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Featured Application: Since to apply the proposed reliability method, the only inputs are the
applied stress matrix or applied principal stresses values, and the material characteristics, then
it could be applied and any mechanical and structural stress analysis were the reliability of the
designed element is of interest. In particular because the proposed method help us to incorporate
the effect the applied stress has over time (fatigue) by using the material rheological model, it can
be used to formulate new theory to proposed a more complex fatigue-reliability methodology.

Abstract: Based on the principal stress values generated by the bending beam, the material’s strength
required at 106 cycles is determined depending on time. To determine the stress/strength reliability
(R(t)), the stress distribution is determined directly from the range of the principal stresses values,
and the strength distribution is determined based on the reduced tensile strength (S′e) and fatigue
strength (Se) range. Therefore, based on the time-dependent stress and the material’s strength, a
step-by-step method to determine the reliability R(t) of the structural element at 106 cycles is provided.
The R(t) index is used to select the best among the feasible beam alternatives of the static/elastic
and plastic methodologies. The method’s efficiency is based on the time-dependent stress analysis
performed by using the elastic modulus, and corresponding strain as time dependence variables.
Because the time-dependent stress is related to the changes of the bending deflection through time, it
is determined based on the addressed equivalent stress at 106 cycles.

Keywords: reliability analysis; stress-strength analysis; time-dependent stress; reliability
index determination

1. Introduction

Although the mechanical properties of materials such as stress, strain, and strength
vary with time [1,2], the structural elements lifetime (cycles) subjected to fatigue is deter-
mined by applying static/elastic methodologies that are based on the applied stress range
and the material’s strength. However, as W. Weibull [3] and F. Duffy [4] have emphasized,
the difficulties of these approaches consist in incorporating the fatigue phenomenon, the
nucleation growth, and the microstructural damage in an accurate strength theory. Con-
sequently, engineering and product design theories are limited because by applying the
static/elastic theories, we cannot determine the stress based on the time nor the material’s
strength or the element’s reliability.

In practice, the design phase of a structural element is performed based on the LRFD
(Load and Resistance Factor Design) method, which is directly related to the AISC (American
Institute of Steel Construction) norm [5,6]. Unfortunately, although both methodologies are
based on the bending (internal moments) beams, because the generated internal stresses
are not considered in their analysis, then by applying these methodologies, we cannot
determine the reliability of the structural element. Despite this, Jawaheri and Nanni [7]
introduced the reliability analysis based on an experimental strength extrapolation of two
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elements. Baji and Ronagh [8] presented a method to determine the element reliability
based on the ductility of the used material. Peng and Xue [9] performed the reliability
analysis based on the flexural failure modes. Unluckily, these structural reliability analyses
do not consider the generated internal stresses in their probabilistic approach. On the other
hand, Erylmaz [10] developed a strength stochastic model for both Normal or Weibull
distributions. However, the constants of their differential equation do not represent the
material’s time-dependent strength behavior nor the strength ratio used to determine the
Weibull parameters (See Piña-Monarrez [11]). As the equivalent stress (σeq) that causes
the failure [12] is determined by the instantaneous strength, which due to the fatigue
phenomenon is higher than the applied stress, a strength behavior analysis through time
is needed [12–15]. Therefore, in this paper, the σeq value is determined based on bending
beams and the changes that the elasticity modulus experiences through time, and on the
viscoelastic behavior theory.

As a result, in the proposed method, at any time the minimal required strength is
related to its corresponding instantaneous time-dependent strain (εi). Because our proposed
method is based on the stresses, by using the εi value in the corresponding strain-life curve
(εN), we estimate the equivalent stress σeq value that we finally use in the stress-strength
proposed method to determine the reliability of the beam. Moreover, because of this and
the hysteresis analysis, both the εN curve and the corresponding equivalent stress relation
always exist. Therefore, the proposed method is sufficiently flexible to be applied in any
structural element lifetime analysis. In contrast with the flexural members methodology [6]
(Chapter F), the proposed method, using the optimal W beam selection, is performed based
on the time-dependent stress (σi) and its corresponding reliability index.

