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Abstract: The key purpose of this paper is to propose a mono-slip-dependent continuum dislocation
method for matrix-dominated composite structure (MDCS) analysis. The methodology focuses
on dissipation energy theories utilizing a continuum dislocation method (CDM) integrated with
small-strain kinematics. The mathematical modeling of the CDM comprises active mono-slip system
formulations, thermodynamic dislocation analysis (TDA), free energy dissipation analysis, and the
progression of dislocations. Furthermore, zero and non-zero energy dissipation due to dislocation
progression is formulated by using an energy minimization technique with variational calculus. The
numerical analysis, performed with Wolfram Mathematica©, is presented using zero and non-zero
energy dissipation energy formulations. The outcomes indicate that the formulated approach can be
effective for obtaining optimal analysis results for matrix-dominated composite (MDC) materials
with a mono-slip system. In sum, this study confirms the feasibility of using the proposed approach
to investigate MDCS with inclusions.

Keywords: mono-slip; MDCS; CDM; distortion; active slip; TDA; MDC

1. Introduction

Composite materials are used as structural elements in a wide variety of applications,
including space shuttles, marine vehicles, automobiles, and construction sectors. These
materials are widely applied for their remarkable in-plane stiffness, bending stiffness,
ultimate strength, light weight, and good thermal expansion coefficient during deforma-
tion [1–4]. In a matrix-dominated composite structure (MDCS), permanent deformation
can be expressed by the limit of dislocation nucleation and the dislocation energy [5]. The
nucleation and energy of the dislocation create internal structural irregularities. These
internal irregularities in a matrix-dominated composite (MDC) structural arrangement
have been analyzed in the context of intermittent crystallographic dislocations. This means
that the created nucleation of dislocations can be grouped to reduce the energy dissipation
of the crystals. The new initiation of dislocation is principally the result of the dissipation
of crystal energy. Therefore, the initiation of dislocation in the MCDS activates the disloca-
tion energy. Hence, the dislocation energy impedes plastic flow through the dissipation
of crystal energy. Thus, all microstructural analyses related to permanent deformation
should follow the rules of thermodynamics [6]. This can be a practical method to study
MCDS related to poly-dimensional dislocation propagation. Furthermore, experimental
investigations have indicated that dislocations in a strained crystal do not act in a fully
random arrangement. Along with the above limitation, the distorted MDCS does not have
a consistent dislocation density from one end to the other in the inner structure of the unit
cell [7–12].

Therefore, in a micromechanical approach, discrete dislocation analysis is not sufficient
to describe the individual and/or small number of dislocations in MDCS. This method has
difficulty defining strains along the dislocation line inside the dislocation core [13–17]. In

Appl. Sci. 2021, 11, 3135. https://doi.org/10.3390/app11073135 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11073135
https://doi.org/10.3390/app11073135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11073135
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/7/3135?type=check_update&version=2


Appl. Sci. 2021, 11, 3135 2 of 18

contrast to the micromechanical method, the typical characteristics of materials at the macro
level can be accurately investigated through the continuum principle. With this concept
in mind, the continuum mechanics approach, which aims to include the size effect of the
dislocation flow through a strain gradient (nonlocal) component by combining classical
and local representations, is based on a massive number of continuous dislocations [18–22].
Accordingly, there is a huge gap between the micro- and macroscales. Bridging the two
extremes requires an appropriate meso-model, namely, continuum dislocation formulations.
The formulations of continuum dislocation include the length scale of the material, and
hence, the size effects can be accounted for in the mesoscale model [23–27]. The length
scale of the material in a deformed body becomes substantial in the mechanics of the
material. This raises a significant question, namely, the degree to which the overall macro-
level mechanical properties (strength, hardness, etc.) are determined by the collective
parametric length scale associated with the distinctive microstructural magnitude of the
material [18,28–31].

In this study, we performed an analysis of free energy in unit cells (UCs) that were
subjected to dislocation in an active mono-slip system. In the proposed approach, energy
is incorporated into the structure caused by geometrically necessary dislocations (GNDs)
to determine the material parametric length [6,32–34]. The composite material is assumed
to comprise a bi-periodic array of unit cells. Additionally, the unit cell is directly isotropic,
and the matrix domination is higher, contains free inclusions without dislocation, and is
exposed to normal shear stress through kinematic boundary conditions. Many theories in
micromechanical analysis use a higher-order PDE approach. This method can be physi-
cally applied to the analysis of energy in the material structure, the linear increase in the
microstructural energy, and the standardized value of the density of dislocation (DOD).
However, the energy increases to infinity as the DOD approaches a certain critical satura-
tion stage [29,35,36]. Saturated forms of DOD have constant material parametric values
and do not allow for the dense packing of trapped dislocation potential; these outcomes
are due to the discrete characteristics of the unit cell. Thus, the energy in the proposed
formulation has an internal length scale to provide a macroscopically apparent size.

Collectively, the above-mentioned works present the benefits and weaknesses of
different methods of MDCM. From the above review, we observed that there is a substantial
gap in the understanding of derivations of continuum dislocation constituents, such as slip
formulations, thermodynamic relationships, free energy determinations, threshold values,
and the evolution of dislocation. In this regard, our study plays a key role in filling the gap
in matrix-dominated composite structure analysis using variational calculus.

The key aim of this work is to propose a simple approach based on continuum dislo-
cation theory to analyze the plastic phenomenon of MDCM exposed to shear. Derivations
of the continuum dislocation components, including slip formulation, thermodynamic
relationships, free energy analysis, threshold values, and the progression of dislocation, are
described. In general, dissipation energy is analyzed. Furthermore, the non-dissipation
forms of the equations are evaluated using variational calculus. The energy minimization
method is applied to the above two formulations. Finally, the capability of the proposed
approach is demonstrated through the homogenization principle with constituents that
exhibit different mechanical behaviors.

