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Abstract: This paper proposes a new hybrid master–slave optimization approach to address the
problem of the optimal placement and sizing of distribution static compensators (D-STATCOMs) in
electrical distribution grids. The optimal location of the D-STATCOMs is identified by implement-
ing the classical and well-known Chu and Beasley genetic algorithm, which employs an integer
codification to select the nodes where these will be installed. To determine the optimal sizes of the
D-STATCOMs, a second-order cone programming reformulation of the optimal power flow problem
is employed with the aim of minimizing the total costs of the daily energy losses. The objective
function considered in this study is the minimization of the annual operative costs associated with
energy losses and installation investments in D-STATCOMs. This objective function is subject to
classical power balance constraints and device capabilities, which generates a mixed-integer non-
linear programming model that is solved with the proposed genetic-convex strategy. Numerical
validations in the 33-node test feeder with radial configuration show the proposed genetic-convex
model’s effectiveness to minimize the annual operative costs of the grid when compared with the
optimization solvers available in GAMS software.

Keywords: annual operational cost minimization; Chu and Beasley genetic algorithm (CBGA);
daily active and reactive demand curves; distribution static compensators (D-STATCOMs); radial
distribution networks; reactive power compensation

1. Introduction

Electric distribution networks represent the majority portion of electrical power sys-
tems, which are responsible for providing electrical services to end-users at medium- and
low-voltage levels [1,2]. They are typically built-in with radial structures to simplify the
coordination of the protective devices and minimize the investment costs in conductors [3].
However, the main problems of radial structures in these networks are the increase in
energy losses and the deterioration of the voltage profiles [4,5]. One way to reduce these
problems is by installing shunt devices such as fixed-step capacitors [6–8] or distribu-
tion static compensators (D-STATCOMs) [9,10]. In the case of the fixed-step capacitors,
the amount of reactive power injected into the grid is dependent on the voltage profile
of the node, which implies that it is not possible to ensure constant reactive power in-
jections [11]. Furthermore, the reactive power is injected in fixed steps, which limits the
improvement of voltage profiles and reduction of energy losses. Conversely, D-STATCOMs
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can operate continuously in a range of operations, permitting constant reactive power
injections depending on the demand load behavior, and these can vary their outputs as a
function of the grid operating conditions [12,13]. This implies that these can be considered
as dynamic reactive power compensators [14]. The general structure of a D-STATCOM is
depicted in Figure 1, where it can be noted that the power electronic converter makes it
possible to control the amount of reactive power injected into the grid [10].

D-STATCOM

Energy
storage
circuit

Energy
storage
circuit

VSC

Controller

Rkm
Lkm

node k node m

Figure 1. Schematic diagram of a distribution static compensator (D-STATCOM).

In the literature, the problem of the optimal placement and sizing of D-STATCOMs
has been studied with different optimization methodologies for medium-voltage appli-
cations [15]. Following are some of these approaches. In [9], analytical and heuristic
optimization methods were used for the optimal placement and sizing of D-STATCOMs
in distribution networks. In [9], fitness functions based on voltage stability and power
loss indices were implemented to enhance distribution network performance. In [10],
a multi-objective particle swarm optimizer was utilized to size and locate D-STATCOMs
in a medium-voltage electrical network, using simultaneous system reconfiguration. Al-
though in [10] a multi-objective optimizer was used (e.g., active power loss reduction,
voltage stability index, and distribution line loadability factor), only the load condition
was considered, which is not appropriate as it leads to selection of over-sized devices.
In [16], a heuristic algorithm based on costs was developed to assess the performance in an
isolated power system based on location and dimensioning of D-STATCOMs. Nevertheless,
the analysis performed in [16] was greatly simplified as it modeled the power system as a
unique nodal system. In [17], a genetic algorithm and optimal power flow implemented
in DigSILENT software were presented to size and place D-STATCOMs in distribution
networks. Although [17] used a real distribution grid to test the algorithm, a cost analysis
was not shown. In [18], a fuzzy multi-objective algorithm using an ant colony optimization
approach was presented to improve the distribution system’s performance regarding locat-
ing and sizing photo-voltaic generations and D-STATCOMs. The fitness functions used
in [16] were the reduction of power losses, improvement of the voltage profiles, and load
balance increase. In [19], a heuristic algorithm based on power loss and voltage indices
was described for the sizing and placement of D-STATCOM in radial distribution systems.

