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Abstract: The main goal of this paper is to create an adaptive model based on multilayer perceptron
(MLP) for prediction of average downlink (DL) data throughput per user and average DL data
throughput per cell within an LTE network technology and in a geo-space that includes a segment
of the Motorway 9th January with the access roads. The accuracy of model prediction is estimated
based on relative error (RE). With multiple trainings and testing of 30 different variants of the
MLP model, with different metaparameters the final model was chosen whose average accuracy
for the Cell Downlink Average Throughput variable is 89.6% (RE = 0.104), while for the Average
User Downlink Throughput variable the average accuracy is 88% (RE = 0.120). If the coefficient of
determination is observed, the results showed that the accuracy of the best selected prediction model
for the first variable is 1.4% higher than the accuracy of the prediction of the selected model for the
second dependent variable. In addition, the results showed that the performance of the MLP model
expressed over R2 was significantly better compared to the reference multiple linear regression (MLR)
model used.

Keywords: predictive models; MLP; prediction; throughput; LTE; cell; model training; model testing;
coefficient of determination

1. Introduction

Wireless network technologies in the development of digital communications have
reached a strong expansion especially in the past few years. The beginning of this devel-
opment belonged to mobile devices with limited performance and the ability to connect
to the Internet with very low data rates. Today, powerful intelligent telephones and
tablets are becoming sensor nodes in a communication network and a kind of generator of
user satisfaction not just in the interaction field human-to-human (H2H) but in different
communication contexts. The expansion of the interaction field of communication with
machine-to-machine (M2M) intelligent components is dynamizing the development of
mobile (cellular) networks in the direction of signal coverage and Internet access for mobile
users in as large an area as possible, especially in rural areas and along roads. The basic
requirements set for operators by users of intelligent devices are their mobility and perma-
nently available Internet connection. In addition, the enormous growth in the amount of
different types of data (Big Data), and especially multimedia transmitted over the network,
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has increased the awareness of end users about the importance of quality of service (QoS)
and quality of user experience (QoE). For this purpose, three key wireless network perfor-
mance indicators (Key Performance Indicators—KPIs) are used: throughput, latency and packet
loss. In this paper, the focus is on the research of the network throughput performance, and
important throughput instances are Downlink (DL) in the direction of DL Throughput (DLT),
i.e., the average throughput in DL direction Average DL Throughput (ADT) used in systems
for monitoring, reporting and comparing the quality of network traffic.

The ADT value can be determined physically—continuously or discretely (by time),
logically (by service) or geographically (by spatial unit). Most of the generated traffic in
the mobile network is the DL traffic, directed from the base station to the user equipment.
Thus, in this paper, the variables considered as output (dependent) ones are average DL
throughput per individual cell of the mobile network and average DL throughput per
individual user in the network along the selected road in the geo-area of the research. The
standard used is Long Term Evolution (LTE) which belongs to the fourth generation (4G)
of the mobile cellular network technologies. The two observed dependent variables are
important indicators of the current state of traffic in the mobile network, whose understand-
ing is important for design and modeling, resource planning and control of operational
readiness, functional suitability and reliability of the network, and their values are signifi-
cantly reflected on the level of the network quality of services (QoS) and on the level of
quality of user experience (QoE). Accordingly, the subject of research in this paper is the
predictive modeling of variations of the value of the average DL throughput in a mobile
network at the cell level and at the user level that will allow us to further define/monitor
QoS and QoE.

A segment of the Motorway 9 January (M9J), a key road in Republika Srpska, located in
the northern part of Bosnia and Herzegovina, was selected for the case study in the geo-
space of research. The length of that road segment is 72 km, between the two locations of toll
collection (Pay toll)—Jakupovci near Banja Luka (BL) and Johovac near Doboj (Db). In the
topological structure with this segment of M9J, the research also includes a part of the road
(about 6 km) on the route Jakupovci—BL and also a part of the main road M17, Johovac—
Db (about 10 km). The geo-space of the research is covered by the 4G telecommunication
network managed by the provider M:tel BL, so the main research goal in this paper is to
create an adaptive model based on multilayer perceptron (MLP) for prediction of average
downlink (DL) data throughput per user (Average User Downlink Throughput in Mbps) and
average DL data throughput per cell (Cell Downlink Average Throughput in kbps) within
the LTE network technology. The initial step in the realized research process was the
establishment of institutional cooperation between the scientific research organization—
Faculty of Transport and Traffic Engineering Doboj—and the mobile operator company—
M:tel Banja Luka—on the basis of the request for availability of the data on classes of
realized telecommunication traffic in M:tel network in a certain observation period.

Network performance modeling is a current challenge and problem area that is
solved using multiple approaches. In this paper, the MLP machine learning model was
chosen because it is characterized by very good predictive abilities due to the possibility
of adaptive approximation of nonlinear dependences of the output on the input. The
contribution of research is reflected in the fact that providers of telecommunications services
need to address more complex issues of their quality, especially in the dimension of end-
user satisfaction.

The input data in the created predictive MLP model are presented with 17 independent
M:tel network variables in accordance with the theoretical analysis of the research results
from the relevant literature and the initial 3GPP standard, whose detailed analysis is given
in Section 4 of this paper. Multiple training and testing of 30 different variants of the MLP
model, with different combinations of metaparameters, based on relative indicators of
prediction accuracy influences the choice of the final model. The quality of the results of this
research is checked by comparing the accuracy of the prediction given by the selected MLP
model with the performance of the multiple linear regression model (MLR) as one of the
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representative models of statistical analysis of the research. In addition to the introduction
(Section 1) and the above mentioned Section 4, the syntactic structure of the six sections in
this paper consists of theoretical analysis of previous research (Section 2), materials and
methods (Section 3), and the main focus next to Section 4 is placed on Section 5 on the
presentation of the research results with discussion. Concluding remarks are given in the
last, Section 6, followed by an overview of the used literature.

2. Overview of Published Relevant Research

Numerous published studies deal with modeling and analysis of the influence of
various factors on the throughput and delay, but also on other key performance indicators
in the mobile network where different types of data are transmitted [1]. The paper [2] lists
some of the most important factors that affect the throughput, namely radio technology,
hardware configuration and limitations, negative effects of signal propagation, user mobil-
ity, network infrastructure of the mobile operator. The authors developed a model based on
machine learning methods for classifying mobile network stability based on user activity,
the mentioned infrastructure, the mobile device model, the link stability, the location,
and the day period. Based on empirical research in the paper [3], an analysis of network
performance such as throughput, delay, packet loss [4] is given, and it is determined
that there is a significant influence of several factors on those variables. An interesting
methodology for evaluating the performance of 3G networks and mobile applications is
presented in [5]. TCP throughput, Round Trip Time (RTT) and retransmission rate are
considered as indicators of network performance, and their dependence on factors such as
signal strength, topology, locations, the day period. Research in [6] has shown that there is
a correlation between signal strength and throughput, but that it depends on the time of
day at which performance measurement was performed.

Modeling of the LTE network performance of 4G networks is the subject of the research
of [7]. A similar study was conducted and published by the authors in [8] who developed
a stochastic model for throughput prediction in an LTE network. The authors in [9] use the
Random Forest algorithm to create a model that predicts the throughput in a cellular network
based on the operator’s data on its performance, radio link quality data and contextual
data. A significant result from previous research is made by numerous algorithms for
network performance prediction, the systematic comparison of which is presented in [10].
The analysis of latency, as an important indicator of network performance for M2M traffic
and online game traffic in the High Speed Packet Access (HSPA) network technology is
given in [11], and a similar study was performed in [12].

