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Abstract: Median filtering is being used extensively for image enhancement and anti-forensics. It
is also being used to disguise the traces of image processing operations such as JPEG compression
and image resampling when utilized in image de-noising and smoothing tool. In this paper, a robust
image forensic technique namely HSB-SPAM is proposed to assist in median filtering detection.
The proposed technique considers the higher significant bit-plane (HSB) of the image to highlight
the statistical changes efficiently. Further, multiple difference arrays along with the first order
pixel difference is used to separate the pixel difference, and Laplacian pixel difference is applied
to extract a robust feature set. To compact the size of feature vectors, the operation of thresholding
on the difference arrays is also utilized. As a result, the proposed detector is able to detect median,
mean and Gaussian filtering operations with higher accuracy than the existing detectors. In the
experimental results, the performance of the proposed detector is validated on the small size and
post JPEG compressed images, where it is shown that the proposed method outperforms the state of
art detectors in the most of the cases.

Keywords: image forensics; higher significant bit-plane; median filtering detection; image forgery
detection; fake image; Markov chain

1. Introduction

Today, most of the communication is being done in digital form, which opens a
Pandora box of security attacks such as editing, copying, deleting and so on. Sometimes,
the editing operation which does not require any expertise due to the wide availability
of ubiquitous digital imaging devices and sophisticated editing software, may create
an uproar as fake (edited) images and can be circulated through popular social media
platforms to mislead the users as shown in Figure 1. Figure 1a shows that the anti-gun
activist and student Emma Gonzalez is tearing the copy of US constitution.
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Figure 1. Two pictures: (a) fake picture; (b) original picture. 

Citation: Agarwal, S.; Jung, K.-H. 

HSB-SPAM: An Efficient Image  

Filtering Detection Technique. Appl. 

Sci. 2021, 11, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Ugo Vaccaro 

Received: 23 March 2021 

Accepted: 16 April 2021 

Published: 21 April 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright:©  2021by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 

Figure 1. Two pictures: (a) fake picture; (b) original picture.
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Whereas, the real picture is shown on the right side published in Teen Vogue maga-
zine that is tearing the gun range target photo. The fake image was circulated on social
media more than 70,000 times to get some political mileage in 2018. Therefore, the need
of forensic toolboxes is required strongly which can assess blindly the authenticity of
digital images without access to the source image, source device or the aid of an auxiliary
watermark signal.

In the recent years, image forgery detection techniques [1–3] based on handcrafted
features and CNN features have been introduced. Matern et al. [1] proposed a physics-
based method that considers the 2-D lighting environments of objects. The incident
of the light assists in detecting fake objects in the image. The method is verified on
high-resolution challenging databases and has proved its superiority for some existing
techniques, however there is still sufficient gap for improvement. Moghaddasi et al. [2]
exploited the discrete cosine transform (DCT) domain and singular value decomposition
for image forgery detection. The method uses moments as features and support vector
machine (SVM) as a classifier. The authors claim the good accuracy on multiple databases
although performance may be degraded on cross-dataset and unknown image. Deep
networks are found effective in many applications like face reorganization [4], object
classification [5], facial expression [6] and so on. Marra et al. [3] proposed a CNN based
feature extractor for high-resolution images. Unlike other CNN techniques, the gradient
check-pointing is applied for feature extraction on entire original image size. Marra et al.’s
technique extracts better features than other techniques in which the image is divided
into overlapping patches to extract features. However, it has a high computational cost
as full-size images are being used in feature extraction. In addition to the aforementioned
handcrafted features and CNN features-based techniques, there has been discussed several
image forgery detection techniques which are based on hardware or camera fingerprints,
lighting environment, illumination, statistical information, deep networks and so on. In
spite of this, some techniques [7–9] are also designed to counter image forensic and forgery
detection techniques. Marra et al. [7] designed the technique to counter the image forgery
detection techniques. Kim et al. [8] applied the adversarial Networks to remove the artifacts
of median filtering. Gragnaniello et al. [9] discovered that CNN based techniques are easy
to conquer than machine learning based image forgery detection techniques while fake
images are generated by an adversarial network.

