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Abstract: Transition metal complexes with dppz-type ligands (dppz = dipyrido[3,2-a:2′,3′-c]phenazine)
are extensively studied and attract a considerable amount of attention, becoming, from the very
beginning and increasingly over time, a powerful tool for investigating the structure of the DNA helix.
In particular, [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ and their derivatives were extensively
investigated as DNA light-switches. The purpose of this mini-review, which is not and could not be
exhaustive, was to first introduce DNA and its importance at a biological level and research in the
field of small molecules that are capable of interacting with it, in all its forms. A brief overview is
given of the results obtained on the Ru-dppz complexes that bind to DNA. The mechanism of the
light-switch active in this type of species is also briefly introduced along with its effects on structural
modifications on both the dppz ligand and the ancillary ligands. Finally, a brief mention is made of
biological applications and the developments obtained due to new spectroscopic techniques, both for
understanding the mechanism of action and for cellular imaging applications.

Keywords: DNA; luminescence; light-switch; sensors; intercalation

1. Introduction

DNA has a vital role in life—cells use DNA to store and communicate all information
necessary for the evolution of life. Its replication and transcription are the key mechanism
underlying all biological functioning.

DNA is essentially polymorphic, although its most common structure is the anti-
parallel double helix (B-DNA) [1]. However, its existence in several conformations, which
are indispensable for its functioning and for the regulation of its functions, makes DNA
a difficult target for small molecules. Therefore, research aimed at developing small
molecules capable of binding to and reacting with DNA in all its forms is in continuous
development. In fact, over the last 30 years, research led to the synthesis and study of
molecules that bind to DNA as both diagnostic probes and therapeutic agents [2–4].

Among many others, inspired by the discovery and pharmaceutical activity of the
effective anticancer agent cisplatin [5–7], the search for metal complexes capable of interact-
ing with DNA is increasingly flourishing. In particular, attention is often directed towards
a large family of transition metal complexes, as these species are able to combine structural
elements, such as defined and modulable coordination geometries with appropriate ligand
stability/lability, and distinctive electrochemical and photophysical properties.

On the one hand, the negative charge of the DNA surface implicitly allows one to
consider electrostatic attraction to all cationic complexes as a possible interaction; on the
other hand, one can also imagine that appropriately designed ligands (with extensive
planar surfaces) might allow the metal complex to fit between the base pairs of double-
stranded DNA in the B form (i.e., bind by intercalation).

This type of reasoning makes it possible to justify, for example, the different types
of interaction with DNA offered by [Ru(bpy)3]2+ and [Ru(phen)3]2+ [8,9]. In fact, while
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the former binds only weakly to DNA, the interaction of [Ru(phen)3]2+ is much stronger,
thanks to the presence of the phenanthroline ligand that allows for an at least partial
intercalation into DNA base pairs, called semi-intercalation [10–12].

The initial interest was amplified by Barton′s research into the use of enantiopure
forms of complexes like possible chiral probes for DNA [13–15]. Over time, it was realized
that these were the photophysical and electrochemical properties of a given complex,
that was achieved by appropriate ligand substitution, which actually expressed the great
potential of these metal complexes as luminescent probes and photochemical reagents.

Furthermore, as well as allowing modulation of redox and implicitly photophysical
properties, the design of appropriate ligands also provided a means of varying the character
and strength of binding to nucleic acids.

In this review, rather than presenting a complete history of the development of metal
complexes used as DNA binders, we focused on certain aspects of this class of compounds
and, in particular, on the light-switch effect offered by the Ru(II) dppz derivatives [16].

2. DNA Structure

The classic 3D-model, proposed by Watson and Crick in 1953, describes the DNA
(in B conformation) as two polynucleotide chains that coil around each other to form a
right-handed double helix [17]. The two filaments of the DNA run in opposite directions
to each other, so they are antiparallel, and according to the model, this is the reason such
winding is present. In the center of the double helix there are nitrogenous bases, which
keep the two chains bound by hydrophobic π-π interactions (which reduce the interaction
with water molecules) and by the hydrogen bond between complementary bases, each of
them belonging to a different chain. It is exclusively the interaction between a purine and
pyrimidine derived base that grants the necessary distance so that a hydrogen bond can
form—this can happen only by the A-T and G-C pairs.

Since hydrogen bonds are weak, it is relatively easy to break and form them again,
like a zip, for example, due to the high temperature or mechanic interactions. As a
consequence, in addition to the complementary bases, DNA molecules might be replicated
such that all biological information contained within might be duplicated—such is the
DNA replication [18].

It is quite well-known that G-C stability (three hydrogen bonds) is higher than that of
A-T (two hydrogen bonds), therefore, the global stability of a DNA helix is related to the
amount of G-C pairs, as well as the chain length.

The B form is the most common DNA conformation found within cells [19]. B-
DNA winds up in a right-handed manner, see Scheme 1. There are approximately ten
nitrogenous bases per turn, paired on the same plane and arranged perpendicularly to the
DNA axis. The glycosidic bond between the 2-deoxyribose and the nucleobases shows
anti-conformation. The stacking of the nucleobases leads to the formation of a major and
a minor groove. In B-DNA, the major groove is 11.6 Å wide and the minor one is 6.0 Å
wide—this difference leads to a different accessibility to the nitrogenous bases, depending
on their position. Since on these grooves the nitrogenous bases are exposed to solvent,
they might specifically interact with other species, without implicating modifications to the
double helix. The majority of DNA-specific proteins interact with it right in one of the two
grooves, especially into the major one because the sequence-specific recognition is greater
in this groove.
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Scheme 1. Schematization of the main physical features of the structure of B-DNA.