The model for predicting the level of user experience in web search, based on logistic
regression, was created and presented in [13]. For the prediction of the DL and uplink
(UL) traffic in the base stations of the mobile network along the highway, a model based
on convolutional artificial neural networks is presented in [14]. Using multilayer artificial
neural networks in [15], Ur Rehman and his team modeled the DL throughput in an LTE
network based on several independent variables related to the radio traffic conditions
in the networks. Following the example of that research, with conceptual similarities,
in this paper, an MLP model is created in which the metaparameters are completely
different, a significantly larger set of independent variables as inputs to the model, but also
a significantly larger set of training and testing data. After testing multiple model variants
with different training–testing ratios, it was found that a training and testing data ratio of
70%:30% gives good results, although a 50%:50% ratio also gives good model results. From
the practical aspect, the purposeful application of the MLP model in a specific geo-space
and analytically explained interactions of virtual and physical devices of the M:tel network
and the M9J set an additional dimension of the quality of predictive traffic modeling in
networks. The following Table 1 presents an overview of the referenced previous research
in the subject of this paper with highlighted novelties presented in this paper.
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Table 1. Overview of referenced previous research in the subject of this paper.

Number of Reference Title of the Paper/Book Applied Model Keywords That Correlate with This Paper Novelties in This Paper/Research

[1] Komunikacioni inženjering Models of communication theory Communication, network, performances, model

-An MLP model with a new set of
metaparameters was applied

-A significantly larger set of independent
variables as inputs to the model

-A significantly larger set of training and
testing data

-Multiple trainings and testing of 30
different variants of the MLP model,

with different metaparameters

[2] Analyzing Throughput and Stability in
Cellular Networks

Bagging based classification, random
forest,

conditional inference tree

Machine learning model, throughput, prediction,
network performance

[3] An Empirical Characterization of Cellular
Network Performance Empirical model Throughput, 4G LTE, network parameters

[4]
On the Quest for New KPIs in Mobile
Networks: The Impact of Throughput

Fluctuations on QoE
Mathematical model Throughput, KPI, average downlink throughput

[5] Anatomizing Application Performance
Differences on Smartphones Empirical model, probability model Cellular data network performance, throughput

[6] Mobile Network Measurements—It’s not all
about Signal Strength Statistical model Throughput, signal strength, network coverage

[7] Modeling and Performance Evaluation of LTE
Networks with Different TCP Variants LTE simulation model LTE network, throughput, TCP performance

[8] A Model for Throughput Prediction for Mobile
Users Stochastic model LTE user throughput, prediction, mobile

networks

[9]
Instantaneous Throughput Prediction in
Cellular Networks: Which Information Is

Needed?
Random forest Throughput prediction, cellular networks, users

[10] An Empirical Study of Throughput Prediction
in Mobile Data Networks Empirical model TCP throughput, prediction error, mobile

networks

[11] Latency analysis for M2M and Online Gaming
traffic in an HSPA network Statistical model Latency, traffic, throughput

[12]
Evaluation of the UTRAN (HSPA) performance
in different configurations in the presence of

M2M and online gaming traffic
Statistical model Latency, traffic, throughput

[13]
Logistic regression based in-service assessment

of mobile web browsing service quality
acceptability

Binary logistic regression model QoE prediction, network performance, QoS

[14]
Mobile Traffic Prediction Based on Densely
Connected CNN for Cellular Networks in

Highway Scenarios
Convolutional neural networks Traffic prediction, highway, deep learning

[15] LTE Downlink throughput modeling using
Neural Networks

Artificial neural network model, deep
neural network

Artificial neural networks, user downlink
throughput, cell downlink throughput
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3. Materials and Methods

Traffic prediction and planning in existing telecommunications networks is increas-
ingly oriented towards connecting physical and virtual devices based on the use of current
concepts of the M2M communication, Wireless Sensor Networks (WSN), Internet of Things
(IoT) and Cyber Physical Systems (CPS). Machines or systems, i.e., intelligent devices in
the network, communicate with wireless technologies according to the LTE standards,
in a way that the devices forward the collected data in the form of packets through the
telecommunication network, thus generating traffic, and applications process them and
provide information for users. Therefore, traffic generation is performed in the domain of
the provider’s network, which provides communication service to users—devices, data
transfer in the domain of an external or global communication network, and their process-
ing in the application domain. In addition to the growing number of intelligent devices,
the diversity of their application is increasingly present in the networks, which affects the
setting of various requirements and restrictions related to data transfer speeds, packet sizes,
delays, reliability, unattended operation, etc. These communication requirements have
been standardized by the Third Generation Partnership Project (3GPP) regulatory body.
Therefore, e.g., Technical Specification [16] specifies and establishes the characteristics of
the physicals layer procedures in the Frequency Division Duplex (FDD) and Time Division
Duplex (TDD) modes of Evolved Universal Terrestrial Radio Access (E-UTRA). In [17], the
description and definition of the measurements performed by Evolved UMTS Terrestrial
Radio Access Network (E-UTRAN) is given. Traffic steering control information is subject
to technical specification [18]. Radio Link Control (RLC) protocol specifications are given
in [19]. Similar to [17], in [20] the measurement specification performed by E-UTRAN is
given. Technical specification [21] is related to improving LTE coverage. Traffic modeling
in M2M communications is presented in [22] and [23].

On the other hand, the European Telecommunications Standards Institute (ETSI),
which also owns the LTE as the world’s dominant mobile phone technology, is in charge of
standardizing the abstract Middleware service layer.

For the defined subject and objectives of the research, the methodology of the research
process was implemented in several successive steps: 1. Data collection; 2. Creating a
predictive model—digital data treatment (defining the model metaparameters, model
training, model testing, selection of the final model); 3. Results analysis and discussion;
4. Conclusion.

3.1. Data Collection

Data collection was performed in accordance with the request which specifies the
types of data for modeling the average DL network throughput along the M9J in the geo-
space of research, at the user level and at the level of individual cells. The data relate mainly
to the radio channel characteristics, the physical resource occupancy, the number of users,
the base stations and cell parameters, the network topology, and the signal parameters.
During the month of January 2021, the mobile operator (M:tel BL) through several iterations
delivered a set of the research data provided by a third party, a vendor. In the obtained
database for the LTE network consisting of a total of 71,053 measurements, the values of
the variables were registered in a period of 30 days (from 15 December 2020 to 15 January
2021), with 1-h measurement frequency a day, by individual cells that cover the observed
geo-space of the M9J road with the signal. Therefore, each of the 71,053 measurements
represents a one-dimensional array or input/output vector consisting of 19 values, of
which the first 17 represent independent and the last two, dependent variables.

3.2. Creating a Predictive Model—Digital Data Treatment

Creating a predictive model, based on an artificial neural network (ANN), multilayer
Perceptron (MLP), was preceded by structuring a set of the research data into input/output
vectors in an Excel file. Out of a total of 71,053 collected input data, the software detected
and removed those with unusual values (equal to zero) and with missing values of variables.
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Thus, according to the supervised learning paradigm, 64,301 inputs/output vectors were
included in the finally structured set adapted for training and testing of the predictive
model. Supervised learning, as a machine learning technique, implies the existence of a
data set of the input x and the corresponding output y, for training so that the created
model of classification (y can predict class x) or regression (y can have values in continuity)
can predict previously “unseen” inputs.

In LTE networks, as components of modern cyber–physical integrations of physical
and digital processes, self-configuration of the software and adaptive devices of machines
is performed and maintained by applying corrective decisions [24] on the principles of
supervised machine learning. The collection of the input data about the physical processes
is performed by sensors, while the information processing of a data set or machine learning
of a model is performed by the ANN application through a layered architecture of a series
of process elements—interconnected artificial neurons. The way in which an artificial
neuron processes the signals is defined by a transfer function that is a combination of the
activation and output functions. The activation function maps the individual input signals
in a neuron into a single composite signal, while the output function maps the value of
the activation function into the output value of the neuron. The most common type of the
output function is the sigmoid function, which limits the value of the activation function
to the interval between 0 and 1. Each synapse, the connection between the neurons, is
determined by its weight factor, and during the learning process they are adjusted in
learning the function. Modification of these adjustable parameters allows the network to
learn a certain law of mapping the vectors from the input space X to the output space
Y = f (X). Therefore, it can be said that the ANN is a graph created by composing different
transfer functions of individual neurons. Thus, the transfer function is a composite function
that maps a vector from the N dimensional input space, also called the parameter space, to
the neuron output space [25]. An artificial neuron whose inputs are assigned the weight
factors, and whose output function is a simple step function or threshold function, is called
a perceptron, and the problem it most often solves is a linear classification, meaning that
data in the space must be linearly separable [26]. The main feature and advantage of the
ANN is learning, which involves the process of adapting the network parameters [27].