2. Continuum Dislocation Formulation
2.1. Kinematics

Figure 1 shows the simplest representation of the MDCS unit cell to simplify the
analytical formulations. The arrangement in Figure 1 is the Cartesian coordinate system,
with x = (x1, x2, x3) and y = (y1, y2, y3), where xi denotes the local system of coordinates
to define the microscopic unit cell, and yi represents the global coordinates to designate
the unit cell. For a unit cell with a size of 2ξi and 2wi, we select the micro-coordinates
xi defined by xi(2ξi, 2wi). The 2D MDCS comprises rectangular elastic inclusions in a
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plastically deformed matrix. The inclusions can be established in a bi-hexagonal periodic
array, as presented in Figure 1.
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Figure 1. 2D simplest representation of the MDCS unit cell.

Cleveringa et al. [28,29] analyzed MDCS by applying discrete dislocation to validate
the precision of the modern continuum dislocation concept in reproducing size-dependent
outcomes. Two forms of inclusion are considered, which have an identical fractional area of
0.2 but dissimilar geometrical arrangements of the strengthening material phase. The main
materials are square geometrical inclusions segmented by the matrix, and the inclusions
are rectangular and separated by matrix materials. As a consequence of the discontinuous
structure of the unit cells, the analysis can be implemented discretely, in which the width
is represented by 2w and the height is represented by 2ξ

(
w/ξ =

√
3
)

, as illustrated in
Figure 2. The inclusions have a size of 2w f × 2ξ f , with ξ f = w f = 0.416ξ for square
geometry and ξ f = 2w f = 0.588ξ for quadrangular geometry. Shearing occurs in the
x1-direction; thus, boundary conditions (BCs) can be formulated as follows:

u1(t) = ±ξΓ, u2(t) = 0 along x2 = ±ξ (1)

where Γ(t) denotes the shear strain as a function of time.
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Figure 2. Active mono-slip system with a unit cell (UC) of ξ thickness.

2.2. Mono-Slip Analysis in the Continuum Formulation

Here, we show that the lateral boundary condition in the free form can be investigated
analytically. Additionally, clamped micro-BCs of the top and bottom sections of the unit
cell can be formulated using the standard analytical model, where, based on the principle
of plasticity, the overall displacement field in the gradient u signifies the total displacement
field in a compatible formulation. The dislocation loop is singular and positioned on the
single-slip plane, and the Burgers vector points in the right direction toward the path of the
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slip. Based on the above concept, the inverse plastic distortion on the loop is formulated as
Equation (2).

− Υij = binjδ(s) (2)

where bi denotes the Burgers vector, δS is the cut surface lying on the slip plane, and nj is
the vector perpendicular to the plane of the slip.

This inverse plastic distortion describes the creation of dislocation by cutting a perfect
crystal along the surface S and shifting the structure beneath this surface by one Burgers
vector [37]. In general, the summation of the reversible and irreversible distortion fields
contributes to the total distortion result:

Υ = Υe + Υp (3)

where Υe and Υp describe the reversible and irreversible distortions in the material system.
Due to the existence of boundary lines between dislocations, the incompatibly of the two
phases are represented by the GND [38]. A huge number of loops pass through the slip
planes, and the average distance between them is considerably smaller than the material
characteristic scale size of the standard piece; we go one step further and propose a unique
formulation for the plastic distortions created by this slip system, expressed as

Υij = Υ(x)simj (4)

where m represents a normal vector that points toward the slip direction, and s denotes the
slip path. The analytical analysis fundamentally depends on the continuum dislocation
principle of unit cell plasticity owing to particular situations in which shape variations
are insignificant and the response of the material is rate independent [39]. The governing
equations can be abridged by employing tensor analysis in a coordinate system. The plastic
strain, represented by ε

p
ij, and plastic rotations, designated by Ωij, are the symmetric and

anti-symmetric parts of the irreversible deformations:

ε
p
ij =

(
Υij + Υji

)
/2, Ωij =

(
Υij − Υji

)
/2 (5)

The strains in the reversible phase can be estimated as the differences between the
overall incompatible strains and the irreversible strain state. Then, the reversible strain
tensors are

εe
ij = 1/2

(
uij + uji

)
− ε

p
ij (6)

The fundamentals of the continuum dislocation principle of unit cell plasticity applied
in this work are supported by Fleck, whose described the concept of lattice incompatibil-
ity [40]. The plastic distortion field Υe can be obtained by the sum of its symmetric strain
and anti-symmetric rotation fields,

Υe = εe + Ωe (7)

where εe denotes elastic strain and Ωe is the reversible torsional strain. We assumed that the
elasticity is linear, disregarding the ‘shape nonlinearity’ portion. The fundamental concept
of the elastic deformation of the UC is not harmonious with regular distortion, which
is obtained through a continuously differentiable displacement component. However,
reversible distortion is sufficient to represent geometrically necessary dislocations [8]. In
this framework, the number of dislocations/unit area can be described as

ρ = 1/b
∣∣∣εijklΥ,kmlnj

∣∣∣ (8)

where ρ denotes the number of dislocations/unit area. In this model, the theory addressing
the incompatibility of the distortion is incorporated into the constitutive formulation
through the influence of strain hardening. Meanwhile, the lattice incompatibility can be
described by a gradient of the reversible or irreversible distortion field, and the material
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parametric length scale analysis can be performed on the basis of the one-dimensional
principle. Through the above concepts, a natural evaluation of incompatibility can be
investigated with the Nye dislocation density principle [32]. Nye presented an imperative
characteristic of dislocations, so the dislocation density tensor is represented by