3. DNA Binding
3.1. Interaction of Small Molecules with DNA

It is possible to distinguish two kinds of interactions with DNA—reversible and
irreversible ones [20,21]. Irreversible interactions involve the formation of a covalent or
coordination bond between a species and an atom site of the helix; such a linkage implicates
the total inhibition of DNA processes (and the cell death as a consequence), if DNA repair
systems, such as the NER (nucleotide excision repair) fail. Very often, the steric hindrance
of species bound irreversibly might cause a distortion of the phosphate groups, which
leads to negative effects on DNA transcription and replication, such as preventing the
protein-complex identification [2–4].

Reversible interactions are usually less toxic than the irreversible ones. These can be
classified into four types (see Scheme 2)—(i) external electrostatic interaction, (ii) groove
binding, (iii) external self-aggregation, and (iv) intercalation.

The external electrostatic interaction (i) is due to the presence of the phosphate groups
in the chain, because their negative charge might attractively interact above any positive
ion. In particular, simple cations like alkaline ones associate with nucleic acids in the base
of the density charge generated by the phosphate groups, resulting in a stabilization of the
DNA itself. This association is called ‘condensation’, because the ions are associated to the
overall charge of the biomolecule and not to specific sites, which remain capable of moving
along the double helix. The typical DNA counterions are Na+ ions, which compensate
most of the phosphate groups’ negative charge. The remaining charges are neutralized by
other cations through the classic Debye-Huckel mechanism.

The groove binding (ii) occurs for species that have the right dimension and conforma-
tion to “lay down” in one of the grooves, which interact via electrostatic interactions, Van
der Waals forces, and especially, hydrogen bonds [22,23]. The typical molecules that are
able to make this kind of interaction have an appropriate length and flexibility, which might
assume an optimal conformation. Usually, these molecules have several aromatic rings
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(like pyrroles, furans, or benzenes) that are bound to substituents that are capable of rotat-
ing around the bonds, letting them adapt to the double helix shape without significantly
perturbing the DNA structure.

Scheme 2. Schematization of the main reversible interactions between small molecules and DNA—
(A) external interaction; (B) interaction in grooves; (C) external self-aggregation; and (D) intercalation.

External self-aggregation (iii) occurs when molecules, especially aromatic planar
species, stack along the external part of the double helix, forming dimers or even huge ag-
gregates through a non-specific bond called external stacking. It is known that interactions
of porphyrin and metal-porphyrin with DNA, lead to the formation of chiral supramolecu-
lar structures [24–28], Pt(II) organometal complexes coordinated by terpyridine [29,30] or
Pt(II) complexes with extended aromatic ligands like dipyrido[3,2-a:2′,3′-c]phenazine or
benzodipyrido[b:3,2-h:2′,3′-j]phenazine, in the case of low [DNA]/[complex] ratio, and
consequently, the presence of few intercalative sites [31]. Pasternack et al. highlighted that
the structure of intercalators influences the interaction type with DNA and might lead an
external interaction to be preferred to an intercalation [32,33].

Intercalation (iv) is essentially a stacking interaction resulting from the insertion of a
planar aromatic system between the base pairs of the DNA double helix, and is permitted by
a significant overlap between π orbitals of the intercalative species and those of nitrogenous
bases, forming a system stabilized by Van der Waals forces, hydrophobic interaction, and
especially, π-π stacking [34,35].

This type of interaction was first proposed by Lerman [34] in order to rationalize his
results on the high affinity for DNA of certain acridine derivatives. The combination of
these structural modifications results in functional changes, and frequently, in the inhibition
of DNA transcription and replication and repair processes, thus making the intercalators
mutagens.

To permit this intercalation process, it is necessary that a “cavity” forms between
the nucleobases, so they have to distance each other; this process causes the elongation
of DNA [36–39]. Vertical separation between nucleobases (about 3.4 Å in the B-DNA)
might increase from 1.8 to 4.5 Å per intercalated molecule when a huge aromatic molecule
intercalates. The angle of rotation might vary from 11◦ to 48◦, depending on the interca-
lator structure and the type of nucleotides involved [40]. The process causes distortions
in the DNA structure that can be used to study DNA-molecule interactions by, for ex-
ample, viscosity measurements [41] sedimentation studies [42], circular dichroism (CD)
variations [36–40,43], and electrophoresis studies on circular DNA supercoil [44].

The intercalation model proposed by Lerman, however, did not take into account
the possibility of the species to insert itself between nucleobases pairs, until a double
helix saturation. Crothers introduced the neighbor exclusion model: [45,46] in case a
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molecule intercalates into a site, it distorts the vicinal ones, so that they would not be
available to permit the intercalation of other molecules. Therefore the intercalation is
anti-cooperative at adjacent sites, and therefore, only 50% of DNA sites can undergo an
intercalative interaction. Moreover, it is also (highly) possible that the molecules do not
occupy every other site, obstructing more than two of them; also, huge molecules might
prevent this kind of interaction due their steric hindrance.

Several studies were conducted to understand whether there exists a specificity in
the intercalative interactions related to the type or the sequence of the nucleobases in-
volved. Some intercalators showed preferential interactions, but almost all of them interact
aspecifically with the nucleobases.