The fact that MLP, in addition to the input and output layer of the ANN, has one
or more hidden layers in its architecture that increase the depth of the network gives it
the greatest advantage and power in this class of models because the output function of
neurons is nonlinear, usually of the sigmoid shape [28]. According to [29], a multilayer
perceptron is considered to allow nonlinear mapping between the input and the corre-
sponding output vector. The learning rate, the number of hidden layers, the number of
neurons in each hidden layer, and the shape of the output function of the hidden layer
neurons are metaparameters of the model and are estimated before the start of the network
training or learning. Therefore, an MLP is designed to approximate (universal approxima-
tor) any continuous function, and in addition, it can solve the problems that are not linearly
separable. In this paper, the MLP model was created in the IBM SPSS Statistics 22 software
that uses nonlinear modeling to detect complex relationships between the collected data. It
enables the creation of machine learning models, integration with Big Data and seamless
deployment into applications. The process of creating an MLP model based on an initial set
of 71,053 input/output vectors, provided by a vendor, can be represented algorithmically
in the following successive steps (Figure 1):

• Removal of unusual and missing values to obtain a final set of 64,301 input/
output vectors;

• Rescaling the values of 17 input variables;
• Selection of the ratio between the training data set and the testing data set (30%:70%,

40%:60%, 50%:50%, 60%:40%, and 70%:30%);
• Selection of MLP model metaparameters (number of neurons in hidden layers: 10,

10; 20, 20; 30, 30; output function of hidden layer neurons: Hyperbolic tangent
or Sigmoid);
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• Selection of MLP model training metaparameters (online learning, backpropagation
algorithm, initial learning rate = 0.4, lower learning rate limit = 0.001, number of
epochs—automatic);

• Selection of training stop criteria (15 min or five iterations without reducing the
error function);

• Choice of how to present results (tabular, graphical results);
• Training and testing of MLP model;
• Prediction results: relative error (RE), degree of accuracy, coefficient of determina-

tion (R2);
• For each of the 30 different variants of the MLP model, training and testing are

performed three times;
• Selection of the best final model based on the average value for three measurements;
• Selection and presentation of the best individual prediction results for both depen-

dent variables;
• Comparison of MLP model prediction performance with the created MLR model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 25 
 

 Training and testing of MLP model; 

 Prediction results: relative error (RE), degree of accuracy, coefficient of determination 

(R2); 

 

Figure 1. Algorithm for creating MLP model. 

 For each of the 30 different variants of the MLP model, training and testing are per-

formed three times; 

 Selection of the best final model based on the average value for three measurements; 

 Selection and presentation of the best individual prediction results for both depend-

ent variables; 

 Comparison of MLP model prediction performance with the created MLR model. 

Figure 1. Algorithm for creating MLP model.



Appl. Sci. 2021, 11, 3559 8 of 25

According to the above steps of the algorithm, the training and testing of several
different MLP models were performed, with different combinations of the metaparameters.

On the data set for testing, the validation of each individual model was performed,
i.e., assessment of its quality based on relative criteria: RE and R2, which are dimensionless
quantities. In general, the relative error can be defined as the ratio of absolute error, which
is obtained as the difference between the value of the model prediction and the actual value
(real value from the data set), according to the actual value of the observed variable:

RE =

∣∣∣∣Predicted Value − Real Value
Real Value

∣∣∣∣. (1)

This type of error is relative to the actual value of the variable, has no unit of measure
and can be expressed as a percentage. In this study, the two dependent variables, Cell
Downlink Average Throughput and Average User Downlink Throughput, are continuous in
nature, meaning that the RE of MLP model training and testing represents the total, average
sum of RE values, represented by expression (1), for all measurements. Based on the RE,
another parameter of the model quality can be defined, and that is the degree of accuracy
of the model which is equal to 1-RE (%). Based on the above indicators, the best final model
was selected, the results of which are presented in Section 5.

4. Analysis of Research Variables

The permanent increase in the number of connected devices in the network affects
the increase in traffic at the cellular level and the entire network, which represents new
challenges that service providers must face to ensure a satisfactory level of QoS in the
transmission of speech, video and audio streams, images, interactive content [30]. There-
fore, it is crucial to perform traffic modeling, which means modeling its parameters, and,
in this paper, they represent the two dependent variables: average DL throughput per
cell of the mobile network, and average DL throughput per user in the observed network.
Along roads in urban and rural areas, the existing transport infrastructure is today rapidly
supplemented by modern information and communication technologies (ICT) [31]. Dis-
tributed multimedia information systems for traffic monitoring are the subject of research
in [32]. Coding algorithms are of great importance in the transmission of multimedia data,
and some of them are presented in [33]. Technologies based on the principles of artificial
intelligence, such as the adaptive neuro-fuzzy model for traffic signs recognition [34], and
for predicting the level of Wi-Fi signals make traffic modeling in such spaces even more
important [35].

4.1. Coverage of Deveti Januar Motorway with Mobile LTE Technology

This part of the section provides an overview of the mobile LTE technology cov-
erage in the M:tel network, along the M9J road, from the aspect of the number of the
base stations and cells. They are then textually and graphically processed providing a
detailed insight into the 17 independent research variables marked as follows: (1) DL PRB
Usage Rate, (2) Average CQI, (3) RRC.ConnReq.Att, (4) RRC.ConnReq.Succ, (5) DL ReTrans
Rate, (6) QPSK.TB.Retrans, (7) 16QAM.TB.Retrans, (8) 64QAM.TB.Retrans, (9) QPSK.TB,
(10) 16QAM.TB, (11) 64QAM.TB, (12) Traffic.User.Avg, (13) DL iBLER, (14) DL Cell Traffic
Volume, (15) QPSK.ErrTB.Ibler, (16) 16QAM.ErrTB.Ibler, (17) 64QAM.ErrTB.Ibler.

In the research process, the collected data, i.e., the values of the independent and
dependent variables, as already mentioned, were given with a sampling frequency of 1 h,
for a period of 30 days, for each cell that covers M9J with the LTE technology and observed
parts of the roads, from the toll booths toward BL and Db. The signal coverage is provided
by 28 base stations, and considering that some of them cover up to six cells, and some
only one, a network structure of 98 cells was formed along and around the observed road.
However, the specific number of the cells that cover the area above the road is smaller, so
that in the results of the Drive Test measurement of the M:tel operator from 16 December
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2020 on the road, 34 cells can be identified which are shown in Figure 2 in different colors
(different colors were used to show the coverage and distance between the adjacent cells).
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In the continuation of this section, eight research variables are analyzed under the
points with subheadings of their titles. Integrated under these titles, the other nine in-
dependent variables are defined as follows: (1) within Section 4.5, the defined variables
are QPSK.TB.Retrans, 16QAM.TB.Retrans, 64QAM.TB.Retrans, QPSK.TB, 16QAM.TB, and
64QAM.TB due to the direct connection to the retransmission rate—DL Retrans Rate which
is also presented mathematically within this subtitle; (2) regarding that the variables
QPSK.ErrTB.Ibler, 16QAM.ErrTB.Ibler and 64QAM.ErrTB.Ibler influence Initial Block Error
Rate (iBLER), they are analyzed within Section 4.7.

4.2. DL PRB Usage Rate

The Physical Resource Block (PRB) is the smallest unit of resource that can be allocated
to a user in an LTE network. If the frequency domain is observed, the resource blocks
consist of 12 subcarriers of 15 kHz each or 24 subcarriers of 7.5 kHz each. This means that
the bandwidth of the PRB is 180 KHz. In most cases, the number of subcarriers used per
block of resources is 12 [36].