Based on the literature review of the above-mentioned state-of-the-art studies, this study
makes the following contributions:

• Formulation of the mixed-integer nonlinear programming (i.e., MINLP) problem
of the optimal location and sizing of D-STATCOMs in distribution networks into a
mixed-integer convex optimization model using the branch power flow representation
of the grid, which generates a new conic optimization model.

• Implementation of a new optimization strategy called the genetic-convex optimizer
that works in a master–slave connection, where the master stage is guided by a
classical Chu and Beasley genetic algorithm (CBGA) to determine the location of
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the D-STATCOMs, and the slave stage is entrusted with the optimal sizing of the
D-STATCOMs via second-order cone programming (SOCP).

• Inclusion in the optimization model of the curves associated with residential, indus-
trial, and commercial loads under an economic multi-period operation environment
for radial distribution networks.

• Comparison of the proposed master–slave approach with the GAMS optimization
package, where the results show that the proposed approach achieves a better reduc-
tion of the total operating costs in the test system.

The scope of this research is circumscribed to medium-voltage distribution grids with
strictly radial configuration, and the convex reformulation of the power flow problem is
based on the branch method reported in [20], which works under the radiality assumption.
In addition, D-STATCOMs are modeled for optimization purposes as constant reactive
power sources since the power electronic interface presented in Figure 1 makes it possible
to control the amount of reactive power provided to the electrical distribution system.

The rest of this study has the following structure: Section 2 describes the general
MINLP model that represents the problem of the optimal siting and sizing of D-STATCOMs
in electrical grids, considering a time-varying formulation that minimizes the annual
operative costs regarding energy losses added with the annualized investments in D-
STATCOMs. Section 3 presents the convex reformulation of the MINLP model that converts
it into a mixed-integer second-order cone programming equivalent by using the branch
power flow representation of the distribution networks with radial configuration and the
main characteristics of the CBGA, to determine the location of the D-STATCOMs using an
integer codification. Section 4 describes the distribution test feeder.

2. Mixed-Integer Nonlinear Programming Model

The problem of the dynamic reactive power compensation in AC distribution networks
can be represented by a MINLP model since (i) the binary part is defined by the location
or number of a D-STATCOM in a particular node of the network, (ii) the continuous part
is associated with the power flow variables, i.e., voltages and active and reactive power
generations, and (iii) the active and reactive power flow gives the nonlinear characteristics
of the model in lines and their voltage drops. The complete mathematical model that
represents the problem of the optimal siting and sizing of D-STATCOMs in electrical
distribution grids is described below.

2.1. Objective Function Formulation

The objective function associated with the optimal placement and dimensioning of
D-STATCOMs in electrical distribution grids corresponds to a linear combination of the
annual costs of the energy losses and the annual required investments in D-STATCOMs.
The objective function is presented below:

min Acost = z1 + z2, (1)

z1 = CkWhT ∑
h∈H

∑
ij∈L

Rij I2
ijh∆h,

z2 = T
(

c1

c2

)
∑

j∈N

(
α
(

qcr
j

)2
+ βqcr

j + γ

)
qcr

j ,

where Acost represents the objective function value associated with the annual operational
costs of the grid; z1 represents the part of the objective function associated with the costs of
the annual energy losses; z2 is the part of the objective function related with the annualized
investment costs in D-STATCOMs; CkWh represents the average energy cost for a typical
month of operation of the electrical distribution grid; T represents a constant related with
the operational period, i.e., 365 days; Rij is the resistance value of the conductor that
connects nodes i and j; Iij,h is the magnitude of current flowing in the line that connects
nodes i and j in the period of time h; ∆h corresponds to the length of the time period
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associated with the power flow calculation (here, we assumed this time as 1 h); c1 and c2
are positive constants associated with the annualization of the investment costs and the
life-time of the D-STATCOM, respectively; α, β, and γ are positive constants related with
variable costs of installing a D-STATCOM with a reactive power rate of qcr

j . Notice thatH,
L, andN are the sets that contain all the periods of time, all the branches, and all the nodes
of the network, respectively.