The structure of the paper is as follows: Section 2 presents the theoretical background
of the equivalent stress that is used to determine the reliability of the beam. In Section 3,
the proposed stress-strength method is given. Finally, in Section 4, the general conclusions
are given.

2. Theoretical Background of the Equivalent Stress

Since the beam is subjected to stress and it presents an inherent strength to withstand
the applied stress, in the structural analysis, both the distribution of the stress and the
distribution of the strength are necessary [11]. While the stress distribution is determined
based on the principal stress values, the strength distribution is determined based on
the material strength analysis. The principal stresses are determined by performing the
elastic/static design analysis as follows.

2.1. Elastic Stress Analysis

This analysis is performed on the generated bending moments and beam deflection
of the best feasible beam alternative that is selected based on the AASHTO (American
Association of State Highway and Transportation Officials) norm criteria and the LRFD method.
The analysis is performed in the expected weakest link area. From the generated internal
normal (σ) and shear (τ) stresses the corresponding stress matrix is

T =

 σx τxy τxz
τyx σy τyz
τzy τzy σz

 (1)

Thus, based on Equation (1), the corresponding principal stress (σ1, σ2) values used to
determine the stress distribution are

σ1 = σµ +

√(
σx − σy

2

)2
+ τ2

xy (2)
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σ2 = σµ −

√(
σx − σy

2

)2
+ τ2

xy (3)

With the maximum shear stress value estimated as

τmax =

√(
σx − σy

2

)2
+ τ2

xy (4)

Therefore, the mean stress value is given as

σµ =
σx + σy

2
=

σ1 + σ2

2
(5)

The alternating stress value is determined as

σA =
σ1 − σ2

2
(6)

However, because the addressed principal stress values are static, then their time
dependence analysis is performed based on the viscoelastic approach as follows.

2.2. Time-Dependent Stress Analysis Based on the Linear Viscoelastic Approach

First, as mentioned, the mechanical properties of materials such a modulus, strength,
and Poisson’s ratio exhibit characteristics of elastic, solid, and viscous fluid behavior [1,2,16].
Therefore, because steels have mechanical properties that are a function of time, then a
linear viscoelastic analysis is necessary. The linear viscoelastic approach to determine the
stress depending on time is based on the Maxwell rheological model [1,2] given by

ε(t=i) =
σ

E
+

σt
η

(7)

where η is the coefficient of tensile viscosity, E is the elastic modulus, and ε is the generated
strain. Thus, by substituting the given stress, the elastic modulus depending on time is
given as

E(t=i) =
σ

ε
=

1
1
E + t

η

(8)

Since by using the elementary theory of bending beams, the generated strains can be
seen as ε(t=i) =

∆
dx , and the infinitesimally curvature can be analyzed as dθ = dx/ρ [17–19],

then from this analysis and by using Equation (7), the generated curvature can be seen as

dθ

dx
=

1
ρ
=

[
σ

E
+

σt
η

]
(9)

Consequently, the basic deflection curve equation of a beam is given as

d2y
dx2 =

M
EI

(10)

where, M is the bending moment and I is the inertia moment. Thus, from Equations (9)
and (10), the cross-sectional area of the beam can be analyzed as

1
ρ
=

M
EI

(11)

By substituting both analyses we have

M
EI

=

[
σ

E
+

σt
η

]
(12)
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Consequently, the stress depending on time can be estimated as

σt=i =
My

I + tI
η Ei

(13)

Finally, by integrating Equation (10), the time dependence bending deflection function
can be analyzed as

f (δ) = Ei Iv′′ = M (14)

where f (δ) is the maximum deflection curve. As a summary, Equation (8) represents the
time-dependent elastic modulus function; Equation (13) represents the required stress
depending on time, and; Equation (14) represents the time-dependent deflection curve.

In congruence with the von Mises criterion, the stress σ1 value is the parameter that is
affected through time by the cyclical stress application. Here, it is modeled by using the
stress normal distribution Ns(µs, σdev) with mean µs and standard deviation σdev. Although
the analysis can be performed based on the initial applied and final required stress values
that correspond to any desired time t = i value, here the analysis is performed at 106 cycles
to failure (N f ).

Now, based on the material’s strength properties, let us formulate the corresponding
strength distribution as follows.