In the time domain, one physical block of resources occupies one slot (seven symbols)
in duration of 0.5 ms, which represents 1/20 of the structure of the radio frame used for
DL and UL data transmission in the LTE [37]. The smaller resource unit and the smallest
discrete part of the radio frame is a resource element (RE), which has the dimensions
1 symbol × 1 applicant, which means that one PRB has 84 resource elements. The described
structure of one physical block of resources with the resource elements is shown in Figure 3.
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The independent variable or a counter labeled DL PRB Usage Rate represents the
average utilization of DL physical blocks of resources (expressed as a percentage). It is
calculated as the ratio of the average number of used physical blocks of the physical DL
shared channel (Physical Downlink Shared Channel—PDSCH [38]) and the total available
number of the DL physical resource blocks multiplied by 100. PDSCH is a physical DL
common transport channel which, in addition to transmitting the user data, has the function
of transmitting the data important for control, and specific information of higher layers
and DL system information.

4.3. Average CQI

In an LTE network, the value of the Channel Quality Indicator (CQI) is sent by the
mobile device via the UL connection to the eNodeB, which provides the User Equipment
(UE) connection to the rest of the mobile network, and which, based on that value for data
transmission in the DL direction, chooses the appropriate Modulation and Coding Scheme
(MCS) (Table 2).

Table 2. CQI values [39].

CQI Index Modulation Approximate Code Rate Efficiency (Information
Bits per Symbol)

0 No transmission - -
1 QPSK 0.076 0.1523
2 QPSK 0.12 0.2344
3 QPSK 0.19 0.3770
4 QPSK 0.30 0.6016
5 QPSK 0.44 0.8770
6 QPSK 0.59 1.1758
7 QPSK 0.37 1.4766
8 16QAM 0.48 1.9141
9 16QAM 0.60 2.4063
10 16QAM 0.45 2.7305
11 64QAM 0.55 3.3223
12 64QAM 0.65 3.9023
13 64QAM 0.75 4.5234
14 64QAM 0.85 5.1152
15 64QAM 0.93 5.5547
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In this way, it defines the data transfer rate in the channel. The CQI value is determined
based on the signal-to-interference plus noise (SINR) ratio and based on the characteristics
of the mobile device. Most often, the mobile device selects the CQI value, and thus the
MCS, so that the error rate (BLER) does not exceed 10%. Therefore, each CQI value is
mapped to the corresponding modulation scheme (Quadrature Phase Shift Keying—QPSK,
Quadrature Amplitude Modulation—QAM: 16QAM and 64QAM) which corresponds to a
certain coding rate (Code Rate), and the number of bits per symbol. Table 2 shows CQI
values according to 3GPP LTE standards [39].

4.4. RRC.ConnReq.Att and RRC.ConnReq.Succ

Radio resource control (RRC) is a multirole network protocol that defines communica-
tion between an eNodeB and a mobile device. From a base station perspective (eNodeB), a
mobile device in a cell can be found in two basic states [40]: Idle Mode and Connected Mode.

The independent variable RRC.ConnReq.Att represents the number of attempts by
the UE to establish a connection with an eNodeB, i.e., to start the RRC connection setup
procedure, as shown in Figure 4 under number 1. Each time the procedure is started,
this variable is incremented by one. In this case, the number of repeated connection–
retransmission is not counted. RRC.ConnReq.Succ represents the number of confirmation
messages about the completion of the Connection Setup procedure that the eNodeB receives
from the user equipment in the cell and is incremented by one each time the eNodeB
receives this message. In Figure 4, this step is marked under number 3.
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4.5. DL ReTrans Rate

As mentioned above, DL-SCH is a shared transport channel for transmitting user data
in the DL direction. If the connection between the eNodeB and the user equipment is not
established in one attempt, a reattempt is undertaken to send the packet over this channel
or the retransmission, usually based on the modulation and coding scheme determined
during the initial transmission. The data packets are sent in Transport Blocks (TB), and the
block size is determined by the number of bits sent within one Transmission Time Interval
(TTI) lasting 1 ms. If retransmissions by signal modulation types are taken into account, the
value of the retransmission rate can be calculated according to the following expression:

DL Retrans Rate =
QPSK.TB.Retrans + 16QAM.TB.Retrans + 64QAM.TB.Retrans

QPSK.TB + 16QAM.TB + 64QAM.TB + QPSK.TB.Retrans + 16QAM.TB.Retrans + 64QAM.TB.Retrans
× 100 (2)

where the meanings of the individual variables that appear in the expression (2) are given
in Table 3, and they are, in addition to DL ReTrans Rate, used as independent variables in
the predictive model.
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Table 3. Values by which the DL retransmission rate is calculated.

Mark Meaning

QPSK.TB.Retrans No of retransmitted TB into DL-SCH under QPSK modulation
16QAM.TB.Retrans No of retransmitted TB into DL-SCH under 16QAM modulation
64QAM.TB.Retrans No of retransmitted TB into DL-SCH under 64QAM modulation

QPSK.TB No of initially emitted TB into DL-SCH under QPSK modulation
16QAM.TB No of initially emitted TB into DL-SCH under 16QAM modulation
64QAM.TB No of initially emitted TB into DL-SCH under 64QAM modulation

4.6. Traffic.User.Avg

The value of this variable depends on the user states at the time of sampling (idle
state or connected state). Every second, the number of UEs in the connected state in
the cell is registered. At the end of the measurement interval, the average number of
UEs in the specified state is taken as the value of the independent variable marked with
Traffic.User.Avg.

4.7. DL iBLER

The term Block Error Rate (BLER) can be defined as the ratio of transmitted blocks
with error and the total number of transferred blocks and is expressed as a percentage.
Detection of errors in the transport blocks on the receiver side is performed using the Cyclic
Redundancy Check (CRC) technique. In measuring network performance, the Initial Block
Error Rate (iBLER) metric is often used, which shows the ratio of the number of blocks with
initial transmission errors and the total number of initially transmitted transport blocks [42].
If certain types of modulation are observed in the transport channel, then the expression
for iBLER can be written in the following form:

DL iBLER =
QPSK.ErrTB.Ibler + 16QAM.Err.TB.Ibler + 64QAM.ErrTB.Ibler

QPSK.TB + 16QAM.TB + 64QAM.TB
(3)

where the meanings of the marks of the variables appearing in the model are defined in
Table 4. The three variables shown are, in addition to iBLER, also taken as independent
variables of the predictive model.

Table 4. Values by which the iBLER value is calculated.

Mark Meaning

QPSK.ErrTB.Ibler Number TB with initial errors under QPSK modulation
16QAM.ErrTB.Ibler Number TB with initial errors under 16QAM modulation
64QAM.ErrTB.Ibler Number TB with initial errors under 64QAM modulation

4.8. DL Cell Traffic Volume

This variable represents the total aggregated DL traffic in the cell up to the moment of
sampling and is expressed in Gbit. According to the standard 3GPP TS 23.203 rel 8, the
total aggregate traffic is grouped into nine classes by the quality of service, so that the QoS
Class Identifier (QCI) clearly identifies each traffic class with numbers from 1 to 9, which is
the case in the M:tel LTE network. QCI definitions and explanations are given in [43,44].
Each QCI defines the following four parameters, which are given in Table 5 in addition to
the service examples for each QCI value [45]:

1. Bit rate: guaranteed Bit Rate (GBR) or Non-Guaranteed Bit Rate (Non-GBR);
2. Priority level: a number in the range between 1 and 9, where 1 represents the high-

est priority;
3. Packet Delay Budget—PDB. Defines the upper limit of the allowed packet delay;
4. Packet Error and Loss Rate (PELR). Defined as the ratio of the number of packets with

errors-lost packets and the total number of sent packets [46].
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The examples of services are given in the following Table 5 and can be classified into
traffic classes in a 3G mobile network, according to the definition of the Organization for
the Development of International Telecommunication Standards (3GPP), by QoS criteria:
(1) conversational traffic (voice transmission—talks and lectures); (2) streaming traffic
(audio/video streaming—video telephony, telnet, voice and video services); (3) interactive
traffic (internet search—interactive applications such as interactive email and interactive
web browsing); (4) background traffic (W3, email—background download, FTP, news
and Telnet, download of background files). This clustering is usually used as a base in
network traffic.

