. The combined weighting methods (wc
ro).

Methods
Sub-Criteria (cro)

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33

AHP weights 0.062 0.080 0.384 0.099 0.082 0.077 0.070 0.012 0.055 0.072 0.014
Entropy weights 0.073 0.077 0.077 0.098 0.098 0.093 0.081 0.151 0.134 0.064 0.054

Combined weighting
methods (wc

ro)
0.06 0.08 0.39 0.13 0.11 0.09 0.07 0.02 0.10 0.06 0.01

Figure 7 shows a clustered bar chart that was used to compare the weighting values
between the pairwise comparison judgment, Shannon entropy, and combined weighting
methods. As can be seen, the weighting methods gave different results for all three
methods. What is interesting in the chart is the differences between weighted results
between methods. It is clear from the graph that the sub-criterion of multiple life cycles is
the most important factor in evaluating the quality of incoming cores based on subjective
weighting. It is respectively followed by disassemblability as the second highest, and
damage level as third highest. In contrast, according to objective weighting, it is clear from
the graph that the sub-criterion of geometric and dimensional tolerance is more important
than the multiple life cycle sub-criterion. Subsequently, sub-criterion of the geometric
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and dimensional tolerance is slightly more important than sub-criterion of the frequency
of use. Interestingly, there were also slightly different subjective weights in the results
between the combined methods; however, multiple life cycles, disassemblability, and the
damage level were still the three most important sub-criteria for the combined weighting
methods. Altogether, we found that the values of the subjective weights more fluctuated
than objective weights.
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The overall values of the grey fixed weight cluster coefficients based on the Shannon
entropy weight method are reported in Table 17. From this table, we can see that the
clustering weights using the Shannon entropy method resulted in the highest of coefficient
values for cores a5, a6, a8 in the best class; a2, a4, a9 into the middle class; and a1, a3, a7 into
the worst class. These results indicate that the use of the Shannon entropy weight and grey
clustering methods presumably acquired greater balance in the assignment process into
overall quality classes. Nevertheless, the maximum grey clustering coefficient values based
on combined weights were distinct between subjective and objective weighting. Therefore,
these may have contributed to the changes in core assignment within classes as can be seen
in Table 18. It is listed in the table that the number of the assigned cores within the worst
class was minor.

Table 17. Grey fixed weight cluster coefficients for each class
(

σ
j
s

)
based on entropy weight.

as
σ

j
s =

R
∑

r=1
fj
r(Xr)·ηr

Maximum
Coefficient Value Grey Class

j = 1 j = 2 j = 3 σ
j∗
s = max1≤j≤3{σj

s}

a1 0.6503 0.6184 0.8032 0.8032 j∗ = 3
a2 0.6877 0.7170 0.6590 0.7170 j∗ = 2
a3 0.6957 0.6368 0.7076 0.7076 j∗ = 3
a4 0.6455 0.6885 0.5569 0.6885 j∗ = 2
a5 0.6988 0.6097 0.6790 0.6988 j∗ = 1
a6 0.7172 0.6571 0.6249 0.7172 j∗ = 1
a7 0.6719 0.6419 0.7087 0.7087 j∗ = 3
a8 0.7082 0.6233 0.6262 0.7082 j∗ = 1
a9 0.6053 0.6950 0.6698 0.6950 j∗ = 2
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Table 18. Grey fixed weight cluster coefficients for each class
(

σ
j
s

)
based on combined weights.

as
σ

j
s =

R
∑

r=1
fj
r(Xr)·ηr

Maximum
Coefficient Value Grey Class

j = 1 j = 2 j = 3 σ
j∗
s = max1≤j≤3{σj

s}

a1 0.6672 0.6014 0.7040 0.7040 j∗ = 3
a2 0.6600 0.7350 0.6850 0.7350 j∗ = 2
a3 0.7400 0.5150 0.5490 0.7400 j∗ = 1
a4 0.7260 0.5300 0.4780 0.7260 j∗ = 1
a5 0.7020 0.5590 0.6530 0.7020 j∗ = 1
a6 0.6740 0.6990 0.6965 0.6990 j∗ = 2
a7 0.5760 0.6820 0.6556 0.6820 j∗ = 2
a8 0.7900 0.4670 0.6460 0.7900 j∗ = 1
a9 0.7620 0.4915 0.4735 0.7620 j∗ = 2