2.3. Strength Analysis

As the material´s strength depends on the material used, in this research, the material
A572 Gr. 50 steel is selected for the W-beam design [20]. Its principal strength properties
are shown in Table 1.

Table 1. Selected material features.

Limits of Its Mechanical Properties. (Psi/ MPa)

Sy Yield tensile strength 61,391 (427)
Sut Ultimate tensile strength 83,831 (578)

From the given ultimate strength (Sut) value, the reduced tensile strength S′e value is
given as

S′e = 0.5Sut (15)

The fatigue strength (Se) is given as

Se = K f KsKTKTMKVS′e (16)

where the modifying factors are the Surface Finish K f , Size Modification Ks, Temperature
KT , Mechanical Treatments KTM, and Miscellaneous Modification KV factors [21,22].

Finally, based on the Se value, the corresponding normal strength NS(µS, σdev S) dis-
tribution is determined and utilized to perform the stress/strength reliability analysis
as follows.

2.4. Stress-Strength Reliability Analysis

Because the instantaneous life of the structural element depends on both the ap-
plied stress and its strength to withstand stress, then its reliability is determined with the
composed normal-normal stress/strength function [23,24] given by

R(t) =
∫ ∞

0
f (s)

[∫ ∞

s
f (S)dS

]
ds (17)

In Equation (17), the mean (µ) and the standard deviation (σdev) of the normal stress
Ns(µs, σdev s) and normal strength NS(µS, σdev S) distributions are utilized to determine the
limits of Equation (17) [23]. Graphically, the stress/strength analysis is shown in Figure 1.
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Therefore, by evaluating Equation (17), the stress/strength reliability and its cumula-
tive failure probability indices are given as

R(t) = P(S > s) (18)

Q(t) = P(S < s) (19)

where S is the strength variable and s is the stress variable. Additionally, since we did not
observe failure time data in the beam analysis, then the standard deviation for the analysis
was determined based on the normal variation coefficient (cv) given as

cv =
µ

σdev
(20)

Since for the normal distribution, the cv value must be cv ≤ 10%, then from Equation (20),
the numerical value of the standard deviation used in the beam analysis is given as

σdev = 0.10µ (21)

Based on the above analysis, the proposed method to determine the element’s reliabil-
ity is as follows.

3. Proposed Stress-Strength Method

The novelty of the proposed method is that it let us determine the reliability of a
structural element based on the time-dependent stress and its corresponding strength
as follows.

3.1. Steps to Determine the Stress Distribution

Step 1. For the application case, determine its static properties, perform the correspond-
ing static analysis, and after validating the principal’s critical variables select the
corresponding structural element.

Step 2. Based on the performed static analysis, by using the corresponding equation deter-
mine the maximum deflection f (δ) of the bending beam.

Step 3. By using the static analysis, estimate the corresponding normal stress values gener-
ated on the weakest area.

Step 4. Determine the corresponding principal stress values (σ1, σ2).
Step 5. Define the time-dependent strain εi and its corresponding time-dependent stress σi.
Step 6. Define the stress-strain analysis. Then, based on the defined stress-strain values,

determine the true stress and the true strain values.
Step 7. Estimate the strain-life curve εN.
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Step 7.1. Based on the log-linear analysis and by considering the determined value Se

as the stress amplitude (Sa) at N f = 108 [2,25], define the constant b of the
amplitude strain-life curve that define the Sa values.

Step 7.2. Based on the determined stress amplitudes Sa to N f cycles, determine the
corresponding maximum and minimum strains (εmax, εmin).

Step 7.3. By using the estimated data given in step 7.2, determine the strain and
its components elastic and plastic strain amplitudes (εa, εea, εpa), and its
corresponding constant c value that defines the strain-life curve εN.

Step 8. Compare the time-dependent strain εi determined in step 5 with the maximum
strain εmax which represents the desired strain at cycles to failure N f .

Step 9. By using the estimated equivalent stress σeq−i, determine its corresponding normal
distribution parameters Ns(µ, σdev s).

To summarize this section, the equivalent stress σeq−i value and its corresponding
stress distribution are both determined. Now the stress-strength analysis can be performed
as follows.