2.2. Set of Constraints

The set of constraints associated with optimal siting and sizing of D-STATCOMs in
electrical distribution grids is associated with active and reactive power balance equations
in nodes, voltage drops in lines, and binary constraints related with installing the D-
STATCOMs, among others. All the constraints of the studied problem are listed below:

pij,t − Rij I2
ijh − ∑

k:(j,k)∈L
pjkh = Pjh; {j ∈ N , h ∈ H}, (2)

qij − Xij I2
ijh − ∑

k:(j,k)∈L
qjkh = Qjh − qcr

j {j ∈ N , h ∈ H}, (3)

V2
jh = V2

ih − 2
(

Rij pijh + Xijqijh

)
+

(
R2

ij + X2
ij

)
I2
ijh, {(i, j) ∈ L, h ∈ H}, (4)

I2
ijh =

p2
ijh + q2

ijh

V2
ih

, {(i, j) ∈ L, h ∈ H}, (5)

−xjqcr,max ≤ qcr
j ≤ xjqcr,max, {j ∈ N}, (6)

∑
j∈N

xj ≤ Ncr
max (7)

Vmin ≤ Vjh ≤ Vmax, {h ∈ H, j ∈ N}, (8)

xj ∈ {0, 1}, j ∈ N , (9)

where pijh and qijh represent the active and reactive power flows, respectively, that travel
from node i to node j during the period of time t; pjkh and qjkh have the same definitions as
have been mentioned for nodes j and k, respectively; Pjh and Qjh represent the active and
reactive power consumption, respectively, at node j for each period of time h (note that
these loads have been formulated as constant power consumption); qcr

j is the reactive power
injection of the dynamic reactive power compensator, i.e., the D-STATCOM connected
to the node j; Vih and Vjh are the magnitudes of the voltage profiles at nodes i and j,
respectively, in the period of time t; qcr,max

j represents the maximum upper bound of the

reactive power injection by the D-STATCOM connected at node j; and Vmin and Vmax

represent the minimum and maximum voltage regulation bounds allowed, respectively,
for all the nodes of the grid. The variable xj determines the installation (xj = 1) or number
(xj = 0) of a D-STATCOM in the node j. In addition, Ncr

max represents the maximum number
of D-STATCOMs available for installation in the electric distribution network.

The interpretation of the mathematical model aimed at the optimal siting and sizing
of D-STATCOMs for dynamic reactive power compensation in electric distribution grids,
as defined from Equations (1) to (9), is as follows: Equation (1) corresponds to the objective
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function associated with minimizing the costs of the annual energy losses added with
the annualized investment costs in D-STATCOMs. Equations (2) and (3) represent the
active and reactive power balance expressions, respectively, applied to each node at each
period of time. Equation (4) corresponds to the voltage drop at each line as a function of
the power and current flow. Equation (5) denotes the average apparent power definition
(i.e., application of the second Tellegen theorem) calculated in the sending node of the
line. The inequality constraint in Equation (6) is a box-type constraint that defines the
capability of injecting/absorbing reactive power into/from the D-STATCOM device if its
binary variable is activated for the node j. The inequality expression in Equation (7) defines
the maximum number of dynamic reactive power compensators that can be installed along
the electric distribution test feeder, which is a limitation typically imposed by the grid
operator. The box-type constraint in Equation (8) corresponds to the voltage regulation
bounds allowed for all nodes of the network at any period of time; these bounds are
typically selected between ±5% and ±10% for medium-voltage grids in the Colombian
context. Finally, Equation (9) shows the binary nature of the decision variable related to the
installation of a D-STATCOM at node j.

3. Solution Methodology

To determine the optimal sizing and location of D-STATCOMs in electrical distribution
grids for dynamic reactive power compensation considering daily load curves, to minimize
the annual operative costs of the grid, we propose a master–slave optimization procedure:
the genetic-convex approach. In the master stage, a classical CBGA is used to determine the
optimal location of the D-STATCOMs, i.e., the nodes where these will be connected. For this
purpose, an integer codification is employed. In the slave stage, a conic reformulation
of the multi-period optimal power flow problem is entrusted with the minimization of
the amount of the daily energy losses by defining the optimal sizes of the D-STATCOMs.
The master and slave stages are described below.