αij = ε jklΥil,k (9)

An unavoidable tensor αij indicates the presence of GND. The dislocation in the uni-
lateral loop is named the density of dislocation (DOD), in which the geometrical meaning
of the tensor is denoted by a random microscopic outer unit normal vector (da) and τ, the
tangent to the dislocation line passing over the surface, so the Burgers vector is expressed as

b = Υijnjda (10)

Equation (10) can be used to calculate the total number of dislocations in the same
direction. Therefore, the net Burgers vector b in any section is constrained by a locked
graph. On the basis of the continuum dislocation principle, we can deduce the magnitude
from the Burgers vector in the form of resultants for overall dislocations that cross the
surface da. Therefore, in the deformation of the mono-slip MDCS, the dislocation density
is described as follows:

αijnj = piε jklΥ,kmlnj (11)

In this work, an active mono-slip in the unit cell is assumed in the analysis of the state
of the in-plane strain. The fields of the strain tensors are (refer to Figure 2)

ε11 = 0, ε12 = ε21 =
1
2

u1,2, ε22 = u2,2 (12)

Accordingly, the resultant Burgers vector of the overall lines of dislocation intersects
with the area and is normal to the x3-axis, and it is also in the same direction as the slip s
and the scalar dislocation density. If the shear strain is necessarily small, then the unit cell
elastically deforms with the following displacement:

u1 = Γx2, u2 = 0 (13)

We can use the direction of slips that are normal to the x3-axis and tilted with a given
angle away from the x2-axis. The lines of dislocation are in the same direction as the x3-axis.
An active single-slip system of distortion in the plastic state is given by

Υij = Υsimj (14a)

where s = (cos ϕ, sin ϕ, 0) denotes the slip direction, and m = (− sin ϕ, cos ϕ, 0) rep-
resents the vector that is normal to the mono-slip. As Υ depends only on x2, there
can be two branches of the dislocation density tensor for Nye’s formulation, specifi-
cally, α13 = Υ,2 cos ϕ sin ϕ and α23 = Υ,2 sin2 ϕ. We assume that Υ depends only on
x2 : Υ = Υ(x2). Due to the given boundary, the dislocation is prevented from passing
x2 = 0 and x2 = ξ. Therefore,

Υ(0) = Υ(ξ) = 0 (14b)

2.3. Thermodynamic Principles

To formulate the MDCS in Figure 1, we can apply free energy theory to investigate the
UCs with the required accuracy. This postulation suggests that we can acquire identical
nominal material properties since an ideal unrestrained and free MDCS uses identical
microstructures for the loaded and constrained unit cells. Hereafter, we can perform the
micromechanical calculations since a composite material is composed of a vast number
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of UCs. For a reversible and tough material, the total amount of energy is the same as the
time derivative of free energy plus the power stored in all of the UCs, which is

∏ =
d
dt

∫
R

Θ
(
εij, Υij, αij

)
dx + Φ ≤ 0 (15)

The required extent of power in any solid material can be measured from the scheme
of energy. For this study, the power is formulated as

Φ =
∫

∂Υ

(
σijnj

.
ui + σijknk

.
Υij

)
da (16)

where Φ is the accumulated power, and σ represents stress. We infer that the stresses
expressed in terms of higher-order calculus are included under this theory because the
gradient of irreversible distortion is based on the density of the stored energy. Thus,
we can transform the surface integral into a volume integral by Gauss’s principle, and
the mathematical requirement can be satisfied for an arbitrary R. At this juncture, the
combination of the first and second principles of thermodynamics can be defined by

ζij
.
uij + λijΥij + ζijk

.
Υij,k ≥ 0 (17)

This confirms that ζij and ζijk denote the normal and higher-order stresses, respectively,
which cause energy dissipation through the heating of the crystal. Tensor λij describes a
non-uniform flow of heat; it assumes the same meaning as in the frictional stress formula.
Thus, λij and ζijk denote the heat caused by homogeneous and inhomogeneous irreversible
distortions, respectively.

Q = Q
( .

uij,
.
Υij,

.
Υij,k

)
(18)

The tensors described as ζij, λij and ζijk for irreversible progressions are related to
.
uij, Υij and

.
Υij,k and described by the next formulation.

ζij = Q,
.
uij

, λij = Q
,

.
Υij

, ζijk = Q
,

.
Υij,k

(19)

Consequently, each model of continuum dislocations can be formulated by the two
energy functions, namely, free energy and potentials of dissipation. In the isothermal
formulation, we require the free energy density to be contingent on the elastic state εe

ij. The
free energy in terms of εij, Υij & αij is given as follows:

Θ
(
εij, Υij, αij

)
=

1
2
<ijklε

e
ijε

e
kl + Θm

(
αij
)

(20)

where Θm
(
αij
)

denotes the energy of the dislocation network of the system. When ρ

increases, there must be some threshold value, ρs, after which new dislocation structures
grow, including sub-grains and cell structures or new grain boundaries. Hence, additional
parameters must come into play. If we preclude the networked structure of dislocation from
surfacing, the dislocation network energy approaches infinity as ρ→ ρs [41]. Then, the
dislocation network energy Θm

(
αij
)

for the UC distortion in the active mono-slip system
can be evaluated as follows:

