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Abstract: This paper investigates the observer-based fuzzy controller design method for nonlinear
discrete-time singular systems that are represented by Takagi-Sugeno (T-S) fuzzy models. At first,
the nonlinearity can be well-approximated with several local linear input-output relationships. The
parallel distributed compensation (PDC) technology and the proportional derivative (PD) feedback
scheme are then employed to construct the observer-based fuzzy controller. To solve the problem of
unmeasured states, the impulsive phenomenon of singular systems, and the PD scheme’s reason-
ableness, a novel observer-based fuzzy controller is developed. By using the Lyapunov theory and
projection lemma, the stability criteria are built in terms of linear matrix inequalities (LMI). Moreover,
the gains of fuzzy controller and fuzzy observer can be calculated synchronously by using convex
optimization algorithms. Finally, a biological economic system is provided to verify the effectiveness
of the proposed fuzzy control method.

Keywords: nonlinear singular systems; T-S fuzzy model; observer design; proportional deriva-
tive control

1. Introduction

Singular systems, also called descriptor systems or implicit systems, are important
in the control field since their general representation. Lots of practical systems can be
described as singular state-space models [1–6]. For instance, DC motor systems, bio-
economic models, electrical circuit systems, and network control systems. Before studying
the stabilization issues for discrete-time singular systems, regularity and causality need
to be discussed. Because of the algebraic equations for the singular models, there may
exist more than one solution. It results in the unwanted impulse terms that emerged
in state trajectories to destroy singular systems’ stability. In the past few decades, the
above properties are discussed with matrix decompositions [7,8]. Based on the matrix
decomposition techniques, some sufficient definitions concerning regular, causal, and
admissible were presented [9]. Then, numerous related control issues were investigated
in [9–12], e.g., the event-triggered control, sliding mode control, output feedback control,
and robust H∞ control, etc.

On the other hand, nonlinearity always exists in practical systems. To discuss the
stabilization issue of nonlinear systems, the T-S fuzzy modeling approach was first pro-
posed in [13]. Compared to the Mamdani fuzzy models, the calculations of fuzzy controller
design and the systems’ structure of the T-S fuzzy models are relatively complex. However,
the stability analysis of T-S fuzzy models is more systematic with a mathematical foun-
dation, i.e., it possesses well mathematical basis and structure extension. Thus, the T-S
fuzzy models attracted numerous researchers’ attention in the past two decades. The T-S
fuzzy modeling approach is a conceptually simple and effective method to approximate
nonlinear behaviors. Via reasonable fuzzy sets and fuzzy inferences, several linear subsys-
tems are constructed by a series of IF-THEN fuzzy rules. Then, the final output of the T-S
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systems can be obtained with membership functions. Some practical applications of the T-S
fuzzy models, such as temperature control [14] and prediction of generated electricity [15],
have been investigated to address their advantages. For stabilizing the T-S fuzzy systems,
PDC technology [16] was applied to construct fuzzy control schemes. This idea is that for
each local subsystem, the controller can be designed with linear control techniques. Some
normal systems, such as the ship steering system [17], ship fin stabilizing system [18], and
drum boiler system [19], have been discussed. This modeling approach and controller
design technique are not only applicable for normal systems but also for singular systems.
Several stabilization issues of T-S fuzzy singular systems were researched by PDC-based
fuzzy controllers [20–22].

In the past decade, the state feedback controller was constructed to stabilize the T-S
fuzzy singular systems. To overcome the problem that the system’s states are not always
measurable, some control schemes have been investigated, for example, static output
feedback [11], observer-based feedback [23], and dynamic output feedback [24]. However,
if only using a traditional state feedback controller to singular systems, the complex model
transformations for system matrices are unavoidable. To simplify the derivation process
of the stability criteria, the PD feedback scheme was used to discuss control problems
in [25–32]. For instance in [25] the stabilization issues for continuous-time and discrete-
time linear switched singular systems were studied via PD control strategy with the
free-weighting matrix technique. In [26], the passive H∞ control for the discrete-time linear
switched singular systems was studied by using the Schur lemma. The related PD control
problems were studied in [27–32]. The PD observer issue for discrete-time singular systems
was studied in [33]. In [25,26], the stabilization via PD state feedback fuzzy control scheme
was studied. Referring to Remark 7 of [25], the PD controller can be reasonably used for
discrete-time cases in the case of a high accuracy state observer. However, the observer-
based fuzzy control was not developed in [25,26] due to the computation complexity. The
observer-based PD fuzzy control scheme is still an open problem for the discrete-time
nonlinear systems to the best of the authors’ knowledge. Thus, the motivation of this paper
is to overcome the above difficulty and develop a reasonable observer-based PD feedback
fuzzy control scheme for discrete-time nonlinear singular systems.