3.1. Slave Stage

The slave stage corresponds to the heart of the optimization methodology, since it is
entrusted with the minimization of the annual energy losses considering daily active and
reactive power consumption. This stage also defines the optimal sizes for D-STATOMs,
which help determine their annualized investment costs. To develop the slave stage,
we assume that the nodes where the D-STATCOMs have been provided by the CBGA in
the master stage, i.e., the part of the optimization model associated with the optimal power
flow solution (z1 in Equation (1) and constraints defined in Equations (2) to (4) and (8)),
can be formulated as a second-order cone programming equivalent. This reformulation is
described below:

To reformulate the nonlinear optimal power flow problem into an equivalent con-
vex problem, we define the following auxiliary variables: lijh = I2

ijh and uih = V2
ih.

These definitions imply that Equations (2) to (4) and (8) take the following form:

z1 = CkWhT ∑
h∈H

∑
ij∈L

Rijlijh∆h, (10)

pij,t − Rijlijh − ∑
k:(j,k)∈L

pjkh = Pjh; {j ∈ N , h ∈ H}, (11)

qij − Xijlijh − ∑
k:(j,k)∈L

qjkh = Qjh − qcr
j {j ∈ N , h ∈ H}, (12)

ujh = uih − 2
(

Rij pijh + Xijqijh

)
+

(
R2

ij + X2
ij

)
lijh, {(i, j) ∈ L, h ∈ H}, (13)
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lijhuih = p2
ijh + q2

ijh, {(i, j) ∈ L, h ∈ H}, (14)

(
Vmin

)2
≤ ujh ≤ (Vmax)2, {h ∈ H, j ∈ N}, (15)

From the set of Equations (10) to (15), it can be observed that the remainder nonlinear
non-convex constraint is related with the power balance definition in Equation (14), due
to the product between variables as well as the the equality imposition [20]. However,
this constraint can be relaxed using its conic equivalent [21]. To transform this equality
constraint into a cone equivalent, we use the hyperbolic relation between two variables as
follows:

lij,tuih =
1
4

(
lijh + uih

)2
− 1

4

(
lijh − uih

)2
,

p2
ijh + q2

ijh =
1
4

(
lijh + uih

)2
− 1

4

(
lijh − uih

)2

(
lijh + uih

)2
=

(
2pijh

)2
+

(
2qijh

)2
+

(
lijh − uih

)2
,∥∥∥∥∥∥

2pijh
2qijh

lijh − uih

∥∥∥∥∥∥ = lijh + uih, {(i, j) ∈ L, t ∈ T }. (16)

It is worth mentioning that the inequality constraint at Equation (16) is still non-convex
due to the equality imposition; however, this imposition can be relaxed using a lower-equal
symbol, as recommended in [20], which converts this constraint into a convex conic one,
as presented below. ∥∥∥∥∥∥

2pijh
2qijh

lijh − uih

∥∥∥∥∥∥ ≤ lijh + uih, {(i, j) ∈ L, t ∈ T }. (17)

The optimization model that is addressed in the slave stage is summarized in Equation (17),
where it is assumed that the master stage has provided the values of the binary variables
xj (note that inequality constraints at Equations (7) and (9) are also fulfilled during the
implementation of the CBGA).

min z1 = CkWhT ∑
h∈H

∑
ij∈L

Rijlijh∆h,

pij,t − Rijlijh − ∑
k:(j,k)∈L

pjkh = Pjh; {j ∈ N , h ∈ H},

qij − Xijlijh − ∑
k:(j,k)∈L

qjkh = Qjh − qcr
j {j ∈ N , h ∈ H},

ujh = uih − 2
(

Rij pijh + Xijqijh

)
+

(
R2

ij + X2
ij

)
lijh, {(i, j) ∈ L, h ∈ H}, (18)

∥∥∥∥∥∥
2pijh
2qijh

lijh − uih

∥∥∥∥∥∥ ≤ lijh + uih, {(i, j) ∈ L, t ∈ T },
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−xjqcr,max ≤ qcr
j ≤ xjqcr,max, {j ∈ N},

(
Vmin

)2
≤ ujh ≤ (Vmax)2, {h ∈ H, j ∈ N}.

To solve the equivalent SOCP reformulation of the optimal power flow problem
in Equation (18), assuming that xj is an input parameter, the CVX tool can be used in
the MATLAB environment with the SeDuMi and the SDPT3 solvers [22,23]. The main
advantage of doing this is that the global optimum finding is ensured due to the convex
structure of the objective function and the solution space [20].