As mentioned previously, this work aimed to propose a multi-criteria quality sorting
model based on an AHP and entropy weights coupled with grey clustering to handle
quality uncertainty for incoming cores. The clustering weights of the model could be
acquired through subjective and objective methods. By comparing subjective and objective
weighting, it was obvious that the output of the model produced significantly different
results for the majority of cores assigned into pre-determined classes. It is evident from
the results that the model with subjective weights gave significant results when classifying
the qualities of incoming cores into two classes. By contrast, the model with objective
weights gave significant results when classifying the qualities of incoming cores into three
classes. We found that weighting methods may have a great influence on the assignment
of classified cores. Figure 8 reveals a clustered column chart that was used to compare the
results and the proportion of assigned cores across the quality classes when using the three
weighting methods. What is striking in this chart is the phenomenon arising from the use
of the subjective AHP pairwise comparison weighting method in terms of the proposed
model, which gives a result where core assignment results tend to be dominant in certain
classes. The use of objective entropy weighting produced results that were more balanced
in terms of assigning cores into overall classes. Comparing AHP weights and entropy
weights, it is obvious that a significant improvement in the use of combined methods in
the proposed model could reduce possible weighting biases.
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Further results showed that this research has been successfully conducted in order to
assess the importance of the quality levels of used products for heavy-duty equipment in
terms of considering them with grey classes. One interesting finding is that assessment for-
mulae can be obtained both qualitatively and quantitatively. Another important finding is
that the grey quality classes of incoming cores can be found by combining the AHP-entropy
weights and a grey clustering model. In summary, these results show the effectiveness
of the proposed model to handle uncertainty in quality sorting problems for incoming
cores in remanufacturing systems. The model considers limited data and is a novel sorting
model for solving quality uncertainty problems in core acquisition management.

The findings of this work have some managerial implications. First, these findings
have significant practical implications for the management of remanufacturing companies
regarding the understanding of how to manage uncertain quality. The evidence from this
study suggests that sorting problems should be solved by applying AHP-entropy weights
and grey clustering as a short-term quality control, rather than a probability statistics
approach as a solution for incomplete data obstacles. Second, this study has revealed that,
in general, physical, technical, and usage conditions are important criteria for sorting of
incoming core quality. In other words, visual inspection and sorting can be performed
simultaneously based on the physical condition. Another implication of the current study
is that it supports strong recommendations to focus on multiple-criteria decision-making
for the quality sorting of incoming cores based on the expert knowledge. Third, the results
seem to indicate that the combination of weights provides some support for the conceptual
premise that possible biases in weighting will be reduced.

In summary, these results show that the proposed model could be applied without
difficulty in order to handle uncertain core quality with limited data. This study strengthens
the idea that sorting incoming cores into three classes in heavy-duty remanufacturing is a
practical option. This is certainly true in the case of the three quality levels for incoming
cores of reuse, repair, and scrapping.

Like other works, this research has its limitations. For example, the scope of this study
was limited in terms of quality. The model could be extended by applying sustainability
and remanufacturability as evaluation criteria. In addition, this model considers one-way
relationships between criteria and sub-criteria. Considerably more work will need to
be done to develop the sorting model with two-way relationships between criteria and
sub-criteria.

5. Conclusions

Remanufacturing is a vital aspect in a circular economy as an effective means of
achieving sustainable industry. The important challenge in remanufacturing is handling
quality uncertainty with incoming cores. Determining how to reduce quality uncertainty is
a crucial issue in remanufacturing systems. When reviewing the literature, no multi-criteria
model was found to solve the quality sorting problem for core acquisition management.
A quality sorting process can be viewed as a system composed of objectives, alternatives,
criteria, resources, and assignment, and consequently each part is usually interrelated.
This work was undertaken to propose a new hybrid approach (AHP-entropy and grey
Clustering), whereas combinations of subjective and objective approaches have been used
for weighting coupled with grey clustering using possibility functions to evaluate the
quality conditions of used products as a principal approach for sorting problems to handle
quality uncertainty with incoming cores. The quality criteria for sorting the incoming cores
were considered according to the technological, physical, and usage conditions.