Θm = K ∗ G12 ∗ ln(1− ρ/ρs)
−1 (21a)

where K denotes a material constant, G12 represents the modulus of shear, b is the Burgers
vector, and ρs denotes the saturated dislocation density (SDD). The GND energy compo-
nents imply two important details. First, the network of dislocation energy is directly
proportional to the DOD when the dislocation is small. Second, the existing SDD, which
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indicates the nearby grouping of dislocation, can have identical signs to those of the newly
created permissible dislocation in the unit cell. Assuming that the material is isotropic and
contains inclusions, for simplicity, the elastic behavior of the unit cell in both the matrix
and fiber materials is considered isotropic [18]. The modulus of elasticity of the matrix can
be formulated as

< = 2G12

(
I′ − ν

1− 2ν
I⊗ I

)
(21b)

where G12 is the shear modulus, ν is Poisson’s ratio, I represents a quadratic-order identity
tensor, and I’ denotes a polynomial-order identity tensor. This is also true for the fiber, but
the shear modulus changes to G∗12. The GND term [41] ensures a direct increase in energy
from a low density of dislocation (ρ). Then, energy approaches infinity as the density of
dislocation reaches the saturated level, symbolized as (ρs). Therefore, an energetic barrier
is provided to prevent over-saturation. For the dissipation potential, numerous models
can be considered. The simplest model assumes that the dissipation is zero. In this case,
all tensors (ζij, λij and ζijk) vanish, and the functions uij and Υij can be found from energy
minimization. From the above point of view, the total energy functional is represented by
the following:

∏[u1, u2, Υ] = wL

〈 1
2<(u2,2)

2 + 1
2 G12(u1,2 − Υ cos 2ϕ)2 + 1

4 G12Υ2 sin2 2ϕ

+G12

(
u2,2 − 1

2 Υ sin 2ϕ
)2

+ G12k ∗ ln
(

1− |Υ,y||sin ϕ|
bρ

)−1

〉
a=ξ

(21c)

where 〈•〉 =
a∫

0
•dx2.

Based on the continuum dislocations, the main constitutive and balance equation
is defined as a basic formula for the active mono-slip equation. The first visco-plastic
framework can be translated into a purely elastoplastic context, for which analytical
equations can be determined through the shear analysis. The displacement field in a
unit cell and the mean shear distortions can be measured by the continuum dislocation
approach. To evaluate this displacement, the function of the overall energy is simplified so
that it depends on a functional Υ(x2) only. First, the function Υ(x2) is defined, and then
variational calculus is applied to Equation (21a) with respect to u1 and u2 to determine the
strain in the analysis of shear (shear strain) deformation.{

u1,22 = Υ,2 cos 2ϕ
<u2,22 + 2G12u2,22 = G12Υ,2 sin 2ϕ

}
(21d)

As previously stated, using Equation (22a) as a boundary condition, we can apply
simple integration to Equation (21a) to formulate the displacement fields and shear strain.
Then, we can obtain a general equation for the continuum approach to describe the analo-
gous shear strain component in the defined boundary conditions [42].

Υ(0) = Υ(ξ) = 0 (22a)

Subsequently, we can apply terms to divide the displacement into u1 and u2 com-
ponents. The effect of the two components of displacement results in shear strain on the
unit cell and a mesoscopic internal parametric length created from the overall heteroge-
neous internal strain component. Thus, in a small-strain calculation, the two displacement
components can be directly derived because the small-strain equation is linear. In the unit
cell, the mesoscopic internal parametric length of shear strain can be stated in terms of the
DOD pattern. The shear strain varies with a length scale equal to the DOD formulation,
designated by αij. Integrating (22) and using the boundary conditions (22a) results in the
following equation: {

u1,2 = Γ + Υ cos 2ϕ− Υave cos 2ϕ
u2,2 = Υk cos 2ϕ− kΥave cos 2ϕ

}
(22b)



Appl. Sci. 2021, 11, 3135 8 of 18

where K = G12/<+ 2G12, and Υave = 1
ξ

ξ∫
0
•dx2. By substituting (22b) into (21a), we can

minimize the functional formulation in the form of a distortion variable (Υ).

∏[Υ] = wL

〈
G12

 1
2 Υ2 sin2 2ϕ− 1

2 κΥ2 sin2 2ϕ + 1
2 κ(Υave)2 sin2 2ϕ

+ 1
2 (Γ− Υave cos 2ϕ)2 + k

(
|Υ,2||sin ϕ|(bρ)−1 + 1

2

(
Υ,2 sin ϕ(bρ)−1

)2
) 〉

a=ξ

(22c)

The last part of (21a) that contains the dislocation density variable can be simplified:

ln
(

1− |Υ,2||sin ϕ|
bρ

)−1
= |Υ,2||sin ϕ|(bρ)−1 +

1
2

(
Υ,2 sin ϕ(bρ)−1

)2
(22d)

2.3.1. Zero Energy Dissipation Case

In this work, the energy dissipation rate increases when minimizing the volume
fraction of the fiber and its modulus. The approach that minimizes the volume fraction
increases the dissipation energy to the maximum level. For complete slip, the increase in
dissipation energy is directly proportional to the change in shear stress. The formulation
for active mono-slip is based on the flow rule; thus, the dissipation potential is described as

Q = K
∣∣∣ .
Υ
∣∣∣ (23)

In the zero-resistance case, the formulation of plastic strain requires the simplification
of the overall energy. Subsequently, U will be graphically convex with respect to Υ and Υ,2
in the variational formulation, which should provide accurate results [33].