The parameters listed in Table 5, among others, define the quality of an individual
service from the aspect of the mobile operator, i.e., the service provider. Although the QoS
is a well-defined and established research domain, it is often necessary, but also difficult, to
distinguish it from the quality of the user experience. The QoE puts the person-user and
his perception of the quality of experience in the foreground, but in general it can be said
that with the increase of QoS, the operator can expect a higher value of QoE [47].

Table 5. QCI values and corresponding parameters in LTE network [45].

QCI Priority Resource Type Delay Budget (ms) PELR Example of Service

1 2 GBR 100 10−2 Conversational voice
2 4 GBR 150 10−3 Conversational video (live streaming)
3 3 GBR 50 10−3 Real-time gaming
4 5 GBR 300 10−6 Nonconversational video (buffered streaming)
5 1 Non-GBR 100 10−6 IMS signaling

6 6 Non-GBR 300 10−6 Video (buffered streaming), TCP-based (e.g., www, e-mail,
chat, FTP, P2P file sharing, progressive video, etc.)

7 7 Non-GBR 100 10−3 Voice, video, interactive gaming

8 8 Non-GBR 300 10−6 Video (buffered streaming), TCP-based (e.g., www, e-mail,
chat, FTP, P2P file sharing, progressive video, etc.)

9 9 Non-GBR 300 10−6 Video (buffered streaming), TCP-based (e.g., www, e-mail,
chat, FTP, P2P file sharing, progressive video, etc.)

5. Results and Discussion

This section presents the research results and the performance of the created multiple
linear regression and MLP model in order to determine the justification for selection
of a better model for traffic prediction in networks. Both models are created in IBM
SPSS technology. It is known from the theoretical analysis of previous research that
linear regression models belong to the group of statistical models and as such have certain
shortcomings when it comes to their application on large databases. At the same time,
machine learning-based predictive models, such as MLP, show better agreement (model fit)
with available data because an optimal prediction solution is found through an iterative
parameter setting procedure [27].

5.1. Model of Multiple Linear Regression (MLR)

The multiple linear regression model, as one of the most commonly used statistical
models, was also created in the IBM SPSS technology. Initially, in the regression analysis, the
dimensionality of the input space was represented by 17 previously analyzed independent
variables. Unlike MLP, the output space in the regression model consists of only one
dependent variable, so that predicting the value of the average data throughput at the
cell level and at the user level along the observed segment of the motorway requires two
independent models.

By regression analysis, the variable RRC.ConnReq.Att was excluded from both models
due to the existence of strong multicollinearity with the variable RRC.ConnReq.Succ, which
means that in this case it represents a redundancy. Table 6 shows the results of the regression
analysis that allow the value of the observed target dependent variable (Y1 and Y2) to be
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calculated based on a linear combination of inputs—independent variables denoted by
X1, X2, X3, . . . , X16. Of particular interest is the column showing the nonstandardized
coefficients (B) that appear in the multiple linear model. Coefficients B represent the
estimated model parameters from the data using the method of least squares. Based on the
values shown in the column marked with Sig., it can be concluded that all coefficients, in
both models, including the constant have a value less than 0.05, which means that they are
statistically significant and need to be included in the models.

Based on the coefficients shown in Table 6, the following regression model was formed,
which represents a linear dependence of the value of the variable Cell Downlink Average
Throughput of the 16 research variables:

Y1 = −922.443 − 416.156X1 + 1359.353X2 + 0.428X3 − 22.248X4 − 289.941X5 + 748.020X6 + 1043.475X7 − 0.157X8

− 0.046X9 + 0.033X10 + 0.075X11 + 0.016X12 − 0.025X13 + 0.004X14 − 0.005X15 + 0.003X16
(4)

The value of the determination coefficient of this model is R2 = 0.541.

Table 6. Basic results of the regression analysis.

Independent Variables

Dependent Variables Cell Downlink Average Throughput (Y1) Average User Downlink Throughput (Y2)

Unstandardized Coefficients
Sig.

Unstandardized Coefficients
Sig.

B Std. Error B Std. Error
(Constant) −922.443 214.142 0.000 −11.194 0.358 0.000

DL PRB Usage Rate (X1) −416.156 4.679 0.000 −0.941 0.008 0.000
Average CQI (X2) 1359.353 19.397 0.000 3.261 0.032 0.000

RRC.ConnReq.Succ (X3) 0.428 0.033 0.000 0.001 0.000 0.000
Traffic.User.Avg (X4) −22.248 5.621 0.000 −0.103 0.009 0.000
DL ReTrans Rate (X5) −289.941 11.376 0.000 0.202 0.019 0.000

DL iBLER (X6) 748.020 12.815 0.000 0.046 0.021 0.033
DL Cell Traffic Volume (X7) 1043.475 6.101 0.000 1.031 0.010 0.000

16QAM.ErrTB.Ibler (X8) −0.157 0.005 0.000 −7.331 × 10−5 0.000 0.000
64QAM.ErrTB.Ibler (X9) −0.046 0.003 0.000 7.704 × 10−5 0.000 0.000
QPSK.ErrTB.Ibler (X10) 0.033 0.003 0.000 4.820 × 10−5 0.000 0.000

16QAM.TB.Retrans (X11) 0.075 0.004 0.000 1.603 × 10−5 0.000 0.008
64QAM.TB.Retrans (X12) 0.016 0.002 0.000 −4.992 × 10−5 0.000 0.000
QPSK.TB.Retrans (X13) −0.025 0.002 0.000 −1.762 × 10−5 0.000 0.000

16QAM.TB (X14) 0.004 0.000 0.000 1.695 × 10−6 0.000 0.001
64QAM.TB (X15) −0.005 0.000 0.000 −8.159 × 10−6 0.000 0.000
QPSK.TB (X16) 0.003 0.000 0.000 1.049 × 10−5 0.000 0.000

Another regression model defines the linear connection of the variable Average User
Downlink Throughput and the observed set of the independent variables and can be written
in the following form:

Y2 = −11.194 − 0.941X1 + 3.261X2 + 0.001X3 − 0.103X4 + 0.202X5 + 0.046X6 + 1.031X7 − 7.331·10−5X8 + 7.704·10−5X9

+ 4.820·10−5X10 + 1.603·10−5X11 − 4.992·10−5X12 − 1.762·10−5X13 + 1.695·10−6X14 − 8.159·10−6X15 + 1.049·10−5X16
(5)

the value of the determination coefficient of this model is R2 = 0.543.

5.2. Multilayer Perceptron Model (MLP)

The proposed MLP model is a supervised machine learning model that, by training
on a training data set, learns the function that performs mapping Rm→ Ro. In this case, the
dimension of the input space is m = 17, and the output o = 2.

According to the algorithm given in Section 3, the first step in creating an MLP model
in the IBM SPSS technology involves preprocessing the data, i.e., rescaling or reducing all
input values to the same range. In this study, a standardization method was used according
to which the variables are rescaled binary so that they have an arithmetic mean equal to 0
and a standard deviation equal to 1.
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In order to select the best final model, a total of 30 variants of the MLP model were
tested for prediction of the observed dependent variables with different combinations
of ratios of the set sizes for training and testing (30%:70%, 40%:60%, 50%:50%, 60%:40%,
70%:30%), and different values of the following metaparameters:

(1) Number of neurons in hidden layers. The architecture of all tested model variants
consists of one input layer with 17 neurons, one output layer with two neurons and
two hidden layers between them, whose size varies in combinations and can be: 10,10;
20,20; 30,30.

(2) The shape of the output function of neurons in hidden layers. The IBM SPSS technology
offers the possibility to select one of the two functions, which were examined in combi-
nations with the first metaparameter of the model, namely hyperbolic tangent (Hyp. Tg.)
and sigmoid function (Sig.). Each of the 30 variants of the MLP model with the above
combinations were tested by multiple passes through the multilayer network architecture,
i.e., triple consecutive trainings and tests, and the results are presented by the relative
testing errors in Table 7 for both dependent variables. Based on the minimum value of the
arithmetic mean of this relative accuracy criterion for the three measurements, the final
model was selected.