For the advantages of T-S fuzzy models and the motivations mentioned above, the
stabilization problem of observer-based control for discrete-time T-S fuzzy singular systems
was studied in this paper. By using the T-S fuzzy modeling approach, the nonlinear
singular systems can be approximated efficiently with some local linear models blending
by membership functions. Meanwhile, the observer-based fuzzy controller was designed
to reasonably use the PD feedback scheme in discrete-time cases. Then, according to
Lyapunov theory and the transformation technologies [34,35], the inverse problems were
solved and sufficient stability criteria can be developed in terms of LMI, which can be
conveniently calculated with convex optimization algorithms [36]. The main contributions
of this paper can be summarized as follows: (i) The proposed observer feedback fuzzy
control method is more generalized to conform to reality than the state feedback fuzzy
control approaches [25,26] when the system states cannot be measured. (ii) Extra freedom
variables of the LMI stability conditions derived by projection lemma let designers get more
degrees of freedom when solving the observer-based fuzzy control problems. (iii) With
the fuzzy observer design and PD feedback scheme, an observer-based PD feedback fuzzy
controller with novel stability conditions was derived to ensure the stability of discrete-time
T-S fuzzy singular systems. To verify the effectiveness and application of the proposed
observer-based fuzzy control method, the control problem of a bio-economic system was
presented. Some comparisons between the proposed observer-based fuzzy control method
and previous fuzzy control approaches were also provided in the simulations.

The organization of this paper is presented as follows. The nonlinear singular sys-
tem is represented as a T-S fuzzy model, and some necessary assumptions are proposed
in Section 2. The sufficient stability conditions for the singular system are derived in
Section 3. A biological economic system is proposed to verify the effectiveness of the
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proposed fuzzy control method in Section 4. Finally, the conclusions and future works are
collected in Section 5.

2. System Descriptions and Problem Statements

To represent the nonlinear singular systems, the T-S fuzzy modeling approach was
applied in this paper. The T-S fuzzy singular system can be represented as follows:

Plant Rule i:
IF =1(k) is Mi1 and . . . and =q(k) is Miq THEN

Ex(k + 1) = Aix(k) + Biu(k) (1)

y(k) = Cix(k) (2)

where =(k) =
[
=1(k) =2(k) · · · =q(k)

]
, i = 1, . . . , n and n is the number of rules,

Miq are fuzzy sets, q is the number of premise variables, x(k) ∈ <mx , u(k) ∈ <mu and
y(k) ∈ <my are the vector of state, control input, and output, respectively. Ai, Bi and Ci
are constant matrices with appropriate dimensions. E is a matrix with rank(E) < mx. By
blending all the fuzzy rules, one can infer the T-S fuzzy singular system as follows:

Ex(k + 1) =
n

∑
i=1

hi(=(k)){Aix(k) + Biu(k)} (3)

y(k) =
n

∑
i=1

hi(=(k)){Cix(k)} (4)

where hi(=(k)) =
q

∏
l=1

Mil(=l(k))/
n
∑

i=1

q
∏
l=1

Mil(=l(k)) , hi(=(k)) ≥ 0 and
n
∑

i=1
hi(=(k)) = 1.

Due to the limitation of space, the abbreviation hi(=(t)) , hi is defined in the follow-
ing context.

Considering the negative effects caused by algebraic equations, regularity and causal-
ity are the premise criteria and need to be discussed via model transformations [7,8]. In
recent years, the PD feedback scheme is applied for singular systems to eliminate the
impulse terms [25,26]. Because singular systems are transformed into normal state-space
models, the above properties can be naturally satisfied. Referring to [25], however, in
order to reasonably use the PD control method for discrete-time singular systems, the
observer should be constructed to estimate system’s states. As same as [25,26], it is as-
sumed that the current time step is instant k + 1 and the previous time step is instant k. For
online implementation, it is expected that the time taken to estimate the state x(k + 1) is
smaller compared with the sampling period. The T-S fuzzy PD observer can be constructed
as follows:

Observer Rule i:
IF =1(k) is Mi1 and . . . and =q(k) is Miq THEN

Ex̂(k + 1) = Ai x̂(k) + Biu(k) + Lpi
(
y(k)−Cj x̂(k)

)
+ Ldi

(
y(k + 1)−Cj x̂(k + 1)

)
(5)

where x̂(k) ∈ Rmx is the estimated state vector, Lpi and Ldi are the observer gains with
appropriate dimensions.