3.2. Stress-Strength Analysis

Based on the normal strength distribution function NS(µS, σdev S) and on the normal
stress distribution function Ns(µs, σdev s), the standardized normal Z value utilized to
determine the corresponding reliability, can be determined as follows.

Step 10. For the selected material, determine its principal strength values and determine its
corresponding normal distribution parameters NS(µ, σdev S).

Step 11. By using Equation (17), determine the Z value.
Step 12. Take the probability that the Z value estimated in step 11 represents the reliability

index of the analyzed element.

R(t) = Φ(Z) (22)

The following section presents the application of the proposed method.

3.3. Numerical Application of the Proposed Method

The objective of this section is to perform the stress-strength analysis for a given
structural element by using the normal distribution approach. Thus, as an application
case, the left end fixed-right end free and uniformly loaded W beam is performed by using
the LRFD method [6]. With this data, following the proposed method, the step-by-step
analysis is as follows.

3.3.1. Stress Distribution Based on the Time-Dependent Stress

Step 1. In this case, the beam is supposed to be continuously braced, and for the analysis, the
variables are the clear length L = 9.00 m, and the uniform load W = 49.25 kN/m.
The selected beam is the W33X291, and in the analysis, its weight was added. Now,
based on Figure 2, the reaction force at point A is Ay = 443.22 kN.

As the flexural members are subjected to fatigue, by using the static analysis for
beams, the maximum bending moment at point A is Mmax =1994.50 kN·m. Using the static
analysis values, the required inertia moment Ix =18,222.33 in4 was compared against the
selected W33X291 beam inertia moment Ix−AISC =17,700 in4. Additionally, the principal
variables to validate the selected W beam were the AASHTO normative, from which the
generated beam deflection should not be higher than L (in)

360 , and the design specification for
flexural members as per the LRFD method [6]. Thus, the deflection analysis is given next.



Appl. Sci. 2021, 11, 3459 7 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 13 
 

 
(a) (b) 

Figure 2. Static/elastic analysis: (a) Left end fixed-right end free and uniformly loaded W beam; (b) Loads, shear forces, 
and bending moments for a given cross-section. 

As the flexural members are subjected to fatigue, by using the static analysis for 
beams, the maximum bending moment at point A is 𝑀 =1994.50 kN⋅m.  Using the 
static analysis values, the required inertia moment 𝐼 = 18,222.33 in  was compared 
against the selected W33X291 beam inertia moment 𝐼 =17,700 in . Additionally, the 
principal variables to validate the selected W beam were the AASHTO normative, from 
which the generated beam deflection should not be higher than  ( ), and the design spec-
ification for flexural members as per the LRFD method [6]. Thus, the deflection analysis 
is given next. 
Step 2. Based on the application case, the deflection of the bending beam is determined as 

𝑓(𝛿) = 𝑊𝐿8𝐸𝐼  (23) 

By using the estimated values in step 1 of Equation (23) with 𝐼 = 18,222.33 in , the 
maximum deflection for the beam is 𝛿 = 0.0227 m. Thus, based on the AISC design of 
flexural members [6] and the W beam weight-cost criterion, the selected beam is consid-
ered to be right. 

Now, let us determine the generated normal stress values that are acting on the cross-
sectional area as follows. 
Step 3. For the application case, the formulated analysis for the normal and shear stresses 

are 𝐼 = 112 𝑏ℎ − 𝑏ℎ + 𝑡ℎ  (24) 

𝜎 = 𝑀𝑦𝐼  (25) 

𝜎 = 𝑏𝑡 + ℎ𝑡12𝐼 (ℎ 𝑊 − ℎ 𝑊𝑦) (26) 

𝜏 = 𝑏𝑡𝑡 + ℎ6 ℎ 𝑡 𝑊2𝐼  (27) 

From Equation (25), the normal stress value is 𝜎 = 105.74 MPa; from Equation (26), 
the normal stress value is 𝜎 = 67.47 MPa [26]; from Equation (27), the shear stress value 
is 𝜏 = 1.93 MPa. 
Step 4. Based on data from step 3, from Equation (5), 𝜎 = 86.60 MPa; from Equation (2), 𝜎 = 105.84 MPa; from Equation (3), 𝜎 =67.37 MPa, and; from Equation (4), 𝜏 = 

19.23 MPa. 

Figure 2. Static/elastic analysis: (a) Left end fixed-right end free and uniformly loaded W beam; (b) Loads, shear forces,
and bending moments for a given cross-section.