At first it was believed that only small molecules, with a planar structure, could
intercalate, but after several studies during the years a distinction between ‘classical’ and
‘non-classical’ intercalators was made. Classical intercalators are characterised by aromatic
condensed rings and have positive charge(s) on the rings themselves or on the side chains.

Among non-classical intercalators there are compounds that have huge or polar (or
charged) substituents on the opposite sites of the intercalating aromatic system [47]. These
compounds need to insert at least one of the substituents between the nucleobases pairs to
intercalate. Among these species there are known compounds like naphthalene bisimide
and cationic porphyrins, which, although they are not supposed to intercalate, might
interact efficiently with DNA through such an interaction [48]. Even if thermodynamically
favorable, this interaction is kinetically unfavorable, and needs opening of the double helix
(causing distortion or breaking of hydrogen bonds); such effect makes the DNA–molecule
interaction slow.

The initial studies of the intercalative process involved simple organic molecules,
but they were followed by studies focused on the interaction between DNA and metal
complexes. The presence of a transition metal indeed provides several advantages, as
described below [49–54].

• The presence of d orbitals grants more ways (bonds and geometries) such that the
species might interact with DNA other than those of organic molecules.

• Steric and electronic properties can be modulated choosing opportune ancillary lig-
ands.

• Bridging ligands of certain dimensions might modify the size of the intercalator.
• It is possible to take advantages from their spectroscopic, magnetic, redox, photophys-

ical, and photochemical properties.

Since the antitumoral properties of cisplatin, square planar Pt(II) complexes were
the first inorganic species whose interaction with DNA was studied. Lippard, in the
‘70s, demonstrated that Pt(II) complexes with heterocyclic aromatic ligands (like 2,2′:6′,2′′-
terpyridine) intercalate into the DNA [55]. It is worth noting that the geometry of Pt(II)
complexes is compatible with the steric requisites for the intercalation process, and by
modifying the bound ligands, it is possible for them to modulate their steric and electronic
properties [56–60].

3.2. Ru(II) Complexes as Intercalators

In the last decades, more attention was given to metal complexes with an octahedral
geometry, to verify if the species with high steric hindrance would intercalate and how
this influences the process. In fact, ancillary ligands could prevent the insertion of small
molecules between DNA adjacent base pairs.

Ru(II) complexes containing rigid aromatic rings (stable, inert, and soluble in water)
were among the first classes of octahedral complexes studied [61,62].

One of these was [Ru(phen)3]2+ species (phen = 1,10-phenanthroline) [63–65]. In this
complex, each ligand has an aromatic planar structure that might interact with DNA;
moreover, the three ligands give a chiral effect to the species. Chirality might have a
relevant effect on the interaction process—according to Barton4, the intercalation is favored
for ∆ isomers of these kinds of complexes. This is due to the orientation of ligands in the
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∆ isomers, which interfere sterically less than those in Λ isomers, with the skeleton of
DNA. Later studies by Chaires and Nordèn clarified that rather than intercalation, it is
more correct to refer to this interaction as semi-intercalation, since there is only a partial
insertion of a phenanthroline between the nucleobases, without the complete separation of
the latter [10–12].

Taking enantioselectivity of Ru(II) tris-phenanthroline complexes as a starting point
for designing probes that are able to recognize the double helix chirality, there were synthe-
sized complexes that could selectively bind to DNA. For example, Λ isomers of metal com-
plexes based on 4,7-diphenylphenanthroline (DIP) are efficient probes for Z-DNA [66,67].
[Ru(TMP)3]2+ (TMP = 3,4,7,8-tetramethylphenanthroline) is, instead, a selective probe for
A-DNA [68]. Methyl substituents, in fact, do not allow the complex to intercalate between
nucleobases; it interacts with DNA through electrostatic and hydrophobic interactions.
This complex is too huge to insert into a B-DNA minor groove, but can insert into the major
one of A-DNA and, through photoactivation and subsequent generation of 1O2, can break
the double helix.

However, the real research success in this field, and in fact, one of the most studied
complexes is [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c phenazine]); see Figure 1.

Figure 1. Molecular structure of [Ru(bpy)2(dppz)]2+.

The dppz ligand possesses a large aromatic surface area, allowing extensive intercala-
tion in the DNA base pairs. Most Ru polypyridine complexes based on this ligand bind
strongly to the DNA duplex via the intercalation mechanism. One measure of the affinity
of these interactions is the log K value (K= DNA binding constant). For the classic DNA
intercalator ethidium bromide (EB), this value is >6, while for [Ru(bpy)2dppz]2+, under the
same experimental conditions, this value is >7 [69], demonstrating the high affinity of this
ligand for DNA.

In 1990, Barton first reported that [Ru(bpy)2(dppz)]2+ could serve as a luminescent
DNA probe [70]. This species does not exhibit luminescence in aqueous solution at room
temperature, but shows intense emission in the presence of DNA, due to the radiative
decay of an MLCT excited state, once the complex intercalates into the base pairs [71]. In
water solution, instead, the luminescence is quenched due to proton-transfer from water
molecules to phenazine’s nitrogen atoms. Intercalation does not permit the interaction
between water molecules and the Ru(II) complex, so the latter becomes luminescent.

This phenomenon is known as the ‘light-switch’ effect of DNA and is widely used to
study the interaction of polypyridyl metal complexes with DNA.

Interaction of Ru(II) complexes with DNA usually generates an increase in lumines-
cence intensity due to the reduced probability of:

• non-radiative decay, because the intercalated luminophore is surrounded by the DNA
hydrophobic environment and is therefore protected from water-induced deactivation;

• intersystem crossing to the 3MC excited state, as the complex is caged into the double
helix and its rigidity result is enhanced;

• O2 luminescence quenching.
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On the other hand, if there are photoinduced reactions between the metal complex
and nucleobases, luminescence is quenched.