Formulations

To simplify the energy functional equation, some dimensionless quantities are intro-
duced. Continuum dislocation formulations in a single-slip mechanism require a crucial
formula that includes the balance and the evolution. Both have a common type of material,
geometry, and parametric length. We aimed to develop an analytical model that shows
distinctive features of the theory, independent of a specific selection of material parameters.
Similarly, we performed a dimensionless analysis on the two components to explore how
definite integrations of the parameters affect the outcome predicted by this method. The
dimensionless variables include the elevation of the UC, which can be considered compa-
rable to a domain elevation described by x2 and is denoted by w. The newly introduced
variable x2 varies in the range

(
0, ξ
)
. By using the newly introduced variables, the energy

functional is formulated as follows:

E = bρs ∏(wLG12)
−1, x2 = x2bρs, ξ = ξbρs (24)

The energy functional equation expands into the following formula:

E[Υ] =

〈
1
2 Υ2 sin2 2ϕ− 1

2 κΥ2 sin2 2ϕ + 1
2 κ(Υave)2 sin2 2ϕ

+ 1
2 (Γ− Υave cos 2ϕ)2 + k|Υ′||sin ϕ|+ 1

2 Υ
′2 sin2 ϕ

〉
a=ξ

(25)

In Equation (25), the differentiation is performed with respect to x2, and for simplicity,
the bars over x2 and ξ are removed. To determine the threshold value, Equation (25) is
minimized by incorporating the following boundary conditions:

Υ(0) = Υ(ξ) = 0 (26)

A threshold value exists in the variational problem of (25) when the shear strain is less
than a set value; in this case, there is no dislocation nucleation, which implies that the value
of the plastic shear strain is equal to zero. Near the initial value of plasticity, the density of
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dislocation should be small, so we can remove the last term of the equation. Moreover, the
boundary layer width approaches zero as the plastic shear strain tends toward a threshold
value. This provides the key to obtaining the value of the threshold through the minimizing
sequence of Equation (27):

Υ =

{
Υmx2

ε f or x2 ∈ (0, ε), Υm f or x2 ∈ (ε, ξ − ε),
Υm
ε (ξ − x2) f or x2 ∈ (ξ − ε, ξ)

}
(27)

where Υm is a constant value, and ε is a new infinite length that moves toward zero as
the plastic shear strain tends toward a threshold value. Substituting (27) into the energy
functional (25) by removing the last term and ignoring small terms of order ε and higher
results in the following expression of the energy functional:

E[Υm] =
1
2

ξ
[
Γ2 − 2ΓΥm cos 2ϕ + Υ2

m cos2 2ϕ + Υ2 sin2 2ϕ
]
+ 2k|Υ||sin ϕ| (28)

Simple analysis shows that to achieve a minimum value in (28), the minimized plastic
distortion is different from zero if, and only if,

Γ > Γen = 2k|sin ϕ|
(

ξ
∣∣∣1− 2 sin2 2ϕ

∣∣∣)−1
(29a)

Dislocations are not nucleated when deformation achieves. Υm = 0. Recall that the
sign of Υm relies on the inclination of ϕ. Therefore, the angle ϕ is positive if 00 ≤ ϕ ≤ π/4
and negative if π/4 ≤ ϕ ≤ π/2. With the size effect of the original length expressed in
terms of ξ, the energy threshold value can be formulated as

Γen = 2k|sin ϕ|
(

ξbρs

∣∣∣1− 2 sin2 2ϕ
∣∣∣)−1

(29b)

The threshold value deviates from the well-known Hall–Petch relationship. The term
can be explained by the following condition: the deviation in (26) is through slip fields,
which does not allow dislocations to penetrate grain boundaries. Boundary conditions in
the grain boundaries cause Υ′ to change its direction in the range (0, ξ). In 1-D dislocation
theory, the analysis of the previous formulations suggests that the minimizer can be found
from the following:

Υ =

{
Υ1x2 f or x2 ∈ (0, `), Υm f or x2 ∈ (`, ξ − `),
Υ1(ξ − x2) f or x2 ∈ (ξ − `, ξ)

}
(30)

where Υm is a constant value, and ` is an unknown parametric length, with 0 ≤ ` ≤
ξ/2 and Υ1(`) = Υm. The total energy functional is

E = 2
〈

1
2 Υ2

1 sin2 2ϕ− 1
2 kΥ2

1 sin2 2ϕ + k|Υ,2||sin ϕ|+ 1
2 Υ
′2 sin2 ϕ

〉
+ 1

2 Υ2
1 sin2 2ϕ(h− 2l)− 1

2 kΥ2
1 sin2 2ϕ(h− 2l)

+ 1
2 h
[
kΥave sin2 2ϕ + Γ2 − 2ΓΥave cos 2ϕ + (Υave)2 cos2 2ϕ

]
Where 〈•〉 =

l∫
0
• dx2

(31)

From the above analysis, we obtained the optimal method to begin averaging the
appropriate variable of plastic distortion, aiming to define other variables to examine
the evolution of dislocations and other plasticity-related factors. More importantly, we
discovered that the average plastic distortion equation strongly suggests the micro-level
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kinematics in the averaging formulas, which should be a physically realistic representation
of the incorporated length scale.

Υave =
1
ξ

2

 `∫
0

Υ1dx2 + (ξ − 2`)Υm

 (32)

To generalize the concept, we can vary the energy function Equation (31) Υ1. Then,
we can perform integration by parts:

Υave cos2 2ϕ + kΥave sin2 2ϕ + Υl sin2 2ϕ− kΥl sin2 2ϕ = kΥ′′1 sin2 ϕ + Γ cos 2ϕ (33a)

To simplify our modeling, it is better to subject Υ1(y) to boundary conditions:

Υ1(0) = 0, Υ1(ξ) = Υm (33b)

Next, (31) is manipulated using variation with respect to `, which establishes an
additional boundary condition.

y = `, Υ1,2(`) = 0 (33c)

We can also use the variation formulation again on the energy functional Equation
(33) with respect to Υm, followed by integration by parts to simplify it.