Step 2. Based on the application case, the deflection of the bending beam is determined as

f (δ) =
WL4

8EI
(23)

By using the estimated values in step 1 of Equation (23) with Ix = 18,222.33 in4, the
maximum deflection for the beam is δmax = 0.0227 m. Thus, based on the AISC design of
flexural members [6] and the W beam weight-cost criterion, the selected beam is considered
to be right.

Now, let us determine the generated normal stress values that are acting on the
cross-sectional area as follows.

Step 3. For the application case, the formulated analysis for the normal and shear stresses are

I =
1
12

[
bh3 − bh3

1 + th3
1

]
(24)

σx =
My

I
(25)

σy =

[ bt f + htw

12Iz

](
h3W − h2Wy

)
(26)

τxy =

( bt f

tw
+

h
6

)
h2twW

2Iz
(27)

From Equation (25), the normal stress value is σx = 105.74 MPa; from Equation (26),
the normal stress value is σy = 67.47 MPa [26]; from Equation (27), the shear stress value is
τxy = 1.93 MPa.

Step 4. Based on data from step 3, from Equation (5), σµ = 86.60 MPa; from Equation
(2), σ1 = 105.84 MPa; from Equation (3), σ2 = 67.37 MPa, and; from Equation (4),
τmax = 19.23 MPa.

As a summary of the previous analysis and based on the 98% safety factor given on
the LRFD method for design [5,6], the W33X291 beam is selected to be analyzed by using
the viscoelastic approach. However, due to the addressed principal stress σ1 value being
static, let us now, based on the linear viscoelastic approach, determine it depending on
time as σ1i.

Step 5. By incorporating the value of the maximum principal stress σ1 as σ1i in Equation (8),
the effect of the elastic modulus through time is determined. Similarly, by using
the time-dependent elastic modulus (Ei) values in Equation (13), the corresponding
time-dependent stress σ1i value is determined. In Equation (8), the used viscoelastic
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parameter was η = 9.5 × 1010 GPa·s, which according with Sun et al. [16] corre-
sponds to 20 ◦C. The corresponding analysis is given in the Table 2.

Table 2. Time-dependent stress data.

Time f(t) Time t = i (s) E (t = i)
Equation (8)

δmax
Equation (14)

ε(t=i)
Equation (7)

σ1(i)
Equation (13)

σeq-i
Step 8

0.00 0 213.00 0.0227465 0.0004969 105.84
30 days 2,592,000 211.77 0.0228782 0.0004998 105.24
0.5 year 15,768,000 205.75 0.0235472 0.0005144 102.36
1 year 31,536,000 198.99 0.0243478 0.0005319 99.31
5 years 157,680,000 157.54 0.0307527 0.0006718 83.98
10 years 315,360,000 125.00 0.0387589 0.0008467 74.90

10.50 years 330,976,627 122.49 0.0395518 0.0008640 74.28 184.03
25 years 788,400,000 77.17 0.0627775 0.0013714 64.63
50 years 1,576,800,000 47.12 0.1028084 0.0022459 59.50

In Table 2, elastic modulus is given in GPa, time is measured in seconds s, the corre-
sponding deflections δi are given in meters m, and the strain values are dimensionless.

Because the changes of the deflections δi generate the internal bending moment
Mmax−t=i to change, then for any δi, by performing the static analysis the corresponding
Mmax−t=i must be estimated and utilized to determine its equivalent σeq−i value (See
Equation (32)). In Table 2, the σeq−i value that corresponds to δi=10.5 is also given.

Moreover, because the strain εi determines the equivalent stress σeq−i, then the maxi-
mum strain εmax that corresponds to N f = 106 is needed. Based on this, let us develop the
numerical application.

Step 6. Based on Arasaratnam et al. [20], the data for the stress-strain analysis is shown in
Table 3.

Table 3. Data of the selected structural element.