Similar to the [Ru(bpy)2(dppz)]2+ species, the two Ru(II) complexes reported in Figure 2
behave as luminescent DNA probes; they are based on TAP (1,4,5,8-tetra-azaphenan threne)
and PHEHAT (1,10-phenanthroline[5,6-b]-1,4,5,8,9,12-hexa-azatriphenylene) ligands. Inter-
estingly, in the presence of DNA, the behavior of these two complexes is different—the first
complex acts as an ON–OFF molecular switch; the second one acts, instead, as an OFF–ON
molecular switch [72].

Figure 2. Representation of [Ru(TAP)2(PHEHAT)]2+ (left) and [Ru(phen)2(PHEHAT)]2+ (right).

[Ru(TAP)2(PHEHAT)]2+ is a photo-oxidant complex (the two TAP ligands give it a
high reduction potential) and shows a great affinity for the DNA, thanks to the PHEHAT
ligand, which can intercalate. DNA efficaciously quenches its luminescence due to the
‘electron transfer’ process with guanine; which is a ‘light-switch’ON–OFF’.

[Ru(phen)2(PHEHAT)]2+ in water solution at room temperature does not exhibit any
luminescence; the lone pairs present on nitrogen atoms in the PHEHAT ligand, interacting
with water molecules, stabilize a non-emissive excited state. When the complex intercalates
into DNA, the PHEHAT ligand is surrounded by the DNA hydrophobic environment and
the stabilization by water molecules cannot happen. Therefore, the non-emissive excited
state is not stabilized and the complex exhibits luminescence; which is called ‘light-switch
OFF–ON’.

A wide variety of dppz-based complexes were designed, synthesized, and studied
by modifying the bipyridine ancillary ligand or the dppz ligand [73–78], or changing the
metal center to Re [79–82], Co [83,84], Cu [85,86], Rh [87–90], Os [91,92], Pt [31,93–95], and
Ir [96–98] cations.

Many experiments were conducted in an attempt to rationalize and “observe” the light-
switch mechanism. In the case of [Ru(phen)2(dppz)]2+ [69], see Figure 3, the mechanism
seems to occur in two distinct phases, the first involving intersystem crossing between
the state called MLCT′ (bright state) and the one called MLCT” and subsequently by non-
radiative deactivation from the latter. The MLCT′ state represents the dominant state of
[Ru(phen)2(dppz)]2+ in aprotic organic solvent, and is the state that is initially populated
in other solvents as well; see Scheme 3.

Figure 3. Molecular structure of [Ru(phen)2(dppz)]2+.
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Scheme 3. Jablonski diagram describing the excited states and transitions of
[Ru(bpy/phen)2(dppz)]2+complexes and the solvent influence on the dark state (GS: Ground State).

The MLCT” state (dark state), on the other hand, is a state involving the phenazine
portion of dppz and its energy is a function of the solvent. In fact, by rationalizing the
photophysical properties of [Ru(phen)2(dppz)]2+ in a wide range of solvent environments,
it can be inferred that both the polarity of the latter and the ability to form hydrogen bonds
with the N atoms of the phenazine fragment govern the population of this dark state [48].

The light-switch behavior is also a function of temperature, which governs the extent
of equilibration between the two states and thus the relative population. It was shown
that the light-switch process results from a competition between energetic factors that
promote the population of the dark state (MLCT”) and entropic factors that tend to favor
the population of the bright state (MLCT”) [99–104].

3.3. Solvent Effects on the Photophysical Properties of the Ru-Dppz Complexes

The effect of the solvent on the spectroscopic and photophysical properties of the
[Ru(phen)2dppz]2+ complex was systematically studied for the first time by Murphy [105].
The studies carried out showed that the absorption spectra in water and in various non-
aqueous solvents were very similar, while the emission energies, as well as the lifetime
and quantum yield of luminescence, were extremely solvent-dependent. It was shown
that there was no correlation between the maximum luminescence and the polarity of
the solvent. In particular, as already pointed out, no emission was observed in water
and trifluoroethanol. On the other hand, quantum yield and luminescence lifetime were
particularly sensitive to solvent polarity.

Both of these quantities were reduced in high-polarity solvents, and this trend was
correlated with the empirical quantity ET, which reflected, to some extent, both a measure
of the polarity of the solvent and its ability to make h-bond. Furthermore, studies carried
out on [Ru(phen)2dppz]2+ showed that knr (rate constants for non-radiative processes)
was almost independent of solvent polarity, while all non-radiative constants were, and
somehow became greater, as polarity increased.

The energy gap law that correlated the non-radiative constants with the difference
in energy between the fundamental and excited luminescent states did not appear to
be respected in this case, unlike what happened for example for the parent compound
[Ru(bpy)3]2+.

Contrary to the assumption that H-bonding to phenazine nitrogen atoms in the excited
state was capable of activating non-radiative channels and thus quenching the emission,
the improved correlation observed between ln(knr) and ET, compared to the H-bond-
donating capacity of the solvent alone [106], made it possible to highlight that the forces at
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play, and the mechanism, were subtler (or involve concomitant events) than predicted by
early studies.