To make the fake images more realistic, the malicious intent people use multiple
operations such as rotation, resampling, contrast enhancement so that the traces of modifi-
cations are hidden. Thus, the performance of image forgery detection methods is adversely
affected by the filtering operations such as median filter, Gaussian filter, and mean filter.
In particular, the median filtering (MF) is preferred among some forgers because it has
the characteristics of nonlinear filtering based on order statistics. Therefore, a Markov
chain based median filtering detector using a high significant bit-plane is proposed in
this paper. The Markov chain is popular in many applications such as steganalysis, object
classification, atmospheric science, and even in median filtering detection. The prominent
median filter detector using Markov Chain was proposed by Kirchner and Fridrich [10]
which uses difference arrays for Markov chain. Alike method is also proposed by Pevny
et al. [11] for steganalysis and popularly known as SPAM. The method extracts features
using Markov chain on thresholded difference array that results into more granular col-
lection of features and ultimately leads to a higher accuracy. Chen et al. [12] considered
the absolute difference while applying thresholding to minimize the size of feature set so
that the complexity of the method can be reduced. Cao et al. [13] calculate the variance
of difference arrays and use the probability of zero elements to decide whether an image
is median filtered or not. Cao et al.’s method is close to Markov model. Agarwal and
Chand [14] extended the work of Kirchner and Fridrich’s method [10] by considering
higher order differences. The incorporation of higher order differences collects even the
minute details of images that help in effective collection of feature sets. The extraction of
features is executed with the help of Markov chain on the first, second and third order
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thresholded difference arrays. Thus, Agarwal and Chand’s method could improve upon
Kirchner and Fridrich’s method. However, it has been observed that the thresholded array
and absolute difference can be loose some relevant information which may be useful in
more accurate detection. In this paper, a high significant bit-plane based image forgery
detection strategy is proposed to retain vital information. The main contributions of the
proposed method can be summarized as follows:

• The proposed scheme can reduce the bit depth to attain more relevant informa-
tion in difference arrays. Higher significant bit-planes are considered for strong
statistical analysis.

• Various derivatives such as pixel difference, separate pixel difference, and the Lapla-
cian operator are considered for a robust feature vector that can help in collecting
additional information so that accuracy can be further enhanced. Further, the co-
occurrence statistics is extracted from derivatives using the Markov chain.

• Experimental results are compared with some of the popular methods such as GLF,
GDCTF, PERB and SPAM to evaluate the performance of the proposed scheme. For
the exhaustive analysis, the experimental results are shown for median filtered, mean
filtered and Gaussian filtered images.

• The experimental analysis shows that the proposed method has better performance
than existing methods in most of the scenarios. There is a significant improvement of
more than 2% in detection accuracy for the case of 3× 3 size filter on the low-resolution
images and highly compressed images.

The rest of the paper is organized as follows. In Section 2, existing techniques are dis-
cussed. The proposed technique is elaborated in Section 3. In Sections 4 and 5, experiment
results and conclusion of the paper are discussed respectively.

2. Related Work

In this section, the existing and popular filtering detection techniques are briefly
reviewed. It has been observed that there are many works [10,12–35] for detecting filtering
in which most of works give emphasis on median filtering detection due to its non-linear
nature. Only some methods in [10,23] exist for detecting Gaussian filtering and for median,
mean and Gaussian filtering in [23,24,31]. The existing techniques can be categorized as
the autoregressive model, the CNN model, frequency domain, and Markov chain.