Once the optimization model of Equation (18) is solved to determine the values of
the qcr

j , these are used to evaluate the component of the objective function associated with
annual costs of installing D-STATCOMs in the electrical distribution system, i.e., z2.

3.2. Master Stage

The master stage can be considered the brain of the solution methodology, since it
is entrusted with guiding the exploration of the solution space by choosing the best set
of nodes to install D-STATCOMs. To conduct this task, this study proposes to apply
the CBGA with an integer codification, as proposed in [24], to solve the problem of the
optimal placement of distributed generators in electrical distribution grids. The codification
proposed in implementing the CBGA is presented in Equation (19):

wt
i = [n, 2, · · · , k], (19)

where wt
i represents the ith component of the population in the iteration t, n is the number

of nodes of the system, and k is a value between 2 and n. Note that the slack bus is
not considered in the codification since this position is not suitable for the connection of
a D-STATCOM.

The CBGA implemented in this research works with a population of about 20 in-
dividuals for up to 100 iterations, where a tournament is conducted with 4 individuals
(randomly selected) to select the 2 individuals with the best objective function, i.e., m
Acost. Then, these individuals are crossed using one recombination point to produce two
new offspring. For these two individuals, the recombination strategy is applied with a
probability of 75% using one bit for mutating. In the case of mutation, it is selected for
one of these individuals, and an arbitrary position of the vector is changed for a node
between 2 and n. Finally, these offspring are evaluated with the SOCP model presented
in Equation (18) to determine the values of their objective functions, which implies that
the best individual (minimum Acost value) is selected to replace the worst individual in
the current population [25]. To make this replacement, the diversity criteria are applied to
avoid the current population’s information. The procedure mentioned above is repeated
until it reaches the maximum number of iterations.

Figure 2 summarizes the master–slave optimization algorithm’s application to the
problem of the optimal placement and sizing of D-STATCOMs in distribution networks
considering different load profiles to minimize the annual operative costs of the grid.
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Version March 19, 2021 submitted to Appl. Sci. 8

CBGA–SOCP

Define the test feeder characteristics

Chose the population size
and the number of iterations

Create the initial population

Verify the diversity
criteria?

Slave stage: solve SOCP model (18)

Calculate the fitness function

Select individuals by tournament

Apply the crossing
and mutation steps

verify diversity
criteria?

Evaluate the fitness
function of the offspring

Choose the best offspring
and discard the worst one

Compare the offspring and the
worst individual in the population

Replace it if it is better and
the diversity criteria is met

The stopping
criteria met

Report the best solution
in the population

End of the process

No

Yes

No

Yes

No

yes

Figure 2. Flowchart of the CBGA–SOCP approach for the optimal sizing and placement of
D-STATCOMs in electrical distribution grids.

Figure 2. Flowchart of the Chu and Beasley genetic algorithm (CBGA)-second-order cone pro-
gramming (SOCP) approach for the optimal sizing and placement of D-STATCOMs in electrical
distribution grids.
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4. Electrical Distribution Grid Under Study

The proposed master–slave optimization methodology for the optimal siting and
dimensioning of D-STATCOMs in electric distribution grids was tested in a classical and
well-known distribution grid composed of 33 nodes and 32 lines (radial topology), which is
denominated in this research as the IEEE-33 bus test feeder. This test feeder was operated at
medium-voltage levels with 12.66 kV at the substation node (see Figure 3). The total active
and reactive power consumption in the peak load condition are 3715 kW and 2300 kvar,
respectively. In addition, this test feeder has 210.9876 kW of power losses in this operative
scenario. The information about active and reactive power consumption during the peak
load case and the branch parameters for the IEEE-33 bus test feeder are listed in Table 1
[26].

AC

Slack

1 2

3 4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

Residential

Industrial

Commercial

Figure 3. Grid configuration for the IEEE 33-bus system, with different shaded areas representing
different types of load.

Table 1. Electrical parameters of the 33-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40

The shaded areas in Figure 3 represent the types of consumer connected to the distri-
bution grid, i.e., industrial, commercial, and residential loads. Each of the per-unit demand
curves are depicted in Figure 4.
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Version March 19, 2021 submitted to Appl. Sci. 10
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Figure 4. Type of loads: residential, commercial and industrial curves.