According to [48], machine learning models are most often trained with 70% of the
total data set, while the remaining 30% of the set is reserved for testing, i.e., to assess
the accuracy and quality of the model. Additionally, in [49] the division of data in the
mentioned ratio showed a good influence on the accuracy of the classifier. The random
forest model presented in [50] showed the lowest mean standard error when dividing the
data in the ratio of 70%:30%.

The selection of this ratio when creating predictive models is one of the inevitable
steps that affects its performance. Based on the results of multiple tests of 30 different
model variants in Table 7, it is concluded that the best performance is shown by the MLP
model variant in which the division of the total data set of 64,301 input/output vector was
performed in the ratio 70%:30%.

The average RE of the selected model for the output variable Cell Downlink Average
Throughput is RE = 0.104 which means that the degree of accuracy is equal to 89.6%. For
the variable Average User Downlink Throughput, the average relative error has the value
RE = 0.120, i.e., the degree of accuracy is 88%.

Table 7 also shows that each hidden layer of the architecture of the selected model
consists of 20 neurons, whose output function has the shape of the hyperbolic tangent
tanh x (Figure 5). The output function of the two neurons in the output layer for the selected,
but also for all tested variants of the MLP model, is linear or Identity.
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Table 7. Relative testing errors of the tested models.

The Ratio of
Data Sets for
Training and

Testing

No of
Neurons in

Hidden
Layers

Output
Function of
Neurons in

Hidden Layers

Cell Downlink Average
Throughput

Average User Downlink
Throughput

Measurements Measurements

1. 2. 3. Average 1. 2. 3. Average

30%:70%

10, 10
Hyp. Tg. 0.124 0.127 0.129 0.127 0.141 0.141 0.141 0.141

Sig. 0.133 0.145 0.134 0.137 0.145 0.144 0.141 0.143

20, 20
Hyp. Tg. 0.114 0.123 0.131 0.123 0.129 0.137 0.148 0.138

Sig. 0.124 0.134 0.131 0.130 0.136 0.147 0.145 0.143

30, 30
Hyp. Tg. 0.120 0.113 0.122 0.118 0.140 0.134 0.133 0.136

Sig. 0.135 0.118 0.124 0.126 0.145 0.132 0.135 0.137

40%:60%

10, 10
Hyp. Tg. 0.121 0.125 0.147 0.131 0.136 0.137 0.157 0.143

Sig. 0.127 0.148 0.133 0.136 0.141 0.145 0.148 0.145

20, 20
Hyp. Tg. 0.114 0.129 0.119 0.121 0.131 0.150 0.136 0.139

Sig. 0.123 0.115 0.119 0.119 0.141 0.131 0.132 0.135

30, 30
Hyp. Tg. 0.117 0.111 0.111 0.113 0.140 0.131 0.129 0.133

Sig. 0.129 0.117 0.119 0.122 0.145 0.137 0.133 0.138

50%:50%

10, 10
Hyp. Tg. 0.123 0.141 0.122 0.129 0.134 0.164 0.141 0.146

Sig. 0.170 0.120 0.211 0.167 0.158 0.137 0.188 0.161

20, 20
Hyp. Tg. 0.112 0.120 0.114 0.115 0.128 0.124 0.138 0.130

Sig. 0.122 0.130 0.121 0.124 0.137 0.138 0.132 0.136

30, 30
Hyp. Tg. 0.109 0.117 0.126 0.117 0.123 0.135 0.137 0.132

Sig. 0.132 0.117 0.120 0.123 0.140 0.133 0.134 0.136

60%:40%

10, 10
Hyp. Tg. 0.118 0.115 0.147 0.127 0.138 0.135 0.160 0.144

Sig. 0.127 0.123 0.128 0.126 0.137 0.144 0.140 0.140

20, 20
Hyp. Tg. 0.105 0.118 0.111 0.111 0.136 0.140 0.133 0.136

Sig. 0.120 0.112 0.125 0.119 0.139 0.130 0.137 0.135

30, 30
Hyp. Tg. 0.114 0.115 0.115 0.115 0.129 0.133 0.128 0.130

Sig. 0.116 0.122 0.114 0.117 0.135 0.138 0.130 0.134

70%:30%

10, 10
Hyp. Tg. 0.123 0.138 0.127 0.129 0.142 0.153 0.141 0.145

Sig. 0.131 0.117 0.127 0.125 0.140 0.131 0.139 0.137

20, 20 Hyp. Tg. 0.107 0.098 0.107 0.104 0.124 0.115 0.121 0.120
Sig. 0.122 0.112 0.108 0.114 0.136 0.123 0.125 0.128

30, 30
Hyp. Tg. 0.117 0.117 0.126 0.120 0.140 0.140 0.133 0.138

Sig. 0.118 0.121 0.111 0.117 0.132 0.129 0.124 0.128

Table 8 shows the variants of the tested MLP models that have the lowest average
values of testing error by individual ratios of the training data set and the testing data
set. This table is a summary of Table 7. Based on Table 8, it can be concluded that as the
percentage of training data increases, the average relative prediction error decreases, e.g., it
is obvious that for a ratio of 50%:50% with Hyp.Tg. and with 20 neurons in each hidden
layer, the model has an average RE = 0.115, so the degree of accuracy is 88.5%.

If this value is compared with RE = 0.104, i.e., with a degree of accuracy of 89.6%, as
much as a model has with a ratio of 70%:30%, it is concluded that by reducing the ratio to
50%:50%, we lose only 1.1% of the performance accuracy of the model. This means that the
model can perform prediction quite well even at a ratio of 50%:50%.
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Table 8. Least average values of RE by examined ratios of training data set and test data set.

The Ratio of
Data Sets for
Training and

Testing

No of
Neurons in

Hidden
Layers

Output
Function of
Neurons in

Hidden Layers

Cell Downlink Average
Throughput

Average User Downlink
Throughput

Measurements Measurements

1. 2. 3. Average 1. 2. 3. Average

30%:70% 30, 30 Hyp. Tg. 0.120 0.113 0.122 0.118 0.140 0.134 0.133 0.136
40%:60% 30, 30 Hyp. Tg. 0.117 0.111 0.111 0.113 0.140 0.131 0.129 0.133
50%:50% 20, 20 Hyp. Tg. 0.112 0.120 0.114 0.115 0.128 0.124 0.138 0.130

60%:40%
20, 20 Hyp. Tg. 0.105 0.118 0.111 0.111
30, 30 Hyp. Tg. 0.129 0.133 0.128 0.130

70%:30% 20, 20 Hyp. Tg. 0.107 0.098 0.107 0.104 0.124 0.115 0.121 0.120

According to Table 7, the lowest individual values of relative testing errors among
multiple iterations for the selected MLP model are as follows:

• For the variable Cell Downlink Average Throughput RE = 0.098 (degree of accuracy 90.2%);
• For the variable Average User Downlink Throughput RE = 0.115 (degree of accuracy 88.5%).

Figure 6 shows the two-layer architecture of the MLP model which achieved the
above performance, where the synaptic connections, which are represented by dark blue,
have weight factors less than zero, while the lighter color represents positive values of the
weight factors.