2k
∣∣signΥ′1

∣∣|sin ϕ|+ Υave cos2 2ϕ + κΥave sin2 2ϕ = Γ cos 2ϕ− Υm sin2 2ϕ + kΥm sin2 2ϕ(h− 2l) (34)

The generation of the described evolution equation is based mainly on an energy
minimization formula in the zero-energy dissipation case. The microstructural evolution
equations introduce two modeling functions: the average distortion and the average
parametric length of the material for a dislocation density. First, by assigning symbols to
several components of the equation, we can reduce Equation (33) as follows:

ω1 = k sin2 ϕ,
ω2 = (1− k) sin2 2ϕ,
ω3 = −Υave(cos2 2ϕ + κ sin2 2ϕ

)
+ Γ cos 2ϕ

 (35a)

Then, variational Equation (33) can be rewritten as shown below:

−ω1Υl ,x2x2 + ω2Υl = ω3 (35b)

From the above reduced variational Equation (35b), it is possible to find the character-
istic equation as follows:

−ω1r2 + ω2 = 0, r = 2
√
(1− κ)(κ)−1 cos ϕ = ±η (35c)

Therefore, the homogeneous formula in the general equation reads

Υc f
1 = A cosh ηx2 + Bsinhηx2 (35d)

After that, by using Equation (35c), we search for the specific equation in the heteroge-
neous formula in the following form:

Υ1p = ωy + D (35e)

By inserting Equation (35e) into the differential equation, we obtain the following
formula:

ω2ωy + ωD = ω3 (35f)
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This implies that ω = 0, D = ω3/ω2. Based on this principle and using Equation (33)
with the boundary conditions (33a), the following equations are formulated.

Υ1p =
(

Γ cos 2ϕ− Υave cos2 2ϕ− κ ∗ Υave sin2 2ϕ
)[

(1− κ) sin2 2ϕ
]−1

(35g)

The result of the differential formula (35b) is the summation of Equations (35d,g),
formulated as Equation (35h):

Υ1 = Υc f
1 + Υ1p = A cosh ηx2 + Bsinhηx2 + Υ1p (35h)

The constants A and B in Equation (35h) can be derived from Equation (33a), and the
constant A is calculated as follows:

A = −Υ1p (35i)

For the second condition Υ′1(0) = 0,

B = −ATanhη` (35j)

Using Equation (35i,j), Equation (35h) is finalized as shown in Equation (35k):

Υ1 = Υ1p(1− cosh(ηx2) ∗ (1 + Tanh(ηl) ∗ sinh(ηx2))) 0 ≤ x2 ≤ l (35k)

In a discrete dislocation, the size effect is mostly observed in the original material
flow strength. The dependence of the hardening rate on the UC size should be less
pronounced than the predicted height in the continuum dislocation theory. The size
influence can be enhanced through the existence of the defined boundary conditions of
GNDs, which results in a fully defined interchange between the boundary layer height and
the gradient of the internal irreversible strain accumulated in the bulk form. Therefore,
to determine the parametric size, we expand the average distortion Equation (32). Using
Equations (32), (33), (35a,b), the average of Υ is expanded into the following form:

N = 2
(

lη − Tanh(ηl)
η

)
+

Cosh(ηl)− 1
Cosh(ηl)

(ξ − 2l) (36a)

Υave = Γ cos 2ϕ× N ∗
[
ξ(l − h) cos2 2ϕ +

(
κ cos2 2ϕ +

(
κ sin2 2ϕ + cos2 2ϕ

))
× N

]−1
(36b)

Υm =
(

Γ cos 2ϕ− Υave
(

κ × sin2 2ϕ + cos2 2ϕ
)

Cosh(ηl)− 1
)
∗
[
sin2 2ϕCosh(ηl)− κ sin2 2ϕCosh(ηl)

]−1
(36c)

Υ = (ξ × Γ× η(−1 + 3 cos h[lη]− cos h[(l − x2)η]− cos h[(−ξ + l + x2)η] cos 2ϕ))∗[
1

sin2 2ϕ
ξ × η × cos h[lη]−

(
κ + cos2 2ϕ

sin2 2ϕ

)
tan h[ξη/2]

]−1 (36d)

Finally, we can calculate the parametric length from the following functional equation.
The substitution of Equation (34) into (35b) yields the following equation to determine l:

2K|sin ϕ|signΥ′1 =
(

Γ cos 2ϕ− Υave
(

κ sin2 2ϕ + cos2 2ϕ
)
(ξ − 2l)

)
∗ [cosh(ηl)]−1 (36e)

All material parameters used in this numerical analysis are well-known for the
aluminum matrix. We selected these supplementary parameters for a representative
mixture of discrete dislocation and continuum dislocation theory with respect to the
yield stress for the active mono-slip. In all numerical analyses, we take ξ = 10−6m,
ξ = ξbρs = 2.5× 10−16 × ρs. Figure 3 shows the evolution of Υ(x2) for ϕ = 300, where
x2 = x2bρs.
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2.3.2. Non-Zero Energy Dissipation Case