The overall T-S fuzzy PD observer as follows:

Ex̂(k + 1) =
n

∑
i=1

n

∑
j=1

hihj
{

Ai x̂(k) + Biu(k) + Lpi
(
y(k)−Cj x̂(k)

)
+ Ldi

(
y(k + 1)−Cj x̂(k + 1)

)}
(6)

With output observations, the system states can be estimated via PD fuzzy observer.
Next, to ensure the stability of the system (3), the observer-based PD controller is repre-
sented as follows:

Controller Rule i:
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IF =1(k) is Mi1 and . . . and =q(k) is Miq THEN

u(k) = −Fpi x̂(k)− Fdi x̂(k + 1) (7)

where Fpi and Fdi are the controller gains. The final control output is constructed as

u(k) =
n

∑
i=1

hi
{
−Fpi x̂(k)− Fdi x̂(k + 1)

}
(8)

Subsequently, the closed-loop T-S fuzzy singular system is obtained by substituting
the observer-based PD fuzzy controller (8) into the system (3). The overall closed-loop T-S
fuzzy singular system is represented as follows:

Ex(k + 1) =
n

∑
i=1

n

∑
j=1

hihj

{
Aix(k)− BiFpj x̂(k)− BiFdj x̂(k + 1)

}
(9)

According to motivations as mentioned above, the observer-based control scheme
is built in this work. One of the purposes of this paper is to estimate the systems’ states
and to ensure the stability of the system (9). As the estimation errors converge to zero,
the estimated states can replace the actual states. Next, define the estimation error as
e(k) = x(k)− x̂(k), the following equation can be inferred from (9).

Ex(k + 1) =
n

∑
i=1

n

∑
j=1

hihj

{
Aix(k)− BiFpj(x(k)− e(k))− BiFdj(x(k + 1)− e(k + 1))

}

=
n

∑
i=1

n

∑
j=1

hihj

{
Aix(k)− BiFpjx(k)− BiFdjx(k + 1) + BiFpje(k) + BiFdje(k + 1)

}
(10)

The closed-loop T-S fuzzy singular system is presented as aforementioned. Subse-
quently, the errors systems have to be built to guarantee estimation errors converge to
zero as t→ ∞ . Now multiplying the matrix E on the left side of the difference function
e(k + 1) = x(k + 1)− x̂(k + 1), one can obtain the following closed-loop error systems.

Ee(k + 1) = Ex(k + 1)− Ex̂(k + 1)

=
n

∑
i=1

n

∑
j=1

hihj
{

Aix(k) + Biu(k)−
(
Ai x̂(k) + Biu(k) + Lpi

(
Cjx(k)−Cj x̂(k)

)
+Ldi

(
Cjx(k + 1)−Cj x̂(k + 1)

))}
=

n

∑
i=1

n

∑
j=1

hihj
{(

Ai − LpiCj
)
e(k)− LdiCje(k + 1)

}
(11)

The following augmented systems can be further obtained from the system (10)
and (11).

ERij(h)x̃(k + 1) = ARij(h)x̃(k) (12)

where x̃(k) =
[

xT(k) eT(k)
]T, ERij(h) =

n
∑

i=1

n
∑

j=1
hihjERij, ARij(h) =

n
∑

i=1

n
∑

j=1
hihjARij,

ERij =

[
E + BiFdj −BiFdj

0 E + LdiCj

]
and ARij =

[
Ai − BiFpj BiFpj

0 Ai − LpiCj

]
.

Furthermore, the following assumptions concerning controllability and observability
of T-S fuzzy singular systems are proposed. Similar assumptions can be found in [26,33].
In addition, the lemmas are presented to convert stability conditions into LMI form.

Assumption 1. System (3) is completely controllable if the following conditions are satisfied.

rank
[

sE−Ai Bi
]
= mx and rank

[
E Bi

]
= mx, ∀s ∈ C+.