Kang et al. [16] introduced the autoregressive model for median filtering detection.
Median filter residuals are considered and three median filter residuals arrays are generated
after applying median filter of different size. The size of feature vector is small though a
performance degrades on low resolution images. Ferreira and Rocha [17] also generated
numerous median filter residuals arrays after applying median filter multiple times. The
eight quality matrices are calculated on residual arrays. The SVM classifier is applied to
classify the images using quality matrices as a feature vector. The method fails on low reso-
lution and compressed images. Yang et al. [21] proposed a two dimensional autoregressive
(2D-AR) model. The 2D-AR model was applied on median filtered residual (MFR), average
filtered residual (AFR) and Gaussian filtered residual (GFR). Multiple residuals are still
considered the accuracy decreases on small sized images. Rhee [27] proposed a technique
that utilizes the autoregressive model, edge detectors and Hu moments. The hybrid feature
set is not able to tackle the compression issue. In addition, Rhee [28] also applied the
autoregressive model on bit plane sliced images. Rhee applied the autoregressive model
on bit plane sliced median filtered residual arrays. The least and highest significant bits
are considered and the performance is verified on resampled images. Peng et al. [31]
proposed a hybrid feature set using autoregressive model and local binary pattern (LBP)
operator. The proposed model was able to classify median, mean and Gaussian filtered
images. Chen et al. [18] introduced the convolutional neural network (CNN) for median
filtering detection. The new CNN layer is introduced to provide median filter residual. The
performance of method is superseded by Tang et al. [22] by proposing a CNN model using
two multilayer perceptron (mlpconv) layers. The mlpconv layer is claimed more suitable
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for nonlinear data learning. Bayar and Stamm [23] introduced a constrained convolutional
layer to highlight the image features. The method can detect median filtering, Gaussian
blurring, resampling and JPEG compression. Luo et al. [29] applied the high pass filter on
the image and resultant image is given as input to CNN. Zhang et al. [35] proposed a CNN
model by introducing an adaptive filtering layer (AFL). The proposed AFL is constructed
to capture the frequency traces of median filtering in the DCT domain. The performance
of CNN techniques is satisfactory on low resolution images although computation cost is
very high and is required large dataset for training.

Hwang and Rhee [19] proposed a method for Gaussian filtering detection. The
Gaussian filter residual and frequency transform residual features are utilized for detection.
The fast Fourier transform is used to convert from the spatial domain to the frequency
domain. Liu et al. [20] also considered the Fourier transform for the frequency domain. In
Liu’s method, it is discovered that most of the values are zero in a low-frequency region of
the median filtered image in contrast to a non-filtered image. Wang and Gao [24] proposed
a local quadruple pattern and extracted features in discrete cosine transform (DCT) to
detect median, mean and Gaussian filtering. Li et al. [25] also proposed a method using
the DCT domain. The addition of absolute differences of DCT coefficients are calculated
on sequential median filtered images. The SVM classifier is used to classify the images.
Gupta and Singhal [30] proposed a 4-dimension feature set using median filter residual
in DCT domain. Hwang and Rhee [32] discussed a 10-dimension feature set for Gaussian
filtering detection. The amount of blurring is calculated from Gaussian filtered images of
ten different filter size. The frequency-based techniques are not giving the good results as
the change in domain loose important statistical information. Kirchner and Fridrich [10]
considered the difference arrays for median filtering detection. The ratio of difference arrays
histogram bins is analyzed to discover uncompressed median filtered images. The authors
also proposed a technique for a compressed median filtered images using Markov chain
on difference arrays although detection accuracy is low on the small size images. Chen
et al. [12] proposed a hybrid feature set using global and local features. Global features are
extracted using the Markov chain and local features using normalized cross correlation
on difference arrays. The absolute difference is considered while applying the Markov
chain on difference arrays. The absolute difference loses the vital information change.
Agarwal and Chand [14] applied the Markov chain on the first, second and third order
difference arrays. There is performance gain by considering a higher order differences. Niu
et al. [15] combined the features of uniform local binary pattern and Markov model for
better results. Peng et al. [26] considers multiple residuals-first order difference, median
filtering residual, and median filtering residual difference. The autoregressive model
and the Markov chain are applied to fetch statistical information from multiple residuals.
Gao and Gao [33] applied the autoregressive model in the frequency domain and the
Markov chain in the spatial domain. The method applied on difference arrays in multiple
directions. Gao et al. [34] combined two feature sets—Markov chain and local configuration
patterns features, where the combined feature set approach gives slight performance
improvement. In the most of the Markov chain based methods [10,12,13,15,26,33,34], the
SVM classifier is utilized to classify into non-filtered and median filtered images, where the
linear discriminant analysis classifier is applied for classification. Markov chain represents
the co-occurrence of elements in a better way in comparison with the autoregressive model
and the frequency domain based methods. There is sufficient loss of statistical information
while converting from spatial to frequency domain. The autoregressive model gives a
small size feature vector but there is a need of optimizable parameters for training of each
scenario (JPEG compression, image size). Further, experimental analysis showed that the
performance of many methods based on autoregressive and frequency domain is good only
due to zero padding artifacts. The computation cost of CNN based methods is very high
and also there is a need of large dataset for training. In this paper, Markov chain is utilized
in spatial domain for its simplicity and robustness. The proposed work is discussed in the
next section.
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3. The Proposed Method