The metaparameters of multilayer perceptron training do not change during the testing
of different models. It is specified that the adjustment of the weighting factors is performed
after processing each individual input/output vector from the training set (individual or
online learning). The training algorithm is backpropagation that implements the gradient
descent method. The Initial Learning Rate has a great influence on the convergence of the
algorithm and its value is usually chosen from the range of 10−6 to 1. A higher learning
rate accelerates the training process of the MLP model, but negatively affects its prediction
performance. The initial value of the learning rate gradually decreases in each epoch, which
represents one passage of a complete set of training data through the training algorithm,
to a certain lower limit. The IBM SPSS technology specifies a default value of the initial
learning rate of 0.4 while its lower limit is 0.001. The maximum number of epochs is
determined automatically.
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The following part of this section provides detailed training and testing results for
the selected final MLP model with the lowest individual RE values for the two dependent
variables (RE = 0.098 for the Cell Downlink Average Throughput variable and RE = 0.115 for
the Average User Downlink Throughput variable). Based on the results shown in Table 9,
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generated by IBM SPSS technology, it can be seen that the relative error, i.e., the degree
of accuracy of the model over the training data, for the variable Cell Downlink Average
Throughput is 89.8% (RE = 0.102) and is slightly lower in relation to the degree of accuracy for
the test set (the degree of accuracy is 90.2%, RE = 0.098), while for the variable Average User
Downlink Throughput, the degree of accuracy over the training data is 88.6% (RE = 0.114),
and for testing 88.5% (RE = 0.115). During the training process, the goal is to minimize the
error function which, in the observed case, is represented by the Sum of Squares Error (SSE),
and is calculated according to the equation:

SSE =
N

∑
i=1

(RVi − PVi)
2 (6)

where RV (Real Value) represents the actual value of the observed dependent variable, PV
(Predicted Value) represents the prediction value of the observed dependent variable, and N
is the number of all measurements. In the initial state, when the model is not yet trained,
the value of the sum of the square error is significantly higher and is calculated by using
the values of the arithmetic mean of that dependent variable as the prediction values of
the observed dependent variable for all measurements. According to Table 9, the error
function after model training has a value of 4882.801 and when testing the model, its value
is smaller and amounts to 2089.438.

Two criteria for stopping the training process were set: (1) expiration of a time period
of 15 min and (2) reaching the number of five consecutive iterations without reducing
the error function. By meeting at least one of the above criteria, the training process is
interrupted, and in the specific case of the selected MLP model, condition 2 is met, as can
be seen in Table 9.

Table 9. The most important results of training and testing of the selected MLP model.

Training

Sum of squares error 4882.801

Average overall relative error 0.108

Relative error for scale dependents
Cell downlink average throughput 0.102

Average user downlink throughput 0.114

Stopping rule used Five consecutive step(s) with no decrease
in error

Training time 0:01:00

Testing

Sum of squares error 2089.438
Average overall relative error 0.106

Relative error for scale dependents Cell downlink average throughput 0.098
Average user downlink throughput 0.115

Figure 7 graphically shows the best individual result from the set of 30 variants of the
MLP model testing, in the form of scatter plots, i.e., prediction results for the two observed
dependent variables. The abscissa shows the values from the test set, while the ordinate
indicates the prediction values. Based on the obtained coordinates of the points and their
arrangement, it is possible to visually evaluate the accuracy of the model. This way of
presenting the prediction results is suitable for determining the coefficient of determination
(R2) which describes the percentage of variance of the target variable, which is explained
by the model. For the dependent variable Cell Downlink Average Throughput, the best
individual result of training and testing gives the value of the coefficient of determination
R2 = 0.899 while for the Average User Downlink Throughput, this value is R2 = 0.885. The
coefficient of determination is higher if the points are grouped around a line defined by the
equation y = x, which is confirmed in Figure 7. If the R2 values obtained in this way are
compared with those calculated for the linear models, it can be concluded that MLP has a
significantly higher accuracy of performance prediction or model quality because
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• for cell downlink average throughput: 0.899 > 0.541 and
• for average user downlink throughput: 0.885 > 0.543.
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The Chaddock scale, presented in Table 10 [51], was used to qualitatively evaluate the
coefficient of determination R2. It can be seen that the accuracy performance of the MLP
model is in the range of 0.7–0.9 and qualifies as high. On the other hand, the accuracy of
prediction of linear models based on the coefficients of determination can be assessed as
salient. Comparing the prediction accuracy of the MLP model with the linear model, it
is obvious that it has higher, i.e., high prediction accuracy, but it is also characterized by
incomparably higher complexity compared to the linear model.

Table 10. Chaddock scale.

Determination Coefficient Qualitative Characteristic

0.1–0.3 Weak
0.3–0.5 Moderate
0.5–0.7 Salient
0.7–0.9 High

0.9–0.99 Very high

As a quality parameter of the created predictive model, used Residual (r) is used
which represents the difference between the real value (RV) and the prediction value (PV)
of the observed variable: r = RV − PV. The arrangement of the residuals for the two
output variables is shown in Figure 8. The model is of better quality and more accurate
if it has residuals grouped around the horizontal zero line, which, in this case, is visually
clearly visible.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 25 
 

Table 10. Chaddock scale. 

Determination Coefficient Qualitative Characteristic 

0.1–0.3 Weak 

0.3–0.5 Moderate 

0.5–0.7 Salient 

0.7–0.9 High 

0.9–0.99 Very high 

As a quality parameter of the created predictive model, used Residual (r) is used 

which represents the difference between the real value (RV) and the prediction value (PV) 

of the observed variable: r RV PV  . The arrangement of the residuals for the two output 

variables is shown in Figure 8. The model is of better quality and more accurate if it has 

residuals grouped around the horizontal zero line, which, in this case, is visually clearly 

visible. 

 

Figure 8. Residual distribution graph for two output variables in MLP prediction model. 

One of the graphical results, generated by IBM SPSS technology, which represents 

the ranking of independent variables according to the importance of influencing the varia-

bility of the dependent variable in the model is shown in Figure 9. The measure showing 

how much the value created by the prediction changes for different values of the inde-

pendent variable represents the importance of the independent variable expressed numer-

ically at the lower position of the abscissa of the graph, while the normalized importance, 

obtained by dividing the importance with the largest individual value, is expressed as a 

percentage and presented at the upper position of the abscissa of the graph in Figure 9. 

The interpretability of the model, as its ability to present the results to the researcher 

in an understandable degree, can be seen in Figure 9 and indicates that the variable DL 

Cell Traffic Volume has the greatest importance of influencing the changes in the values of 

the dependent variables. This conclusion is logical and expected considering that the 

throughput in the network, by definition, directly depends on the total realized traffic or 

the amount of data transmitted during the observed time. In contrast, the Average CQI 

variable is at the bottom of the rankings and has the least importance of influencing the 

changes in the value of the dependent variable. This is explained by the fact that MLP well 

models the nonlinear dependences of output on input. The observed variable is linearly 

related to the corresponding modulation and coding scheme of communication, and it is 

important for the size of the transport block when transmitting data through a channel 

which directly influences the throughput of specific classes of traffic. 

Figure 8. Residual distribution graph for two output variables in MLP prediction model.



Appl. Sci. 2021, 11, 3559 20 of 25

One of the graphical results, generated by IBM SPSS technology, which represents the
ranking of independent variables according to the importance of influencing the variability
of the dependent variable in the model is shown in Figure 9. The measure showing how
much the value created by the prediction changes for different values of the independent
variable represents the importance of the independent variable expressed numerically at
the lower position of the abscissa of the graph, while the normalized importance, obtained
by dividing the importance with the largest individual value, is expressed as a percentage
and presented at the upper position of the abscissa of the graph in Figure 9.

The interpretability of the model, as its ability to present the results to the researcher
in an understandable degree, can be seen in Figure 9 and indicates that the variable DL
Cell Traffic Volume has the greatest importance of influencing the changes in the values of
the dependent variables. This conclusion is logical and expected considering that the
throughput in the network, by definition, directly depends on the total realized traffic or
the amount of data transmitted during the observed time. In contrast, the Average CQI
variable is at the bottom of the rankings and has the least importance of influencing the
changes in the value of the dependent variable. This is explained by the fact that MLP well
models the nonlinear dependences of output on input. The observed variable is linearly
related to the corresponding modulation and coding scheme of communication, and it is
important for the size of the transport block when transmitting data through a channel
which directly influences the throughput of specific classes of traffic.
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Based on the fact that the creation of the model in this paper requires previously
collected research data related to the network traffic and its parameters, it is concluded
that, in this case a statistical approach is applied to the traffic modeling, which is otherwise
based on traces (recording of combined traffic). Another possible approach is through an
emulator, and, in some cases, a hybrid approach is possible. Since the variable DL Cell Traffic
Volume means that it is the total traffic in the DL direction at the cell level, the created
predictive model is a model of combined traffic. When models are created for each service, i.e.,
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for each of the nine traffic classes shown in Table 5, this means that an approach based on
models of information sources is applied, which are characterized by greater accuracy, but also
greater complexity than the previous one. According to [22], the models of combined traffic
are, in most cases, more suitable for application in the prediction of traffic in networks, and
in [23] a good overview of the traffic models is presented.