Appl. Sci. 2021, 11, 2833 5 of 14

where C+ is the open right-half of the complex plane.

Assumption 2. The system (3) is completely observable if the following conditions are held.

rank
[

sE−Ai
Ci

]
= mx and rank

[
E
Ci

]
= mx, ∀s ∈ C+.

Remark 1. Under the necessary assumptions as mentioned previously, one knows that the matrix
ERij is a full rank matrix. (i.e., ERij is invertible.) The system (10) is equivalent to the following
representation.

x̃(k + 1) = E−1
Rij(h)ARij(h)x̃(k) (13)

Obviously, one can find the augmented system (13) is a normal state-space model
since the controller gain Fdj and the observer gain Ldi, i.e., the regularity and causality of
the system (3) are held.

Lemma 1. [34] (Projection Lemma) Given matrices Ω, Λ and symmetric matrix Φ which
satisfies rank(Ω) < rank(Φ) and rank(Λ) < rank(Φ), if and only if there exists arbitrary
matrix Π such that

Φ + ΩTΠΛ + ΛTΠTΩ < 0 (14)

and the following inequalities are held simultaneously.

ΩT
⊥ΦΩ⊥ < 0 and ΛT

⊥ΦΛ⊥ < 0 (15)

where •⊥ denotes the null-space matrix of •.

Lemma 2. [35] A scalar α > 0 exists to satisfy the following inequality if matrices U and Ξ < 0
with appropriate dimension such that UTΞU ≤ 0 is held.

UTΞU ≤ −α
(

UT + U
)
− α2Ξ−1 (16)

In the next section, the stabilization issue of the system (13) is proposed by using the
Lyapunov stability theory. Moreover, the stability conditions will be converted into LMI
form through the above lemmas. Then, the convex optimization algorithms [36] can be
employed to solve these LMI stability conditions.

3. Main Results

The main object of this paper is to discuss the stabilization issues of T-S fuzzy singular
systems. Via the observer-based PD fuzzy control strategy and Lyapunov stability theory,
some sufficient stability conditions for the system (13) are derived as follows:

Theorem 1. If there exist matrices P1 = PT
1 > 0, P2 = PT

2 > 0, Fpj, Fdj, Lpi, Ldi, Z1 and Z2 such
that the following condition is held, the augmented system (13) is stable.[

P̃− He
{

ΠTERij
}

ΠTARij
∗ −P̃

]
< 0 (17)

where P̃ =

[
P1 0
0 P2

]
, Π =

[
Z−1

1 0
0 Z2

]
and He{•} denotes the shorthand of •+ •T. The

ERij and ARij are pre-defined in (12).
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Proof. Choosing the Lyapunov quadratic function V(x̃(k)) = x̃T(k)P̃x̃(k), one can obtain
the first forward difference of V(x̃(k)) as following equation.

∆V(x̃(k)) = x̃T(k + 1)P̃x̃(k + 1)− x̃T(k)P̃x̃(k)

= x̃T(k)
(

E−1
Rij(h)ARij(h)

)T
P̃
(

E−1
Rij(h)ARij(h)

)
x̃(k)− x̃T(k)P̃x̃(k)

= x̃T(k)
(

AT
Rij(h)E

−T
Rij (h)P̃E−1

Rij(h)ARij(h)− P̃
)

x̃(k) (18)

Based on
n
∑

i=1
hi = 1 and 0 ≤ hi ≤ 1, the condition (17) can be rewritten as follows:

[
P̃− He

{
ΠTERij(h)

}
ΠTARij(h)

∗ −P̃

]
= Ξ + He

{
ΨT

ijΠΛ
}
< 0 (19)

where Ψij =
[
−ERij(h) ARij(h)

]
, Λ =

[
I 0

]
, Ξ =

[
P̃ 0
0 −P̃

]
, I is identify matrix

and * denotes the transposed elements of the symmetric position.
According to Lemma 1, the following inequalities can be found from (19).

AT
Rij(h)E

−T
Rij (h)P̃E−1

Rij(h)ARij(h)− P̃ = ΨT
ij⊥ΞΨij⊥ < 0 (20)

and
− P̃ = ΛT

⊥ΞΛ⊥ < 0 (21)

where ΨT
ij⊥ =

[
AT

Rij(h)E
−T
Rij (h) I

]
and ΛT

⊥ =
[

0 I
]
. Clearly, the ∆V(x̃(k)) < 0 if

ΨT
ij⊥ΞΨij⊥ < 0. Based on Lyapunov theory, it further means that the systems (13) is stable.