Table 2. Types of load profiles

Hour (h) Ind. (p.u) Res. (p.u) Com. (p.u) Hour (h) Ind. (p.u) Res. (p.u) Com. (p.u)
1 0.56 0.69 0.20 13 0.95 0.99 0.89
2 0.54 0.65 0.19 14 0.96 0.99 0.92
3 0.52 0.62 0.18 15 0.90 1.00 0.94
4 0.50 0.56 0.18 16 0.83 0.96 0.96
5 0.55 0.58 0.20 17 0.78 0.96 1.00
6 0.58 0.61 0.22 18 0.72 0.94 0.88
7 0.68 0.64 0.25 19 0.71 0.93 0.76
8 0.80 0.76 0.40 20 0.70 0.92 0.73
9 0.90 0.90 0.65 21 0.69 0.91 0.65
10 0.98 0.95 0.86 22 0.67 0.88 0.50
11 1.00 0.98 0.90 23 0.65 0.84 0.28
12 0.94 1.00 0.92 24 0.60 0.72 0.22

Table 3. Parameters associated with the objective function calculation
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Figure 4. Type of load: residential, commercial, and industrial curves.

To compare the results of future works regarding D-STATCOMs in distribution grids
with the results of the proposed CBGA-SOCP approach, in Table 2 is presented the infor-
mation depicted in Figure 4 for all the load types.

Table 2. Types of load profile.

Hour (h) Ind. (p.u) Res. (p.u) Com. (p.u) Hour (h) Ind. (p.u) Res. (p.u) Com. (p.u)

1 0.56 0.69 0.20 13 0.95 0.99 0.89
2 0.54 0.65 0.19 14 0.96 0.99 0.92
3 0.52 0.62 0.18 15 0.90 1.00 0.94
4 0.50 0.56 0.18 16 0.83 0.96 0.96
5 0.55 0.58 0.20 17 0.78 0.96 1.00
6 0.58 0.61 0.22 18 0.72 0.94 0.88
7 0.68 0.64 0.25 19 0.71 0.93 0.76
8 0.80 0.76 0.40 20 0.70 0.92 0.73
9 0.90 0.90 0.65 21 0.69 0.91 0.65

10 0.98 0.95 0.86 22 0.67 0.88 0.50
11 1.00 0.98 0.90 23 0.65 0.84 0.28
12 0.94 1.00 0.92 24 0.60 0.72 0.22

The objective function defined in Equation (1) was evaluated using the parameters
presented in Table 3. Note that some of these values have been taken from [27] and [10].
It is also important to highlight that to evaluate the objective function regarding the annual
costs of the installation of D-STATCOMs, i.e., z2, the values of the variable qcr

j must be
defined in MVAr [27].

Table 3. Parameters associated with the objective function calculation.

Par. Value Unit Par. Value Unit

CkWh 0.1390 US$kWh T 365 Days
∆h 1.00 h α 0.30 US$/MVAr3

β −305.10 US$/MVAr2 γ 127380 US$/MVAr
c1 6/2190 1/days c2 10 Years

5. Computational Implementation

The proposed optimization approach based on the hybridization of the CBGA and the
SOCP, used to solve the problem of the optimal placement and sizing of D-STATCOMs in
electrical distribution grids, was performed using MATLAB software version 2020b in a
PC with an AMD Ryzen 7 3700 2.3-GHz processor and 16.0 GB RAM, running on a 64-bit
version of Microsoft Windows 10 Single Language.
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5.1. Optimization Results

To validate the efficiency of the proposed CBGA-SOCP approach to site and size
D-STATCOMs in distribution networks for annual operative cost minimization, we used
100 iterations and population sizes between 20 and 100 in steps of 20, to observe the
convergence rate of our proposal as well as the required processing times.

Table 4 presents the objective function values reached by each of the proposed master–
slave CBGA-SOCP strategies regarding the total annual operating costs and the average
processing times after 100 consecutive evaluations.

Table 4. Performance of the CBGA-SOCP approach with different population sizes.