The proposed method consists of two phases namely feature extraction, and training
and classification. The contribution of the proposed method lies in the feature extraction
phase in major. For an elaborative study and analysis, the feature extraction phase is
subdivided into a higher significant bit-plane analysis and pixel difference arrays and
Markov chain sub-phases. In this section, a higher significant bit-plane analysis is described
followed by a discussion on pixel difference arrays and the Markov chain.

3.1. Higher Significant Bit-Plane Analysis

In order to collect more valuable statistical information, the proposed method trans-
forms the image into a higher significant bit-plane based image by dropping least significant
bits of each pixels and considering only the higher significant bits. The resultant image
contains more relevant information in particular range that helps in generating more valu-
able information with difference arrays than the complete image. To study experimentally
and analyze the effectiveness of the higher significant bit-plane based image, a normal
probability distribution of pixel difference in the UCID database [36] having 1338 images is
considered. The graph of the normal probability distribution is shown in Figure 2, where
ORI denotes the non-filtered image, ORI_HSB denotes the higher significant bit-plane based
image of ORI images. In general, the 8-bit grayscale image is considered by conventional
image filtering detection techniques. However, 4-HSB version of images is considered
in this paper. Median filtered image with filter size 3 × 3 and 5 × 5 are denoted as MF3
and MF5 and their corresponding higher significant bit-plane versions are denoted by
MF3_HSB and MF5_HSB. In the same way, mean and Gaussian filtered images with filter
size 3 × 3 & 5 × 5 are denoted as AVG3, AVG5, GAU3 & GAU5, respectively. It is evident
from the Figure 2 that the higher significant bit-plane filtered images (MF3_HSB, MF5_HSB,
AVG3_HSB, AVG5_HSB, GAU3_HSB, GAU5_HSB) contain a most of the information in
small interval whereas the information is distributed into a large interval in normal images.
Since the Markov chain is applied on thresholded arrays, the higher significant bit-plane
images will perform better in the view of thresholding.
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To further verify the benefit of higher significant bit-plane images, entropy of the first
order pixel difference arrays is calculated from the non-filtered and filtered images. The
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entropy dissimilarity of pair ORI and MF3 is less in comparison with pair ORI_HSB and
MF3_HSB. The high dissimilarity of low-bit filtered and low-bit non-filtered images give
better detection capability. The main reason is that difference array of higher significant
bit-plane images performs better. Further, the dissimilarity pattern is also followed by MF5,
AVG3, AVG5, GAU3 and GAU5 filtered images as shown in Figure 3.
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As discussed above, the Markov chain is applied on thresholded difference arrays
to extract statistical information in compact array, the higher significant bit-plane images
provides better information for feature sets without increasing the size of feature vector. The
validation of performance benefits in the higher significant bit-plane images is illustrated in
Figure 4. In the example, a 5× 5 size pixels image patched from 8-bit image is considered as
8-bit image is commonly used for experimental analysis. The horizontal difference array of
the image is further thresholded at threshold Γ = 3. To analyze the variation in information,
the change array is constructed. The change array shows the change in the element value
of column wise. Since the initial three values are −3 in the first row of thresholded array,
there is no change and it is represented in the change array as 0. The fourth value in the
first row of thresholded array is three. It means that the value is changed from −3 to 3.
Therefore, the change is represented by one. The same analysis is performed on 4-HSB
image of the same 8-bit image which is considered in the aforementioned case. It can
be seen in the thresholded array and change array that shows better variation on 4-HSB
image means that the statistical analysis performed on HSB image will demonstrate better
filtering detection accuracy.