The proof of Theorem 1 is completed. �

Remark 2. According to [32], a similar Lyapunov function is chosen to derive the stability
conditions for the controlled systems. However, some conservatisms exist due to the use of diagonal
matrices of the Lyapunov matrix and the freedom variables obtained by projection lemma, i.e.,
choosing a less conservative Lyapunov function and suitable variables of projection lemma is still a
challenging problem for developing stability criteria.

Please note that the stability conditions (17) are not LMI forms. To conveniently solve
the proposed stability problem by using convex optimization algorithms [36], it is necessary
to transform the conditions of Theorem 1 to LMI forms. The complete transformations
were given in the following theorem.

Theorem 2. The augmented system (13) is stable if there exist matrices X > 0, P2 > 0, Ypj, Ydj,
Kpi, Kdi, Z1, Z2 and a scalar α > 0 such that the following conditions are held.

Θ1ii + X BiYdi Θ2ii BiYpi 0 0 0
∗ −He{αZ1} 0 0 αI 0 0
∗ ∗ −2αI 0 0 αI 0
∗ ∗ ∗ −He{αZ1} 0 0 αI
∗ ∗ ∗ ∗ Θ3ii + P2 0 Θ4ii
∗ ∗ ∗ ∗ ∗ −X 0
∗ ∗ ∗ ∗ ∗ ∗ −P2


< 0

for i = 1, 2, . . . , n

(22)
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

X + Θ1ij
BiYdj + BjYdi

2 Θ2ij
BiYpj + BjYpi

2 0 0 0
∗ −He{αZ1} 0 0 αI 0 0
∗ ∗ −2αI 0 0 αI 0
∗ ∗ ∗ −He{αZ1} 0 0 αI
∗ ∗ ∗ ∗ P2 + Θ3ij 0 Θ4ij
∗ ∗ ∗ ∗ ∗ −X 0
∗ ∗ ∗ ∗ ∗ ∗ −P2


< 0

for i, j = 1, 2, . . . , n i < j

(23)

where Θ1ii = −He{EZ1 + BiYdi}, Θ1ij = −He
{

EZ1 +
BiYdj + BjYdi

2

}
, Θ2ii = AiZ1 − BiYpi,

Θ2ij =
AiZ1 − BiYpj + AjZ1 − BjYpi

2 , Θ3ii = −He
{

ZT
2 E + KdiCi

}
, Θ3ij =

− He
{

ZT
2 E +

KdiCj + KdjCi
2

}
, Θ4ii = ZT

2 Ai −KpiCi and Θ4ij =
ZT

2 Ai − KpiCj + ZT
2 Aj − KpjCi

2 .

Proof. The following inequality is an equivalent form of the stability condition (17).
P1 − He

{
Z−T

1

(
E + BiFdj

)}
Z−T

1 BiFdj Z−T
1
(
Ai − BiFpj

)
Z−T

1 BiFpj

∗ P2 − He
{

ZT
2 E + ZT

2 LdiCj
}

0 ZT
2
(
Ai − LpiCj

)
∗ ∗ −P1 0
∗ ∗ ∗ −P2

 < 0

for i = j = 1, 2, . . . , n

(24)

Then, pre- and post-multiplying the matrix Z̃
T
1 and its transpose matrix on both sides

of (24), one can obtain the following equation by defining X = ZT
1 P1Z1, Ypj = FpjZ1,

Ydj = FdjZ1, Kpi = ZT
2 Lpi and Kdi = ZT

2 Ldi. Where Z̃1 = diag
[

Z1 Z1 Z1 Z1
]
.