The light-switch phenomenon for this family of compounds was indeed closely related
to the effect of the solvent on the two possible states, involving the metal and the bipyridine
or phenazine moiety of the dppz. In two fundamental studies, it was shown that this effect
resulted from a thermal equilibrium between these two excited states, one enthalpically
favored (the state involving the phenazine fragment) and the other entropically favored.
This behavior could be attributed to the fact that charge separation induced a rearrangement
(and thus greater order) of the surrounding solvent [107].

The competition between the two different thermodynamic contributions results in a
non-obvious inversion of the populations of excited states, as a function of solvent—the
photoluminescent 3MLCT state essentially dominates in aprotic solvents (or in the presence
of double-stranded DNA), while the CS state population becomes prominent in protic
solvents [106].

3.4. Effects of Tuning the Photophyisical and Redox Properties

Modifications on complexes based on the dppz ligand are aimed at two main effects—
the light-switch effect and DNA affinity [108].

The coordination geometry in the case of Ru(II) is that of an octahedral d6 and,
therefore, in addition to the bidentate dppz ligand, four other coordination sites are
available for the so-called ancillary ligands [109–112].

Modifications made to these ligands can result in important electronic effects that lead
to changes in the photophysical and redox properties of these types of systems; see Table 1.

Table 1. Absorption and photophysical properties, in MeCN and H2O of the representative Ru-dppz complexes.

Complex

MeCN H2O

Refλabs/nm
(ε/104 M−1 cm−1) λem/nm Φ/% τair/ns

(τAr/ns)
λabs/nm

(ε/104 M−1 cm−1) λemi/nm Φ/% τair/ns
(τAr/ns)

[Ru(bpy)2(dppz)]2+ - 615 - -
263 (11.7)
372 (2.18)
439 (2.0)

- - - [70,71]

[Os(tpy)(pydppz)]2+
325 (5.05)
375 (2.21)
475 (1.46)

800 0.8 50 - - - - [91]

[Ru(acac)2(dppz)] 554 (9100) Not soluble [109]

[Ru(phen)3]2+ 262
446 - - - 421

443 (2.0) - - - [113]

[Ru(phen)2(dppz)]2+
264, 276 sh

316, 352
360, 368, 440

630 2.1 180 (643)
264, 278 sh

318 sh, 358 sh
372, 440 (2.34)

- - - [113]

[Ru(phen)2(PHEHAT)]2+
264, 278 sh

312 sh, 354 sh
370, 438

662 1.1 191 (262)
264, 276 sh
312 sh, 356

374, 440 (2.27)
- - - [113,

114]

[Ru(phen)2(HAT)]2+
262
420

480 sh
696 1.7 371 (776)

262
430 (1.44)

494 sh
- - - [115]

[Ru(bpy)2(HAT)]2+
282
420

480 sh
703 1.6 a - (620)

277 (5.90)
432 (1.0)
484 sh

742 6 ×
10−3

-
(104) [115]

[Ru(HAT)3]2+
275

410 sh
436

587 0.9 a - (89)
275

410 sh
440 (2.10)

596 0.013 -
(145) [115]

[Ru(TAP)3]2+
276
408
437

604 0.7 - (68)
276 (4.68)
408 (1.37)
437 (1.30)

602 0.014 -
(223) [116]
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Table 1. Cont.

Complex

MeCN H2O

Refλabs/nm
(ε/104 M−1 cm−1) λem/nm Φ/% τair/ns

(τAr/ns)
λabs/nm

(ε/104 M−1 cm−1) λemi/nm Φ/% τair/ns
(τAr/ns)

[Ru(bpy)2(TAP)]2+
280
428
472

679 4.2 - (980)
278 (7.61)
439 (1.24)

484
714 0.003 -

(145) [115]

[Ru(TAP)2(dppz)]2+ 621 - -

204 (9.08)
230 (5.93)
278 (10.4)
366 (1.45)
412 (2.23)
454 (1.58)

636 0.035 820
(1090) [117]

[Ru(NH3)4(dppz)]2+ 550 - - - 544 (0.26) - - - [118]

[Ru(bpy-
COOMe)2(dppz)]2+ 471 (1.95) 642 - - 474 642 - - [119,

120]

[Ru(bpy-
COOH)2(dppz)]2+ - - - - 463 (1.61) 624 - - [120]

[Ru(bpy)2(qdpq)]2+

284 (7.5)
362 (1.4)
390 (1.4)
564 (0.6)

[121–
123]

[Ru(bpy)2(qdppz]2+

285 (10.33)
378 (1.86)
395 (1.85)
442 (1.66)

[121–
123]

[Ru(tpy)(pydppz)]2+
306 (5.72)
325 (2.96)
475 (1.48)

698 0.021 a - - - - - [121–
123]

[Ru(bpy)2(dppn)]2+ 444 (1.35) 617 0.3 - - - - - [124,
125]

[(bpy)2Ru(tpphz)]2+

450 (19.7)
380 (33.9)
361 (24.1)

284 (133.0)
246 (76.4)

616 0.010 634 0.017 [126,
127]

a Argon-equilibrated solution.

An example of that is the use of primary amines or acetylacetonates that leads to complete
non-emissive species, as in the case of [Ru(NH3)4(dppz)]2+ and [Ru(acac)2(dppz)] [118,119],
while the use of polypyridine ligands with ligand-centered (LC) states (which are much
more stabilized species than phenanthroline or bipyridine and which become acceptors of
the MLCT transition) leads to luminescence in both the presence and absence of DNA [120].