Dislocation appears in crystals to reduce their energy. Energy dissipation analysis is
more accurate than any other method to define the material features in the plastic phase.
The displacement associated with reversible-to-irreversible reactions of the materials is
commonly linked to the accumulation of continuum dislocations. The methods can be
implemented to analyze the hysteresis energy triggered by the inclusions that create resis-
tance in the unit cell. If the dislocation motion resistance cannot be avoided, the irreversible
deformation advances as long as the yield condition is satisfied, that is, ℵ = K [37]. The
evolution of dislocation in MDCS can also be highly sensitive to the interaction between
fibers and the matrix interface. If |ℵ| < K, then Υ is fixed, the DOD is assumed to be
constant, and the unit cell is reversibly distorted. Analyzing the variational derivative of
Equation (21) yields the condition. The first case considered is ϕ < π/4.∣∣∣∣−Υ sin2 2ϕ + κΥ sin2 2ϕ− cos2 2ϕΥave + kΥave sin2 2ϕ + kΥ,22 sin2 ϕ

(
b2ρ2

s

)−1
+ Γ cos 2ϕ

∣∣∣∣ = K/G12 cos 2ϕ (37)

The distribution of dislocation also leads to an escalation in entropy related to distor-
tion. A strain energy state limits individual dislocation, which absorbs some of the plastic
flow as the DOD increases [19,32]. According to Γ, the definite time function can be used
to estimate Υ(t, x2). The key is to determine the distortion as a function of time and x2 in
its evolution state, provided Υ(0, x2) = 0 and ϕ < π/4. Since the irreversible distortion, Υ,
is primarily zero, we observe from (38) that Υ = 0 if, and only if, Γ < Γcr. Therefore, the
yield stress condition for small Υ(t, x) and Γ < Γcr becomes

− Υ sin2 2ϕ + κΥ sin2 2ϕ− cos2 2ϕΥave + kΥave sin2 2ϕ + kΥ′′ sin2 ϕ + Γ cos 2ϕ = Γcr cos 2ϕ (38)

The deviation of Γ(t) from the critical shear streamline (38) is introduced to obtain
Γ f = Γ− Γcr ⇒ Γ = Γ f + Γcr and Γ f = Υ/Υ1:

− Υ sin2 2ϕ + κΥ sin2 2ϕ− cos2 2ϕΥave = −kΥave sin2 2ϕ− kΥ′′ sin2 ϕ− Γ f cos 2ϕ (39)

The analogous problem of dissipated energy in the constrained shear resistance sug-
gests that the result of Equation (37) should be symmetric. Hence, Υ1(x2) = Υ1(ξ − x2) f or
x2 ∈ (ξ/2, ξ). The function Υ1(x2) can be obtained from Equation (38). Similarly, we can
use the boundary condition from Equation (33a). In the first case, the boundary region is
far from the dislocations because of the stated displacement. In the next case, the plastic
distortion is guided by continuity and symmetry. Based on this, Υ1 is evaluated as

Υ1 = Υ1p(1− cos h(ηx2) ∗ (1 + Tanh(ηξ/2) ∗ Tanh(ηx2)), 0 ≤ x2 ≤ ξ/2 (40a)
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Υ1p =
(

cos 2ϕ−Υave
1

(
cos2 2ϕ+ κ sin22ϕ

))
∗
[
sin2 2ϕ− κ sin22ϕ

]−1
(40b)

η =
(

4(1− κ)k−1 cos2ϕ
)1/2

(40c)

The average Υ1 is obtained as follows:

Υave
1 = (cos 2ϕ(ηξ − 2Tanh(ηξ/2))) ∗

[
sin2 2ϕ(ηξ)− κ(ηξ) sin2 2ϕ +

(
cos2 2ϕ + κ sin2 2ϕ

)
(ηξ − 2Tanh(ηξ/2))

]−1 (41)

In this part, we used the following numerical values for the simulation: ξ = 1 µm, so
ξ = ξbρs = 2.5× 10−16 × ρs. Figure 4 depicts the evolution of Υ(x2) for ϕ = 300, where
x2 = x2bρs.
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3. Numerical Expression and Discussion

As illustrated in this paper, in the unit cell of the composite material model, the
continuum dislocation is mostly formed by complex variables of different parameters, for
instance, the dislocation evolution, the material characteristic length l, and the behavior of
the fiber/particle and the matrix. Therefore, it becomes a practical challenge to determine
the equilibrium location of the dislocations. In this research, only edge dislocations in an
active mono-slip system were considered. The slip plane direction is assumed to be in the
x2-direction, and the slip is taken to be in the x1-direction.

When UCs are subjected to simple shear, there should be a dislocation in the veins
of the matrix. During this process, the dislocation is trapped by the inclusion, and the
number of dislocation densities increases, i.e., it results in hardening. The shear stress due
to dislocation is termed micro shear stress, and the shear stress at the hardening point is
referred to as critical shear stress. The equilibrium equation from this analysis is given
as follows:

τcr − τ − τmicrostress = 0 (42)

From the free energy formula Θ
(

εe
ij, αij

)
, we can find the standard stress tensor σij by

using the thermodynamical approach:

σij = ∂Θ/∂εe
ij = τ (43)

The micro stress τm is evaluated as follows:

τm = eijkmiςijsj (44)

where ςij is the distortion stress tensor. The distortion stress tensor is also calculated:

ςij = ∂Θ/∂αij (45)
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According to the law of thermodynamics, ∑
κ

τcrΥ ≥ 0 is constant per the inequality; it

is also independent of the rate. We formulate the analytical equation as shown below:

τcr = χsignΥ (46)

where χ > 0 is the resistance of the slip represented by the formula shown in Equation (47):

χ = hΥ (47)

By using Equations (42)–(44), the standard shear stress is formulated:

σ12 =
1
2

G12(u1,2 − Υs1m2 − Υs2m1) (48)

We validated the method defined in the aforementioned parts by accounting for the
BC formulations demonstrated in Figure 2. The material is assumed to be composed of a
double episodic array of UCs with a width of 2w and height of 2ξ as shown in Figure 5 The
UC can be defined in a state of typical shear distortion by setting kinematic BCs. Periodic
boundaries are necessary along the lateral sides x1 = ±w. The term τave (average shear
stress) is required to withstand the distortions calculated from the shear field σ12 of the
overall stress σ.