X− He
{

EZ1 + BiYdj

}
BiYdj AiZ1 − BiYpj BiYpj

∗ ZT
1
(
P2 + Θ3ij

)
Z1 0 ZT

1 Θ4ijZ1
∗ ∗ −X 0
∗ ∗ ∗ −ZT

1 P2Z1

 < 0

for i = j = 1, 2, . . . , n

(25)

Notice that the right-bottom block matrix in (25) is still not an LMI framework. Thus,
the following fact is proposed via Lemma 2. ZT

1
(
P2 + Θ3ij

)
Z1 0 ZT

1 Θ4ijZ1
∗ −X 0
∗ ∗ −ZT

1 P2Z1



=

 ZT
1 0 0

0 I 0
0 0 ZT

1

 P2 + Θ3ij 0 Θ4ij
∗ −X 0
∗ ∗ −P2

 Z1 0 0
0 I 0
0 0 Z1

 ≤ −αHe{Γ1} − α2Γ−1
2ij (26)

where Γ1 =

 Z1 0 0
0 I 0
0 0 Z1

 and Γ2ij =

 P2 + Θ3ij 0 Θ4ij
∗ −X 0
∗ ∗ −P2

.

Thus, the following inequality can be inferred from the condition (25). ¯
Γ1ij

¯
Γ2ij

∗
¯
Γ3ij

 < 0

for i = j = 1, 2, . . . , n

(27)
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where
¯
Γ1ij = X − He

{
EZ1 + BiYdj

}
,

¯
Γ2ij =

[
BiYdj AiZ1 − BiYpj BiYpj

]
and

¯
Γ3ij = −αHe{Γ1} − α2Γ−1

2ij .
By applying the Schur complement to (27), one can obtain the following condition.

¯
Γ1ij

¯
Γ2ij 0

∗ −αHe{Γ1} αI
∗ ∗ Γ2ij

 < 0

for i = j = 1, 2, . . . , n

(28)

Obviously, the convex problem (28) also can be represented as stability conditions (22)
and (23) of Theorem 2. The controller gains Fpj = YpjZ−1

1 , Fdj = YdjZ
−1
1 , the observer gains

Lpi = Z−T
2 Kpi, Ldi = Z−T

2 Kdi and the positive definite matrices P1 = Z−T
1 XZ−1

1 , P2 can be
calculated efficiently by using the convex optimization algorithms. The proof of Theorem 2
is completed. �

To verify the effectiveness and applicability of the proposed fuzzy control design
method, the control problem for a biological economic system is presented in the next
section. Besides, some comparisons between the proposed fuzzy control method and
a previous control design method are also provided in the next section to verify the
advantages of the proposed observer-based PD feedback fuzzy control method.

4. A Numerical Example

In this section, a bio-economic system is presented as follows to verify the applicability
of the proposed fuzzy control method.

dx1(t)
dt

= ax2(t)− bx1(t) (29)

dx2(t)
dt

= δx1(t)− bγx2
2(t)− x2(t)x3(t) (30)

0 = x3(t)(px2(t)− c)−m (31)

where x(k) =
[

x1(k) x2(k) x3(k)
]T, x1(k) is the population density of immature

species, x2(k) is the population density of mature species, x3(k) is harvest effort of harvested
mature population, and the description of other coefficients can be found in [11].

To plan the harvest strategy and maintain the sustainable development of the system,
it is necessary to take action to stabilize the biological population. Let a = 0.2, b = 0.7,
δ = 0.05, γ = 0.1, p = 1, c = 30, m = 0 and assume |x2(k)| ≤ µ = 5, where µ is the carrying
capacity of the population, the discretized T-S fuzzy bio-economic system is purposed
in [11] with the sampling period Te = 0.05 s.

Ex(k + 1) =
2

∑
i=1

hi(x(k)){Aix(k) + Biu(k)} (32)

y(k) =
2

∑
i=1

hi(x(k)){Cix(k)} (33)

where E =

 1 0 0
0 1 0
0 0 0

, A1 =

 0.8690 0.0090 0.0011
0.0023 0.9228 0.2279

0 0 −31.5

,

A2 =

 0.8690 0.0087 −0.0011
0.0022 0.8778 −0.2222

0 0 −22.5

, B1 = B2 =

 0 0
0.05 0

0 −1

 and
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C1 = C2 =

[
1 1 0
0 0 1

]
. The membership functions are h1(x(k)) = 1

2

(
1− x2(k)

µ

)
,

h2(x(k)) = 1
2

(
1 + x2(k)

µ

)
,

2
∑

i=1
hi(x(k)) = 1 and stated in Figure 1.
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To build the observer-based fuzzy controller (8) via PD feedback scheme, the following
gains can be calculated by using LMI techniques with α = 20.