In general, the quality sorting model based on AHP-entropy grey clustering is divided
into three stages, namely, problem structuring, evaluation, and class assignment. Problem
structuring focuses on better understanding the quality sorting problem by developing
an effective structure for the problem situation into a hierarchical structure of decisions.
Thereafter, the evaluation focuses on collecting data, comparing preferences, and weighting
in order to determine grey clustering coefficients. The clustering weights of the model
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could be acquired through subjective and objective methods. The most obvious finding to
emerge from this study is that the weights with subjective weighting tend to have more
variance than with objective weighting. Combining these methods minimized the differ-
ence between subjective and objective weights, as well as the deviation of the evaluation
results. The final step in this model was to assign the incoming cores into predetermined
classes based on the maximum values of the grey clustering coefficients. The research has
shown that multiple life cycles, disassemblability, and damage level are the three most
important sub-criteria within the combined weighting methods. Overall, these results
indicate that the combination of weights provides some support for the conceptual premise
that possible biases in weighting will be reduced as a result of such practice. The findings
here suggest that weighting methods during an evaluation process can have an effect on
core assignment. To this respect, the results show how variations in sub-criteria weights
affect cores assignment between quality classes. These results provide important insights
for decision-makers considering hybrid approaches for quality criteria in sorting incoming
cores.

The study was successful as it was able to develop a hybrid approach for the multi-
criteria sorting of cores. On the whole, the proposed model could be applied without
difficulty to handle uncertain core quality with limited data. This approach has potential for
core acquisition management in remanufacturing. The results offer considerable managerial
insights into remanufacturing practices. Firstly, due to the incompleteness of data in core
acquisition management, it is suggested to apply a multi-criteria sorting model with AHP-
entropy weights coupled with grey clustering as a short-term quality control method rather
than a probability statistics approach. Secondly, in general, the important criteria for the
quality sorting of incoming cores are the physical, technical, and usage conditions, which
are represented by a new dimension to evaluate the quality of used products. The research
has also shown the practical contribution of this research with a case study of a quality
sorting problem with a heavy-duty equipment remanufacturer. These results demonstrate
potential for the general applicability to remanufacturing. The current study was limited by
the independence between the proposed criteria and sub-criteria. Further research needs
to examine the dependencies between the proposed criteria and sub-criteria in more detail.
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Appendix A

Table A1. List of criteria and sub-criteria considered for assessing the quality levels of incoming cores.

Sub-Criteria Description Assessment Value Range Reference Value Target Value

Technological conditions:

C11:
Obsolescence

The condition in which the
technology of used product has
shown that it is out of date, as the
product’s life cycle was longer
than the design life and the
emergence of new technological
innovations

Qualitative 1–5
(scale) 5 Max

C12:
Upgradability

The ability of a used product in a
remanufacturing process to be
upgraded for functional or feature
enrichment so that the product
may more easily to adapt to new
technology to avoid obsolescence

Qualitative 1–5
(scale) 5 Max

C13:
Multiple life cycles

The condition of the used
product’s life cycle such that it
can be recovered for its useful life

Qualitative 1–5
(scale) 5 Max

C14:
Disassemblability

The ability of the product or core
regarding the ease of disassembly Qualitative 1–5

(scale) 5 Max

Physical conditions:

C21:
Damage level

The degree of physical defects or
damage, for example, cracks,
corrosion, and wear

Qualitative 1–5
(scale) 1 Min

C22:
Components
completeness

The level of completeness of the
components as a whole system of
used products


No o f available

components
Total no. o f
components

×
100%

0–100
(%) 0% Max

C23:
Traceability of

identity

Ease of tracing for the product
variation information of the
model or type, for example, the
manufacturer’s number is a
readable identification number

Qualitative 1–5
(scale) 5 Max

C24:
Geometric and

dimensional
tolerance

The allowable dimensional or
geometrical variation limit Qualitative 1–5

(scale) 1 Min

Usage conditions:

C31:
Frequency of uses

The frequency of using the
product during the usage phase Qualitative 1–5

(scale) 1 Min

C32:
Maintenance

frequency

The intensity of product
maintenance is carried out during
the use phase

Qualitative 1–5
(scale) 5 Max

C32:
Remaining useful of

life

The remaining usable time for a
specified period. Qualitative 1–5

(scale) 5 Max
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Table A2. Assessment example.