Tested Stress Tested Strain True Strain True Stress

Spl 398.0000 0.002002 S′pl 0.002000 398.0000
Sy 427.0000 0.004008 S′y 0.004000 427.0000
Sut 578.0000 0.163113 S′ut 0.151100 681.0000
S f 488.0000 0.220200 S′f 0.199015 709.5745

In Table 3, the strain values are dimensionless and the stress data is given MPa.
After this analysis, the stress-strain behavior of the material was determined. But, due

to the analysis of the main cycles is performed at N f = 106, then the strain-life curve is
given next.

Step 7. Based on the true stress-true strain values given in Table 3, the strain-life curve εN
analysis is as follows.

Step 7.1. Based on the true stress-true strain values, the stress amplitude and the
constant b value are determined as follows:

Sa = S′f
(

2N f

)b
(28)

By taking Sa = S′f at N f = 1, and by considering that N(Sa)108 = Se [2,25], from
Equation (28), the constant b value is given as:

b =

log
(

σa
σ′f

)
log
(

2N f

) (29)
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Consequently, b = −0.093, and by substituting it into Equation (28), the stress ampli-
tudes Sa values are shown in Table 4.

Table 4. Strain-life curve data.

Nf
Sa=Smax

Equation (28)/MPa
εmax

Equation (30)
εmin

Equation (31)
εa=εmax
−εmin

εea εpa

1 665.2646
1000 349.8785 0.001993 0.000632 0.001361 0.000810 0.000551

10,000 282.4174 0.001351 0.000307 0.001044 0.000654 0.000390
100,000 227.9637 0.001072 0.000284 0.000789 0.000528 0.000261

1,000,000 184.0094 0.000864 0.000282 0.000582 0.000426 0.000156
10,000,000 148.5300 0.000700 0.000282 0.000416 0.000344 0.000072

100,000,000 119.8915 0.000560 0.000282 0.000281 0.000278 0.000004

In Table 4, the strain values are dimensionless and the stress data is given MPa.

Step 7.2. By using the Sa−max values and by taking the minimum stress σ2 = Sa−min,
the estimated values of the maximum and minimum strain (εmax, εmin) that
define the hysteresis loops given in Figure 3 are:

εmax =
Sa−max

E
+

(
Sa

H

)1/n
(30)

εmin = εmax − 2

[
Sa−max − Sa−min

2E
+

(
Sa−max − Sa−min

H

)1/n
]
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Figure 3. Hysteresis loop of the N f−103 stress amplitude. Note: Notice that hysteresis loops analysis
of Table 4 for each row is needed.

As a result, by using data obtained in step 7.2, the determined values of the strain
amplitude εa are shown in Table 4. Here it is important to highlight that the value of the
determined εmax for N f = 106 is related to the determined time-dependent strain εi value
that defines the equivalent stress σeq−i in step 5.
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Step 7.3. By using both the plastic strain amplitude εpa data and the defined cycles to
failure N f values, the log-linear analysis constant c value is c = −0.3643. The
generated strain-life curve is shown in Figure 4.
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Figure 4. εN curve.

Step 8. As the objective is to define the cycles to failure that correspond with the strain of
εmax−106 = 0.000864, then the determined value of the strain given in Table 2 of step
5 ε(t=10.5) = 0.000864 was interpolated. To this interpolated value, the corresponding
time-dependent stress, as shown in Table 2 is σi = 74.28 MPa. Nevertheless, because
the time-dependent stress σi represents the generated maximum principal stress
σ1 at t = i, then the equivalent supposed load Wi that generates the determined
deflection f (δi) at this time can be estimated as

Wi =
f (δi)8EI

L4 (32)

By using this Wi value, the corresponding equivalent stress is σeq−i = 184.03 MPa.
The main goal of this section is to estimate the stress distribution by using the determined
equivalent stress σeq−i, therefore, the next normal distribution analysis is also necessary.

Step 9. By using the equivalent stress σeq−i = 184.03 MPa value as a mean of the normal
distribution µs and its estimated standard deviation σdev s = 18.40 value, the normal
stress distribution parameters are Ns(184.03, 18.40).

Now, the strength distribution analysis is given.