In addition to 4-HSB depth, other bit-depths can be also considered as a base on
the image data set characteristics. However, it has been observed from the experimental
analysis that selection of 4-HSB depth has been the most appropriate for high accuracy. In
the next sub-section, the discussion regarding multiple pixel difference arrays is provided
to extract robust statistical information, which is followed by the discussion of Markov
chain to extract feature vector on the difference arrays.
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Figure 4. The 8-bit and 4-bit depth image statistical analysis.

3.2. Pixel Difference Arrays and Markov Chain

The first order pixel difference array and Markov chain has been used in literature
to extract the feature set. The extracted set of features has been used to train the classifier
that would be used for classification of images finally. The first order pixel difference array
contains from range −255 to 255 in the case of 8-bit image. The first order pixel difference
array in the vertical direction can be represented as follows for an image I:

∇↓p,q = Ip,q − Ip,q+1 (1)

Similarly, first order pixel difference arrays in horizontal, main diagonal, and minor
diagonal directions can be calculated as per the Figure 5a.
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Based on the aforementioned discussion in the Section 2, it is found that the incorpo-
ration of second and higher order pixel difference arrays has resulted in better accuracy as
additional information is extracted by the incorporation of second and higher order pixel
difference arrays. However, there are some shortcomings of higher order pixel difference
arrays that are discussed in forthcoming contents.

The second order pixel difference array contains from range −510 to 510 in the case of
8-bit image. The thresholding loose more information in the second order pixel difference
array in comparison to the first order pixel difference array because the range of elements
is higher than the first order. Therefore, separated pixel difference array, which provides
additional information, and with intact range of elements, −255 to 255, are being used
instead of the second order pixel difference array. For an image I, the separated pixel
difference array in vertical direction can be represented as follows:

∇↓s
p,q = Ip,q − Ip+2,q (2)

Likewise, the separated pixel difference arrays in horizontal, main diagonal, and
minor diagonal directions can be calculated as shown in the Figure 5b.

In addition to the first order and separated pixel difference arrays, Laplacian operator
can also provide more suitable statistical information as it highlights abrupt changes clearly
and provides the combined statistical information of horizontal and vertical neighbors.
So, the proposed detector makes use of negative Laplacian operator to get the Laplacian
difference array. The Laplacian operator can be defined as shown in Figure 5c:

∇L
p,q = 4 × Ip,q − (Ip+1,q + Ip−1,q + Ip,q+1 + Ip,q−1) (3)

The image and its corresponding difference arrays—the first order, the second order
in the vertical direction, the separated pixel and Laplacian—are all shown in Figure 6.
It is evident that each difference array provides the constructive statistical information
of the image. Therefore, the features are extracted from the first order pixel difference
arrays, separated pixel difference arrays in vertical, horizontal, diagonal, minor diagonal
directions and Laplacian difference arrays in the low bit image, which helps in achieving
better performance.
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Next, the second order Markov chain is extracted to identify the co-occurrences of
difference pixel arrays. Before understanding the second order Markov chain, we have
to understand the first order Markov chain firstly. The first order Markov chain for the
thresholded vertical first order pixel difference array (∇ ↓) can be defined as follows:

χα,β = Pr(∇↓p,q+1 = α | ∇↓p,q = β) (4)

where χα,β = 0 for Pr
(
∇ ↓ p,q = β

)
= 0. The second order Markov model can be defined

for the thresholded vertical first order pixel difference array (∇ ↓):

χα,β,γ = Pr(∇↓p,q+2 = α | ∇↓p,q+1 = β, ∇↓p,q = γ) (5)

where α, β, γ ∈ {−Γ,−Γ + 1, . . . 0, . . . , Γ− 1, Γ} and χα,β,γ = 0 for Pr
(
∇ ↓ p,q+1 = β,

∇ ↓ p,q = γ
)
= 0 in addition.