The affinity of these species for DNA can also be modulated by peripheral lig-
ands. Polypyridine ligands modified with carboxylic acids, as in the case of [Ru(bpy-
COOH)2(dppz)]2+ lead to a greater selectivity of duplex DNA to single-stranded DNA
than the corresponding esterified ligands ([Ru(bpy-COOMe)2(dppz)]2+) [128]. This type of
behavior is due to the fact that deprotonation of the acidic groups results in the formation
of a formally neutral species that induces greater repulsion between the ancillary ligands
and the DNA surface and leads to duplex selectivity.

The electronic effect of the ancillary ligands leads to a modulation of the redox po-
tentials of these species, and as in the case of [Ru(tap)2(dppz)]2+ [117], a photoinduced
electron transfer process can occur with guanine, leading to the formation of a covalent
bond between the species and the polynucleotide [109–112].

Substitution on the ancillary ligands is also important to manage the selectivity of
the light-switch. Indeed, by incorporating methyl groups on the phenanthrolines of
the [Ru(phen)2(dppz)]2+ system, a highly specific probe for a DNA mismatch was ob-
tained. The selectivity was shown to be due to a higher binding affinity towards the
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mismatched DNA, which results in a much higher luminescence lifetime when bound to a
mismatch [129].

It is very interesting to point out that the electron transfer processes involving DNA
and metal complexes also depend on the type of interaction and thus on whether the
reagents are metallo-intercalators or groove-binding agents. It was shown that photoin-
duced electron transfer and charge recombination (back electron transfer) becomes more
efficient across the DNA base stack. The efficiency and yield of these processes are also a
function of the base sequence into which the metal-binding agent fits, due to the different
redox potentials of the transition metal complexes and the different bases [130–132].

A particularly interesting effect of substitution on the photophysical, and in particular,
the photochemical properties of the polypyridyl ruthenium complexes is obtained by using
a dppz analogue, i.e., 1,4,5,8-tetraazafenanthrene (TAP) or 1,4,5,8,9,12-hexaazatriphenylene
(HAT), see Figure 4 [133]. In the case of the homoleptic [Ru(TAP)3]2+ complex, it was
shown that this complex is capable of forming covalent photoadducts with DNA. The
ability of this type of complexes to give photochemistry with DNA is a function of the
oxidizing power of the complex and becomes scarce in the case of the complex containing
two TAP or HAT ligands, to the point of being absent in the case of the mono-substituted
[Ru(bpy)2L]2+ complex (L = TAP or HAT) [134–136]. The interest in this type of research is
fundamentally based on the selectivity of the photochemical action with adduct formation,
which is attributed to the reaction of the radical products formed by the initial electron
transfer and the subsequent proton transfer.

Figure 4. Molecular structure of HAT and TAP ligands.

Both luminescence lifetime and time-resolved absorption spectroscopy confirmed that
the excited states of these species were able to oxidize guanine, either as a free nucleotide
(5-GMP) or in DNA, but not the other nucleobases.

It was also shown that the photo-oxidation of guanine by [Ru(TAP)2(dppz)]2+, and
in particular its isomer Λ, was a function of the nucleobase sequence. In fact, if bound to
(CCGGATCCGG)2 or (CCGGTACCGG)2, its behavior was different. In the case of the TA
sequence, the electronic transfer was not very efficient [137]. However, after irradiation with
visible light, the TAP containing complexes, exhibited both photocleavage and formation
of mono- and bi-adducts with DNA [138].

In particular, the photochemical product of [Ru(TAP)3]2+ with 5-GMP was isolated
and identified by demonstrating that the adduct was formed by a bond between the TAP
ligand and the external NH2 group of guanine. In the case of the [Ru(HAT)2(phen)]2+

species, however, the photochemical reaction with 5-GMP resulted in the formation of a
bond between HAT and the 6-O atom of guanine [139].

Similar behavior was observed with the [Ru(bpy)2(tpphz)]2+ complex, see Figure 5
(tpphz = tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2
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single-stranded telomeric repeat 5′-AGGGTTAGGTTAGGG-3′(22AG) to fold into an in-
tramolecular quadruplex [140,141]. In contrast, a cytosine-rich filament oligomer 5′-
CCCTAACCCTAACTAACCCT-3′(22CT) could self-associate into an i-motif structure; 
see Scheme 4. In general, Ru-dppz-type complexes only weakly interact at the i-motif, 
making them somewhat selective for G-quadruplexes. This type of behavior was palpably 
attributable to the interaction of [Ru(phen)2(dppz)]2+, which stacked on the ends of G-
quadruplexes, while it might bind to the i-motif only by non-specific interaction [142]. 
Similar to the G-quadruplex DNA structures (containing essential guanine residues), i-
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The interaction of these molecules with the particular structure of DNA was also studied.
Both [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ were shown to induce the hu-

man single-stranded telomeric repeat 5′-AGGGTTAGGTTAGGG-3′(22AG) to fold into
an intramolecular quadruplex [140,141]. In contrast, a cytosine-rich filament oligomer
5′-CCCTAACCCTAACTAACCCT-3′(22CT) could self-associate into an i-motif structure;
see Scheme 4. In general, Ru-dppz-type complexes only weakly interact at the i-motif,
making them somewhat selective for G-quadruplexes. This type of behavior was palpa-
bly attributable to the interaction of [Ru(phen)2(dppz)]2+, which stacked on the ends of
G-quadruplexes, while it might bind to the i-motif only by non-specific interaction [142].
Similar to the G-quadruplex DNA structures (containing essential guanine residues), i-
motifs (intercalated motifs) consist of a fragment of oligodeoxynucleotides strands, mostly
based on cytosine residues.