No. of Iterations Location and Size Node (MVAr) Acost (US$/year) Proc. Times (h)

Benchmark case — 130,613.90 —
20 {14(0.2896), 30(0.5593), 32(0.1177)} 109,455.96 3.0697
40 {14(0.2896), 30(0.5593), 32(0.1177)} 109,455.96 3.1592
60 {12(0.1920), 14(0.1488), 30(0.6556)} 109,498.91 3.3368
80 {14(0.2896), 30(0.5489), 31(0.1281)} 109,472.55 3.4647

100 {11(0.1982), 14(0.1539), 30(0.6509)} 109,496.84 3.6171

The results in Table 4 present following observations:

• The best objective function value is reached with population sizes of 20 and 40, with an
average processing time of about 3.1144 h; here, nodes 14, 30, and 32 are selected,
with nominal rates of 0.2896 MVAr, 0.5593 MVAr, and 0.1177 MVAr, respectively,
producing a total annual operating cost of US$/year 109455.96. This solution allows
annual cost reductions of 16.20%.

• The worst solution reached by using the hybrid CBGA-SOCP approach corresponding
to the nodes 12, 14, and 30, with D-STATCOM capacities of 0.1920 MVAr, 0.1488 MVAr,
and 0.6556 MVAr, respectively, generating a final objective function value of US$/year
109498.91; however, the difference with respect to the best objective function is only
42.94 dollars per year of operation.

• All the solutions in Table 4 identify nodes 14 and 30 in the final solution, and their
differences are associated with the third node, with the particularity that all the
D-STATCOMs are located in the commercial and industrial areas, as can be seen
in Figure 3.

• Regarding processing times in Table 4, it can be observed that the required processing
times increase as a function of population size in the initial population, since to
start searching the solution space, the CBGA requires the evaluation of the initial
population, which consumes additional processing time.

Figure 5 presents the desegregated costs of the solutions reached by using the proposed
hybrid CBGA-SOCP approach as a function of the population size.
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Figure 5. Discriminated costs considering different population sizes for the CBGA.
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The results in Figure 5 show that in general, the annual investment cost in D-STATCOMs
is about US$/year 12300 for the best optimal solutions, which implies that with this inver-
sion, the total reduction in cost of energy losses is about 33,450 dollars per year of operation.
This justifies the investments in dynamic reactive power compensators, since the net profit
in the best solution is about US$/year 21,150.

Table 5 presents the solutions reached by using the proposed CBGA-SOCP when
20 individuals are considered in the population. From this table, it is possible to note
that (i) 95% of the solutions include node 30, confirming that this is the most sensitive
node in terms of minimizing energy cost reduction, considering daily load profiles; (ii) the
difference between the optimal solution (i.e., solution No. 1) and the last solution (i.e.,
solution No. 20) is about 613.45 dollars per year of operation, which demonstrates that all
the solutions in Table 5 can be considered adequate to minimize the annual operative costs
of the electric distribution network when D-STATCOMs are installed; and (iii) the solutions
reported in Table 4 for different population sizes are contained in the first four solutions
reported in Table 5, which implies that a population size of 20 can efficiently solve the
problem of the optimal siting and sizing of D-STATCOMs in electric distribution networks.

Table 5. Best solutions found by the proposed CBGA-SOCP approach with a population size of 20.

Sol. No. Location (Node) Acost (US$/year) Sol. No. Location (Node) Acost (US$/year)

1 {14, 30, 32} 109,455.96 11 {13, 16, 30} 109,530.77
2 {14, 30, 31} 109,472.54 12 {8, 14, 30} 109,713.95
3 {11, 14, 30} 109,496.84 13 {13, 29, 30} 109,720.81
4 {12, 14, 30} 109,498.91 14 {12, 30, 31} 109,770.17
5 {12, 16, 30} 109,501.60 15 {13, 28, 30} 109,905.94
6 {10, 14, 30} 109,504.58 16 {10, 12, 30} 109,908.50
7 {13, 30, 31} 109,511.63 17 {10, 30, 31} 109,955.44
8 {13, 30, 33} 109,513.62 18 {9, 12, 30} 109,960.30
9 {13, 17, 30} 109,515.72 19 {13, 29, 31} 109,961.47

10 {10, 16, 30} 109,525.51 20 {8, 12, 30} 110,069.41

5.2. Comparison with the GAMS Optimization Package

To corroborate the effectiveness and robustness of the proposed hybrid optimization
algorithm so as to locate and size D-STATCOMs in radial distribution grids, we imple-
mented the exact MINLP model defined from Equations (1) to (9) in the GAMS optimization
package by using the BONMIN and the COUENNE solvers. Table 6 presents the numerical
results obtained after implementing MINLP solvers in GAMS.