Sub-Criteria Expert’s Assessments
Answer

Linguistics Value Description Scale

c11:
Obsolescence

How is the equality of the
conditions of the used product
technology regarding the
emergence of new technological
innovations?

Very high Equal as new technology 5

High Very good 4

Moderate Good 3

Low Acceptable 2

Very low Overtime 1

c12:
Upgradability

What is the ability of the used
product to be upgraded to
improve the functionality or add
features such that new
technologies may be more easily
adapted?

Very high Minimal repair 5

High Imperfect repair 4

Moderate Replacement with younger
parts 3

Low Complete/perfect repair 2

Very low Replacement with new parts 1

c13:
Multiple lifecycles

How many life cycles of a used
product may occur for
remanufacturing?

Very high More than four cycles 5

High Four cycles 4

Moderate Three cycles 3

Low Two cycles 2

Very low One cycle 1

c14:
Disassemblability

How easy is it to disassemble the
used product?

Very high

No connections
Disassembly will not lead to
any damages to the parts;
manual operation; quick
disassembly

5

High

Non-permanent joints;
screws (to be removed)
Connections are not
destroyed for disassembly;
joint disassembly will not
lead to any damage to the
parts; manual operation;
quick disassembly

4

Moderate

Non-permanent snap-fit
joints (to be opened);
disassembly will not lead to
any damage to the parts;
manual operation is possible
and time-consuming

3

Low

Non-permanent joints; clips
(to be removed); disassembly
will not lead to any damages
to the parts; powered tools
are often needed; time
consuming

2

Very low

Permanent joints (to be
broken; disassembly will
lead to damage to the parts;
large powered tools are
required and such work is
time-consuming

1
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Table A2. Cont.

Sub-Criteria Expert’s Assessments
Answer

Linguistics Value Description Scale

c21:
Damage level What is the degree of damage?

Very high x ≥ 4 mm3 5

High 3 mm3 ≤ x < 4 mm3 4

Moderate 2 mm3 ≤ x < 3 mm3 3

Low 1 mm3 ≤ x < 2 mm3 2

Very low 0 < x < 1 mm3 1

c23:
Traceability of

identity

How is the ability to track the
specifications or identity
information of used products?

Very high Radio frequency
identification (RFID) 5

High One-dimensional linear
barcode 4

Moderate Readable text and labels 3

Low Text or symbols are less
readable 2

Very low Incomplete text or symbols 1

c24:
Geometric and

dimensional
tolerance

Deformation from the ideal shape
and dimension within tolerance
values?

Very high

Highest deformation from
ideal dimension and shape
(exceeding the acceptable
tolerance)

5

High
Higher deformation from
ideal shape and dimension
(still acceptable tolerance)

4

Moderate
Moderate deformation from
ideal shape and dimension
(still acceptable tolerance)

3

Low
Lower deformation from
ideal shape and dimension
(still acceptable tolerance)

2

Very low No deformation from ideal
shape and dimension 1

C31:
Frequency of uses

Frequency of use or operating
condition (oc) of the product
during the usage phase

Very high Continuously 5

High Overload 4

Moderate Normal load 3

Low Under load 2

Very low Occasional 1

C32:
Maintenance

history

Failure frequency (number of
entries in the shutdown register
per year)

Very high Approximately more than 41
times 5

High Approximately 31–40 times 4

Moderate Approximately 20–30 times 3

Low Approximately 11–20 times 2

Very low Approximately 0–10 times 1

C33:
Remaining useful

of life

How long is the remaining useful
life (RUL) of the incoming core
(calculated from the end of the
period of use to the end of the
useful life)?

Very high More than four years 5

High Four years 4

Moderate Three years 3

Low Two years 2

Very low One year 1
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