Scheme 4. Schematic representation of DNA i-motifs found in human cells.

I-motif forming DNA was recently identified as a key step in the recognition and
regulation of transcriptional proteins in cells. It was also present in many promoter regions
of oncogenes [143,144].

Although the interaction seemed too weak to be studied in detail, recently, [Ru(phen)2
(dppz)]2+ was used to collect information on the binding sites to i-motif structures. IR tran-
sient spectroscopy made it possible to distinguish the presence of different bases in loops (as
was shown for the human telomeric sequence), demonstrating that this archetype species,
together with advanced spectroscopic techniques, has a great potential for identifying
binding for biologically-relevant sequences [145,146].



Appl. Sci. 2021, 11, 3038 13 of 22

The electronic effect becomes even more pronounced by making changes to the dppz
ligand. Conjugation with an active redox fragment was able to activate photoinduced
intramolecular electron transfer processes that led to the quenching of luminescence (e.g.,
Ru-qdppz and Ru-qdpq, see Figure 6). An external redox input (chemical or electrochemi-
cal) could modify the active redox fragment and restore the light-switch effect. This was
the case, for example, with the quinone/hydroquinone pair. The former was, in fact, able
to switch off the luminescence through a process of oxidative electron transfer involv-
ing the 3MLCT state characteristic of Ru-dppz. Electrochemical or chemical reduction of
the quinone fragment restores luminescence, thus allowing dual-input operation of the
molecular probe [121,123].

Figure 6. Molecular structure of Ru-qdppz and Ru-qdpq.

In general, the low luminescence quantum yield and short excited-state lifetimes led
to less interest in ruthenium dppz complexes carrying the tridentate ligand tpy (tpy =
2,2′:6′,2′′-terpyridyl) than in complexes based on bipyridine and phenanthroline ligands,
despite the fact that the absence of a metal stereocenter eliminated the need to separate
racemic mixtures typical of tris-bidentate systems.

However, it is important to emphasize that, when designing a system capable of
targeting DNA in vivo, not only is the efficiency of the luminescence processes to be
important, but also the range of emission, which must overlap with the optical therapeutic
window, as much as possible.

The [Ru(tpy)2]2+ complex (tpy = 2,2′:6′,2′′-terpyridine), for example, is characterized
by a short excited state and a low quantum yield, making it, in principle, unsuitable for
photobiological applications [147,148].

However, it is possible to modulate the properties of this family of complexes by
operating substitutions on the terpyridine ligands [149].

Turro et al. reported that the [Ru(tpy)(pydppz)]2+ species, based on a Ru(II)-terpyridine
fragment and a tridentate dppz derivative known as pydppz (3-(pyrid-2′-yl)dipyrido-
[3,2-a:2′,3′-c]phenazine), is capable of intercalating into DNA and behaving as a light-
switch [149]. The photophysical properties of this complex, characterized by a weak
emission centered at 698 nm in acetonitrile (τ = 5.4 ns and ϕ = 2.1 × 10−4), although
more interesting than the model species [Ru(tpy)2]2+, are not such as to warrant its use for
photobiological applications.

Starting with these bases, and since it is known that (i) with the same ligands, Os(II)
polypyridine complexes exhibit excited states with significantly lower energy than that
of the analogous Ru(II) compounds, and that (ii) osmium compounds with tridentate
ligands such as terpyridine possess excited states with a longer lifetime, the complex
[Os(tpy)(pydppz)]2+, shown in Figure 7, was synthesized. This new species of Os(II)
exhibits an absorption spectrum extending to 800 nm. Its emission characterized in aprotic
organic solvent, by relatively high quantum yields and lifetimes in the order of hundreds of
ns, is centered at 800 nm, and the complex represents the first example of an [Os(tpy)2]-like
species capable of intercalating into the DNA [91]. Moreover, it is also interesting to note
that, despite the structural and chemical variation, it behaves as a true DNA OFF–ON light
switch, like the analogous [Os(phen)2(dppz)]2+ [150–154].
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Figure 7. Molecular structure of [M(tpy)(pydppz)]2+.

3.5. Few Examples of Applications: Cellular Imaging, Photodynamic Therapy (PDT), and Sensing

Studies carried out on cells, including cytoetric and imaging studies [155], showed
that cellular uptake is generally a function of the integrity of the cell membrane and the
nuclear membrane [156].

Species based on dppz were studied from a photophysical point of view in a variety
of solvents, in the presence and absence of DNA [157,158]. Studies were also carried out
on systems embedded in phospholipid vesicles [159,160], and in general, it was confirmed
in the biological environment that these properties of Ru(II)-based complexes were highly
dependent on the environment [161]. Recently, [Ru(bpy)2(dppz)]2+ was studied for the
first time in cells, using localized pump-probe spectroscopy, showing that the ultrafast
dynamics of this species is a function of the position where the complex was internalized.
The results obtained on a sample of fixed HepG2 cells clearly showed that it was necessary
to have a good understanding of the dynamics of photoactive complexes in the actual target
environment of the drug, so that the properties of the photodrug could be unambiguously
correlated with its in vitro activity.

The DNA light-switching effect of the Ru-dppz complexes offers potential for use in
fluorescent cellular imaging, particularly for nuclear staining with high-density DNA.

One of the key parameters for the use of these species at the cellular level is to optimize
the cellular uptake process, especially, the crossing of the nuclear membrane [162].