The analysis of possible differences in the results of training and testing of different
variants of the model in the three iterations shown was carried out by appropriate statistical
tests. If the three measurements of the RE values are considered as three statistical groups,
each tested variant of the MLP model represents one experimental unit over which the
experiment is repeated three times. A parametric technique for testing statistical hypotheses
about the equality of arithmetic means for three or more groups when it comes to repeated
measurements is the analysis of variance or ANOVA of the repeated measurements. One of
the basic preconditions for its application, in this case, is the normality of the distribution
of the RE by the observed groups, i.e., the repeated measurements.

Table 11 shows the results of the Kolmogorov–Smirnov and Shapiro–Wilk normality
tests, based on which it can be concluded that the distribution of the RE deviates from the
normal distribution in all three groups for the variable Cell Downlink Average Throughput
(Sig. < 0.05) [52], while only the first and second groups of the repeated relative error mea-
surements for the Average User Downlink Throughput variable follow the normal distribution
(Sig. > 0.05).

Table 11. Results of the normality tests of the RE by repeated measurements.

Dependent Variable Measurement/Group Kolmogorov–Smirnov Shapiro–Wilk
Statistic df Sig. Statistic df Sig.

Cell Downlink Average
Throughput

1. 0.173 30 0.022 0.811 30 0.000
2. 0.161 30 0.046 0.924 30 0.035
3. 0.235 30 0.000 0.668 30 0.000

Average User Downlink
Throughput

1. 0.129 30 0.200 0.944 30 0.117
2. 0.122 30 0.200 0.964 30 0.392
3. 0.226 30 0.000 0.816 30 0.000

Thus, ANOVA of the repeated measurements in this case cannot be used to determine
potential statistical equations or differences between the mentioned groups. An appropriate
nonparametric technique applied in case of nonfulfillment of the prerequisites for the
analysis of variance is the Friedman test conducted in the IBM SPSS technology and whose
results are shown in Table 12 for both dependent variables.

Table 12. Results of Friedman test for two dependent variables.

Cell Downlink Average Throughput Average User Downlink Throughput

N 30 N 30
Chi-Square 1.914 Chi-Square 1.270

df 2 df 2
Asymp. Sig. 0.384 Asymp. Sig. 0.530

Based on the value of Asimp. Sig. (0.384 > 0.05 and 0.530 > 0.05), it can be concluded
that there are no statistically significant differences in the relative errors, i.e., the prediction
accuracy performance by the individual training and testing iterations of the 30 observed
MLP models.

6. Conclusions

Current directions of development of cellular networks, which cover areas of different
topological characteristics with a signal, are oriented towards providing permanent Internet
access for mobile users both in rural areas and along roads. The selected case study in this
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paper is the traffic segment M9J, in RS, BiH with access roads with an explanation of the high
importance of this road and its connection with the key telecommunications network, M:tel
BL. The starting idea is related to the fact that the predictive modeling, as a procedure of
using known data in creating models for predicting future results, is significantly improved
with the adaptive modeling of the network performance. The specific example refers to the
potential application of the connected vehicle concept, for interactive vehicle-to-vehicle
communication and with road infrastructure (vehicle-to-infrastructure). Additionally, the
developed model can be an important reference for designing a network of wireless sensors
placed along motorways that can communicate within the LTE network technology, which
are part of the CPS. This means that the presented results enable the mobile operator to
better analyze network performance for the needs of future planning and design of traffic
in next generation networks.

The results of training and testing of 30 different variants of the MLP model, with
different metaparameters showed that the final prediction model for the variable Cell
Downlink Average Throughput has an average accuracy of 89.6%, while for the variable
Average User Downlink Throughput the average accuracy is 88%. Additionally, observing
the value of R2, it is concluded that in the case of the first dependent variable, the accuracy of
the model is 1.4% higher than the accuracy of the model for the second dependent variable.

The classical predictive models, such as the linear regression ones, are characterized
by training speed and simplicity. The research in this paper confirms that adaptive models
based on machine learning, including MLP, show their key advantages in better mod-
eling the nonlinear functional dependence of output on input. It means dependent on
independent variables, especially when their number is higher. When accuracy is taken
into account, the superiority of the MLP model over the MLR model can be expressed
quantitatively based on R2. The best MLP model for Cell Downlink Average Throughput
prediction has 35.8% higher accuracy compared to the same MLR model. For the Average
User Downlink Throughput variable, the advantage of the MLP model over the MLR
is higher by 34.2%. A special advantage of the developed MLP model in the IBM SPSS
technology is given by a large number of tabular and graphical results that significantly fa-
cilitate the understanding of the relationship between variables. The obtained values of RE
on the test data set, as well as the coefficients of determination, indicate high performance
of the model, but also its possible improvement.

Compared to conceptually similar analyzed previous research results in the literature,
the MLP model created in this paper has completely different metaparameters, uses a
larger set of independent variables (17) as inputs, but also a significantly larger training
data set with a larger number of training and testing set combinations. The selected final
MLP model, based on indicators of training and testing with multiple passes through the
network structure, as many as 30 variants of different combinations of the metaparameters
in three iterations, significantly contributes to the validity and “reality” of the research
results and its application in the network performance prediction. Table 1 presents an
overview of the referenced previous research in the subject of this paper with highlighted
novelties presented in this paper. The quality of the created model is further enhanced
by the purposeful application in a specific geo-space with a reasoned analysis of the
interactions of virtual and physical devices of the M:tel network and the M9J road. This
additional dimension of adaptive modeling with ANN expands the criteria of functional,
social and contextual adaptability of models with a biological dimension. It is because
the enormous increase in the amount of transmission of different types of data (BigData)
increased end-users’ interests in QoS and raised awareness of the importance of influence
of the QoE to their multidimensional satisfaction.

The scope of this research can be expanded with a focus on finding methods to
improve the performance of the created model by changing its parameters, metaparameters
and architecture itself. That includes changing the number of layers and the number of
artificial neurons in hidden deep network layers. Additionally, modeling delays and packet
loss in mobile networks, but also creating KPIs models by individual traffic classes, is a
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logical addition to the subject of future research by applying adaptive ANN models in
traffic prediction in networks. Comparing the method presented in this paper with other
competing methods such as comparison and interpretation methods for predictive control
is one of the main directions of future research.

Author Contributions: Conceptualization, M.K.B. and M.S.; methodology, M.K.B., D.D. and M.S.;
software, M.S.; validation, M.K.B. and D.D.; formal analysis, M.K.B. and M.S.; investigation, M.K.B.,
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Boca Raton, FL, USA, 2014; ISBN 978-1-46-656123-6. Available online: http://www.crcpress.com/product/isbn/9781466561236
(accessed on 20 March 2021).

24. Putnik, G.; Ferreira, L.; Lopes, N.; Putnik, Z. What is a Cyber-Physical System: Definitions and Models Spectrum. FME Trans.
2019, 47, 4. [CrossRef]

25. Duch, W.; Jankowski, N. Survey of neural transfer functions. Neural Comput. Surv. 1999, 2, 163–212.
26. Elizondo, D. The linear separability problem: Some testing methods. IEEE Trans. Neural Netw. 2006, 17, 330–344. [CrossRef]

[PubMed]
27. Yanhong Ma; Shuanglei, F. Large Scale Wind Power Grid Integration: Technological and Regulatory Issues; Ningbo, W., Chongqing, K.,

Dongming, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-849895-8. [CrossRef]
28. Abirami, S.; Chitra, P. Energy-efficient edge based real-time healthcare support system. In Advances in Computers; Elsevier:

Amsterdam, The Netherlands, 2020; Volume 117, pp. 339–368.
29. Madan, M.G. Soft Computing and Intelligent Systems Theory and Applications; Sinha, N., Ed.; Academic Press: San Diego CA, USA,

1999.
30. Lonkar, S.A.; Reddy, K.V. Analysis of audio and video quality of voice over LTE (VoLTE) call. Int. J. Inf. Technol. 2020, 1–14.

[CrossRef]
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