Fp1 =

[
−0.2601 17.6914 4.2555
−0.0001 −0.0017 29.4621

]
, Fp2 =

[
0.1049 16.4441 −4.1554
−0.0000 −0.0014 21.3512

]
,

Fd1 =

[
−0.9505 386.4357 −1.2783
−0.0012 0.0670 −33.5144

]
, Fd2 =

[
−0.7365 386.7741 1.9942
−0.0017 −0.0830 −25.0700

]
,

LT
p1 =

[
−0.4700 1.4193 0.0151
−0.1264 0.3761 −41.0435

]
, LT

p2 =

[
0.8163 0.0429 −0.0053
0.1429 −0.3622 −30.4227

]
,

LT
d1 =

[
567.0738 −597.9506 −8.3359

1.1348 −0.9925 −138.3697

]
and LT

d2 =

[
566.3181 −597.1543 −8.3570

0.8390 −0.6799 −139.2070

]
.

According to the above gains, the fuzzy observer (6) and fuzzy controller (8) can be con-
structed with a PD feedback scheme. Based on the initial condition x(0) =

[
1.5 4 0

]T
and

_
x (0) =

[
0 0 0

]T, the state trajectories driven by the PD control scheme (8) are
stated in Figure 2. From the simulation results, it can be found that the stability of the
system (32) is achieved and the proposed fuzzy observer has been successfully employed to
design a PD-based fuzzy controller. These results illustrated the proposed design method’s
effectiveness and superiority.

To show the advantages of the proposed design method, the following fuzzy observer
and fuzzy controller are established for (33) with a previous design method developed
in [23] without considering external disturbance effects.

Ex̂(k + 1) =
2

∑
i=1

2

∑
i=1

hi(x(k))hj(x(k))
{

Ai x̂(k) + Biu(k) + Li
(
y(k)−Cj x̂(k)

)}
(34)

u(k) = −
2

∑
i=1

hi(x(k))Ki x̂(k) (35)

where LT
1 =

[
0.4294 0.4524 −0.0001
0.0010 0.2214 −30.9028

]
, LT

2 =

[
0.4293 0.4305 0.0000
−0.0010 −0.2130 −21.8734

]
,

K1 =

[
0.0024 0.9278 0.1699
0.0001 0.0022 15.7318

]
and K2 =

[
0.0023 0.8963 −0.1619
−0.0001 −0.0017 11.1306

]
.
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Figure 2. (a) The state and observer responses of x1(k); (b) The state and observer responses of x2(k); (c) The state and
observer responses of x3(k).

The comparisons of state responses and estimation errors are shown in
Figures 3 and 4, respectively. From Figure 3, it can be found that the proposed observer-
based PD fuzzy control method has better state responses than the fuzzy control method
investigated in [23]. Referring to Figure 4, the convergence of estimation errors of the
proposed observer-based PD fuzzy control scheme is also faster than the method in [23]. It
not only shows the superiority of the proposed design method but corresponds to that the
PD feedback scheme can be reasonably used in the case of the high accuracy state observer.
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The sensitivity and robustness analysis methods usually provide useful information
to the development of control systems [37,38]. To enhance the robustness to disturbances
and the sensitivity to faults, it is necessary to measure the robustness and sensitivity by
a suitable performance index and optimize it. The robustness and sensitivity analysis of
control systems with respect to the parametric variations of the controlled plant is not
the major goal of this paper. However, it is worth mentioning that the robustness and
sensitivity analysis methods [37,38] could help designers extend the proposed control
approach to investigate the robust fuzzy control for the perturbed discrete-time nonlinear
singular systems.

5. Conclusions

In this paper, the observer-based PD feedback fuzzy control issue for the discrete-
time T-S fuzzy singular system has been studied. By applying the PD feedback scheme,
the impulse terms generated from algebraic equations are eliminated, i.e., regularity and
causality are naturally satisfied without any model transformations. Moreover, the PD
fuzzy observer is constructed to solve the practical problems of unmeasured states and to
satisfy the reasonable consideration of the PD controller. According to Lyapunov theory
and transformation technologies, novel stability criteria in terms of LMI frameworks are
developed. The effectiveness and advantage of the proposed method are verified with
a numerical simulation. Due to packet loss problems and the disturbance effect, the
present results could be extended to address the observer-based robust fuzzy control for
the discrete-time T-S fuzzy singular systems with uncertainties. Furthermore, choosing
a less conservative Lyapunov function is also an interesting problem for improving the
proposed observer-based PD fuzzy control method.
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