3.3.2. Stress-Strength Analysis

The steps to determine the normal distribution parameters of the strength are as follows:

Step 10. By using the tensile strength Se = 119.89 MPa value as the mean of the normal
distribution S and its estimated standard deviation σdev S = 11.98 value, the normal
strength distribution parameters are NS(119.89, 11.98).

Step 11. Based on the stress Ns(184.03, 18.40) and the strength NS(119.89, 11.98) distributions
parameters, from Equation (17), Z = −0.0013.

Step 12. From the Z value, the reliability of the stress-strength function for the W beam
33X291, is R(t) = 1%.

In Table 5, the weigh-cost analysis for the W beams 30X357 and 33X318 is given.
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Table 5. Selected structural elements based on the proposed stress-strength method.

Summary of W Beams Data W Beam Selection W Beam Selection W Beam Selection

DATA 30X357 33X291 33X318

Step 1. Supported reaction Ay (kN) 451.89 443.22 446.77
Step 1. Maximum bending moment (kN·m) 2033.51 1994.50 2010.45
Step 2. Max vertical displacement δmax (in) 0.8192 0.8955 0.8030

Step 3. Normal stress σx (MPa) 91.17 105.74 95.91
Step 3. Normal stress σy (MPa) 64.84 67.47 68.79

Step 3. Normal shear stress τxy (MPa) 1.98 1.94 1.95
Step 4. Mean stress σµ (MPa) 78.00 86.61 82.35

Step 4. Alternating stress σa (MPa) 13.16 19.14 13.56
Step 4. Principal stress σ1 (MPa) 91.31 105.84 96.05
Step 4. Principal stress σ2 (MPa) 64.69 67.37 68.65

Step 4. Maximum shear stress τxy (MPa) 13.31 19.23 13.70
Step 5. Time-dep modulus Ei (GPa) 107.44 122.49 111.98

Step 5. Time-dep strain εi at N f = 106 0.000849 0.000864 0.0008577
Step 5. Time-dep deflection δmax (m) 0.04112 0.03955 0.03879

Step 5. Defined time analysis i (years) 13.95 10.50 10.50
Step 6. Fatigue strength limit Se (MPa) 117.30 119.89 118.74

Step 5. Equivalent stress (MPa) 181.01 184.03 182.69
Step 10. Stress-strength reliability 0.15% 0.17% 0.16%

Consequently, as a result of the application case given in Section 3.3, from the second
column of Table 5, the W beam weight-cost that better fulfills the LRFD and AISC selection
methods is the W33X291. Note that even though the performance of the W beam W30X357
fulfills the LRFD and AISC methodologies, among the three alternatives is the one that
presents higher reliability. Therefore, designers can select the one that they consider the
best choice for their objective. In our case, we recommend the beam with higher reliability.
Finally, notice when we use less modified factors the designed reliability will be higher,
this because the higher the Se value, the higher the reliability.

4. Conclusions

(1) Because the generated internal stresses are always related to the bending beam, and
since the proposed method uses these stress values to determine the stress distribution,
then the reliability of any structural element can always be determined by applying
the proposed method.

(2) Because the applied stresses are independent of the material strength, then the pro-
posed method can be used as a complement to the classic design methodology of
structural elements based on the reliability index to discriminate among the possible
addressed alternatives.

(3) Because the proposed method can be performed for any desired cycles, from the
element selection to the reliability determination, then it can be used as a guideline in
any structural analysis. Although here the analysis was performed at 106 cycles (or at
the Se value), it can be performed at any desired cycles.

(4) Note that as in Table 5, when the Se value is lower than the expected equivalent stress
σeq−i, then both the plastic and fracture of cracked mechanical components analysis
should be performed.

(5) Note because the less used modified factors the higher the Se value, then for environ-
ments where fewer modifier factors are needed, the designed beam reliability index
will be higher.

(6) As the principal stress values on which the proposed method is based are the eigen-
values of a quadratic form represented by the stress matrix, the proposed method
can be used to determine the reliability of an analyzed element in any field where
the eigenvalues are known. As is the case for a principal components analysis and a
quality analysis where they are performed using a second-order polynomial model.
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