τave =
1

2w
〈σ12(±x1,±ξ)〉(−w,w) (49)
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The magnitude b denotes the Burgers vector of the overall dislocations in the unit
cell, which has a value of b = 2.5× 10−10m. In addition, two dislocations with contrasting
b annihilate each other when they are dependent on material characteristic length; the
critical annihilation length le is equal to le = 6b. All inclusions should have an identical
value, which is equal to τobs = 5.7× 10−3G12, where G12 denotes the elastic modulus of the
shear. In the critical length, the stress created by shear distortion on the inclusion can be
balanced by the dislocations generated in the slip plane. In the critical length, the value of
K = 0.000115. The stress created due to dislocation nucleation corresponds to a nucleation
length of lnuc = 125b. The height (ξ/2) of the UCs is based on the material characteristic
length (l), which equals 4000b. The influence of inclusion size is analyzed by changing the
ratio ξ/l [43].
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The parameter of the material represented by a metal matrix, specifically, an alu-
minum matrix, can be used for the overall numerical analysis, as described by different
researchers [18]. The other isotropic material constants are E = 62.78 GPa and v = 0.33,
where “E” and “v” denote Young’s modulus and Poisson’s ratio, respectively.

Figure 6 shows the total stress caused by shear deformation versus the recommended
shear strain for the two categories of materials (materials I and II) in the unit cell, rep-
resented by ξ =`. The outcomes of discrete dislocations should also be included. For
material II, the result of the continuum formulation of the dislocation value is similar to
that obtained using the discrete formulation. Material I undergoes a yielding stage through
the softening of the strain, while material II displays an approximately direct influence on
the stress hardening.
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In Figure 7, material II is characterized by a notably small size effect with stronger
behavior. However, material I particles are larger size than those of material II, but it is
not stronger. To measure the capability of the current continuum dislocation theory and
enhance the size influence, we repeated the calculations for smaller ξ =`/2 and larger
ξ = 2` particle sizes, departing from the zone of the fractional constant. For material I,
the two results are similar, while material II shows the predicted relationship. The logical
conclusion from Figure 7 is that the rate of hardening and the strength of material flow
increase as particle size decreases. Furthermore, the general hardness for all sizes of
material particles can be directly connected to the strain.
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The existence of GNDs in the unit cell was excluded to validate the changes in hard-
ening, even though the volume fraction of the fiber part can be the same [28,29]. In the
contemporary continuum dislocation concept, for identical materials, the values can be
differentiated among diverse categories of dislocation distributions. However, it causes
variance in the hardening conditions. Figure 8 indicates that the gradual development of
the overall density of the dislocation in the deformed area is controlled by the length of the
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material l in the unit cell. Generally, the increased accumulation of the dislocation density
should occur before the direct strain is created, depending on the size of the particles.
The density of dislocation increases as the particle size decreases, which is related to the
dislocation effect on the discrete form.
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Figure 8. Overall dislocation density ρ evolution for zero energy dissipation compared with discrete
and nonlocal distortion in material II.

The distributions of shear strain represented in Figure 9 for the two values of defor-
mation indicate that a slight boundary plane can improve the active mono-slip system. For
the continuum dislocation principle, the active mono-slip system through the distribution
of shear strain in the continuum dislocation model is independent of x2εave

12 (x2) = ε12(x2).
The distribution of strain is indicated in Figure 9 for both ξ =`/2 and ξ = 2`. The plot
shows that it has a very slight size dependency and identical arrangement to that of the
εave

12 distribution of [44]. Active one-slip system modeling was performed with H0 = 2τre f ,
and the outcomes did not qualitatively change from those indicated in Figure 9.
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4. Conclusions

In this paper, continuum dislocation theory is applied to analyze the plasticity theory
of metal matrix composites in UCs. The theory is based on the energy characteristics of
dislocations combined with typical small-strain continuum dislocation kinematics. Deriva-
tions of the continuum dislocation components, including slip formulation, thermodynamic
concepts, free energy determinations, threshold values, and the evolution of dislocation, are
described. Dissipation and non-dissipation formulations are derived using the variational
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method and solved by the energy minimization approach. The outcomes are verified by
comparing the existing discrete and nonlocal dislocation results with the newly formulated
continuum dislocation theory results of the same problem. Furthermore, the effects of the
material parametric length in the continuum dislocation theory analysis are reasonable
and consistent with the existing discrete and nonlocal dislocation prediction. This newly
formulated theory also agrees with the discrete and nonlocal dislocation result for a similar
geometry and size. The capability of the proposed approach is demonstrated using a
homogenized composite with constituents that exhibit different mechanical behaviors. The
proposed method is found to be capable of handling the elastoplastic phenomenon of com-
posite material, and more advanced micromechanics models can be implemented using the
described approach. In summary, single-slip continuum dislocation can be modeled with
the reported method, which includes self-stress conditions. Finally, two types of material
models (Materials I and II) can be incorporated into the proposed approach.
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