Table 6. Numerical results obtained after implementing mixed-integer nonlinear programming
(MINLP) model in GAMS.

Solver Location and Size Node (MVAr) Acost (US$/year)

Benchmark case — 130,613.90
BONMIN {8(0.2980), 25(0.0920), 30(0.5127)} 109,560.85

COUENNE {13(0.1850), 16(0.0825), 32(0.4478)} 109,791.14
Genetic-Convex {14(0.2896), 30(0.5593), 32(0.1177)} 109,455.96

From Table 6, it can be concluded that (i) GAMS BONMIN and COUENNE solvers get
stuck in local optimal solutions compared to the solution informed by the proposed hybrid
optimization approach; (ii) the total operating cost reductions achieved by the BONMIN
and COUENNE solvers are 16.12% and 15.94%, respectively, while the proposed approach
reaches a value of 16.20%; and (iii) the GAMS solvers and the proposed genetic-convex
approach identify the commercial area in Figure 3 as the most important zone to inject
reactive power, since the largest sizes of D-STATCOMs are concentrated in nodes 30 and 32.
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5.3. Additional Operative Gains

To verify the effectiveness of the usage of dynamic reactive power compensators
(D-STATCOMs) in electric distribution networks, when compared with classical fixed-step
capacitor banks, we present in Figure 6 the daily output in the D-STATCOMs for the
optimal solution reported in Table 5.
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Figure 6. Dynamic reactive power behavior during a typical operation day for the D-STATCOMs in electric distribution
networks in the IEEE 33-bus test feeder.

Based on the reactive behavior in Figure 6, we can conclude that (i) all the D-STATCOMs
work with a dynamic reactive power output lower than the nominal rate during the periods
from 1 to 9 h and 21 to 24 h, leading to residential, industrial, and commercial loads below
90% of their consumption, as can be seen in Figure 4; and (ii) the cost of the annual energy
losses considering the dynamic power outputs in Figure 6 is US$/year 94, 398.03, which,
compared with the fixed-capacitor case, i.e., US$/year 97, 157.27, implies an effective
additional gain of about 2759.24 dollars per year of operation.

6. Conclusions and Recommendations

In this paper we solved the problem of optimal siting and sizing of D-STATCOMs
in electrical distribution grids with radial structure considering residential, industrial,
and commercial loads, by proposing a new hybrid optimization approach based on the
combination of the classical CBGA and the SOCP reformulations of the optimal power
flow problem. The former addressed the discrete part of the optimization problem, i.e., the
location of the D-STATCOMs, while the latter solved the the optimal sizing problem of
the D-STATCOMs via conic optimization. Numerical results demonstrated that with a
population size of 20 in the CBGA, the optimal solution was obtained; this solution allowed
for reducing the annual operational costs to about 16.20% by inverting about 12, 300 dollars
per year of operation.

The use of D-STATCOMs instead of fixed-step capacitor banks for reactive power
compensation in distribution grids demonstrated that the variable reactive power injection
as function of the grid demand behaviors allows additional monetary gains per year of
operation to be reached, which in the case of the IEEE-bus test feeder was about US$/year
2759.24.

Numerical comparisons with the MINLP solvers BONMIN and COUENNE (available
in the GAMS optimization package) confirmed that these get stuck in local optimal solu-
tions when compared with the results reached by the proposed genetic-convex approach.
This situation occurred in the GAMS solvers due to the non-convexity of the solution space,
which makes it difficult to explore and exploit the solution space with exact optimization
techniques.

In future, researchers can work on the following aspects: (i) to extend the application
of the D-STATCOMs in optimization problems associated with greenhouse gas emission
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minimization, and (ii) reformulation of the objective functions associated with the costs of
the D-STATCOMs, such as a convex quadratic function, which will ensure the finding of
the global optimal solution via branch-and-bound and interior point methods to solve the
MISOCP equivalent formulation.
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