In particular, research by Professor Barton′s group showed that a key parameter was
the level of lipophilicity of the Ru-dppz photo-switch derivative obtained using different
accessory ligands (bpy, phen, CO2Et-bpy, . . . ) [163–165]. However, this did not constrain
absorption in the nuclear zone.

For example, in the case of the [Ru(DIP)2(dppz)]2+ complex, confocal microscopy
images of HeLa cells showed that this species is able to localize in the mitochondria or in
the endoplasmic reticulum region, but not in the nuclear one [149].

When the lipophilicity of Ru-dppz complexes was modulated by the use of aliphatic
chains on the ancillary ligands, cell imaging of fixed CHO-K1 cells revealed that the less
lipophilic complex was preferentially localized within the nucleus, whereas, when the
degree of lipophilicity became more pronounced, the light-switch essentially localised in
the cell membrane. It was clear therefore that in a complex system such as the cellular one,
it was difficult to find a univocal behavior, but the structural properties of these complexes
must be dosed appropriately in order to convey them univocally [166–168].

One way to achieve this was to conjugate Ru-dppz like complexes with a nuclear
targeting fragment such as the peptide D-octaarginine (D-R8) or the tetrapeptide RrRK, in
which case nuclear localization was facilitated [124,125].

It is known that one of the key steps to increase the efficiency of the photosensitizers
in DNA photocleavage is to bind, more or less strongly, to the DNA. Therefore, the use of
intercalators was particularly studied in the field of PDT. However, [Ru(bpy)2(dppz)]2+

showed negligible photocytotoxicity since, despite its high affinity for DNA, the singlet O2
production efficiency was very low [169].
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In order to intervene in this direction and improve the photosensitizing properties of
Ru-dppz derivatives, Gasser designed a series of derivatives containing functional subunits
on the dppz ligand [170,171], by maintaining the affinity for DNA, on the one hand but
improving the photocytotoxicity values as PDT agents (improving the performance of the
3MLCT state), on the other hand.

The use of the dinuclear [Ru(bpy)2tpphzRu(bpy)2]4+ and [Ru(phen)2tpphzRu(phen)2]4+

molecular complexes as multifunctional biological imaging agent for DNA was reported.
In particular, the efficiency of these species to “switch -on” nuclear DNA of living cells with-
out requiring prior membrane permeabilization was demonstrated for both luminescence
and transition electron microscopy [172].

Recently, a new derivative of [Ru(bpy)2(dppz)], demonstrating a dramatic improve-
ment in photobiological activity by introducing a pyrenyl substituent, was proposed [173].
The studies demonstrated that the population of an LC triplet state was much more perfor-
mant in terms of singlet oxygen yield and potentially usable in clinical PDT applications.

In addition to DNA, Ru-dppz-type complexes are able to interact with proteins. One
example is the heteroleptic ruthenium species based on the ligands 7,8-dimethyl dppz,
1,10-phenanthroline-4-carboxamide, and 5,6-dimethyl-1,10-phenanthroline [174], which is
able to bind to acetylcholinesterase (AChE), exhibiting the typical light-switch behavior
when binding to the hydrophobic domains of the protein. A further example is the more
classic [Ru(bpy)2dppz]2+, which is not photoluminescent in aqueous solution, even in the
presence of monomeric amyloid beta (Aβ) (a peptide fragment containing 36–43 amino
acids.) Monomeric Aβ self-assembles to form aggregates (amyloid fibrils) that are crucially
involved in Alzheimer′s disease. In the presence of aggregates of Aβ fibrils, the photolu-
minescence of [Ru(bpy)2dppz]2+ is recovered [175,176]. A further interesting application
arises from the modification of Ru-dppz complexes by introducing an aptamer fragment
into the system. Although the aptamers are single-stranded DNA oligonucleotides, they
are able to fold into three-dimensional structures through base pairing. This process leads
to protection of the dppz system from the solvent, which results in luminescence. More
specifically, the system is applicable by exploiting the combination of the light switch
effect with the selective ability of aptamers towards specific analytes. Recognition by the
aptamers of a specific analyte (e.g., immunoglobulin E (IgM)) [177], abrin toxin [178], and
ATP [179,180]) leads to the unfolding of its structure and the exposure of the dppz complex
to the aqueous solvent, with consequent extinction of the luminescence.

4. Conclusions

Ru-dppz type complexes were extensively designed, synthesized, and studied. The
combination of their photophysical properties and the peculiarities of the light-switch
effect on DNA makes them powerful tools for analyzing the behavior of molecules of great
biological impact. Despite the fact that the first example in this direction appeared more
than 30 years ago, derivatives of Ru-dppz complexes are still of very wide interest, thanks
to the possibility of crossing their characteristic and peculiar specificity towards biological
material with a sharp and modulable light response. Over time, we progressed from
simple interaction studies with DNA or specific sequences in vitro to direct applications, to
investigate the selectivity of these molecules for different DNA structures, including B-form,
Z-form, duplex, triplex, G-quadruplex, defective DNA, etc. Research in this field, together
with the expansion and emergence of increasingly high-performance spectroscopic and
microscopic techniques, continues to revive the applications of these apparently simple,
but highly versatile molecular derivatives, in fields as diverse as cell nuclei imaging,
photoactivatable, and DNA-targeted anticancer drugs, nucleic acid sequencing, protein
aggregate recognition, and virus labelling. In only thirty years, there has been an ever-
increasing number of applications that seem to be constrained only by the growth of
experimental techniques of investigation and the imagination of researchers.
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