Thus, nine feature vectors (Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) are fetched using the
Markov chain corresponding to the first order and separated pixel difference arrays in
vertical, horizontal, diagonal and minor diagonal directions and the Laplacian difference
array. The average of vertical and horizontal difference arrays feature vectors is considered.
Similarly, the average value is taken for diagonal and minor diagonal feature vectors. The
average is considered to normalize the varying characteristics to the flipping and mirroring
operations. Finally, the final feature vector can be defined as follows:

Ω =
(Ω1 + Ω2)

2
+

(Ω3 + Ω4)

2
+

(Ω5 + Ω6)

2
+

(Ω7 + Ω8)

2
+ Ω9 (6)

The dimension of resultant feature array can be obtained by following equation:

|Ω| = (|Ω1|+ |Ω2|)
2

+
(|Ω3|+ |Ω4|)

2
+

(|Ω5|+ |Ω6|)
2

+
(|Ω7|+ |Ω8|)

2
+ |Ω9| (7)

|Ω| = 3 × (2 × Γ + 1)3 (8)

The second order Markov chain generates (2× Γ + 1)3 dimension array for the thresh-
old (Γ). The detailed experimental analysis is performed to detect median, mean and
Gaussian filtering on UCID database in the subsequent section.

4. Experimental Results

This section demonstrates the efficacy of the proposed method by carrying out an
experimental study. The UCIDv2.0 [36] database (UCID) has been selected to evaluate the
performance of the proposed method since the UCID database has been one of the prime
databases being used in literature. All experimental results are shown using UCID database
in Tables 1–6 excepting Table 4, where multiple databases are used for experimental analysis.
UCID contains 1338 images of size 384 × 512 and 512 × 384 pixels. However, the images
of size 256 × 256, 128 × 128, 64 × 64, and 32 × 32 pixels are considered for experimental
purposes by cropping center part of original images of UCID database images as shown in
Figure 7b, which can eliminate the padding artifacts. In particular, zero padding artifacts
are more of a serious concern in filtering detection. The performance of the proposed
method (HSB-SPAM) is compared with some of the popular and closely related image
forensic methods such as GLF [12], GDCTF [30], PERB [17], and SPAM [10].
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The performance is evaluated by an average percentage accuracy on 100 training-
testing pairs using two classifiers, namely support vector machines (SVM) and linear
discriminant analysis (LDA). The analysis of experimental results is presented in four-
subsections defined as follows.

Both uncompressed and compressed images with JPEG quality Q = {70,50,30} and
size of 128 × 128, 64 × 64, and 32 × 32 pixels are used for experimental purposes. The
non-filtered images are denoted by ORI. Median filtered images with a filter size of 3 × 3
are denoted by MF3. Similarly, mean filtered and Gaussian filtered images of a filter size
3 × 3 are denoted by AVG3 and GAU3, respectively. Median, mean and Gaussian filtered
images of filter window size 5 × 5 are denoted by MF5, AVG5 and GAU5, respectively. The
compression is applied after filtering, i.e., post JPEG compression in filtered images. The
SVM classifier with linear kernel is taken as a classifier. More than one hundred training
testing pairs are formed for unbiased result analysis. Both the training and testing set
have an equal number of images. The experimental results are represented in the form
of average detection accuracy and average percentage error. For the proposed method,
optimum SVM hyper-parameters are achieved using minimum classification error plot as
shown in Figure 8. The estimated and observed minimum classification error point denotes
the estimated and observed error while considering different hyper parameter values in the
process of Bayesian optimization. The best hyper-parameter point denotes the iteration of
corresponding optimized hyper-parameters. The minimum error hyper-parameters point
defines the iteration of respective hyper parameters that produce the observed minimum
classification error. The ORI and MF3 images of image sizes 64 × 64 and JPEG Q = 50 are
taken for parameter selection. The hyper-parameters are utilized for all other experimental
results in rest of the paper.
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Experimental results are discussed in two sections. In Section 4.1, results are discussed
between non-filtered and filtered images in Tables 1–3 on UCID dataset and in Table 4 for
large dataset. In Section 4.2, Table 5 displayed the results where both sets contain only
filtered images either of different filter size, different filter or both. In Table 6, different
sized filtered images are considered in the training and testing set.

4.1. Results for Non-Filtered and Filtered Images

In this section, results are displayed for non-filter vs. filtered images on different
image size and compression quality. In Table 1, the percentage of detection error for ORI
vs. MF3 and ORI vs. MF5 images is provided. The results of the proposed method (HSB-
SPAM) are outstanding in the most of the cases as there is significant improvement on
low resolution and compressed images. Best results of each case are highlighted by the
shaded background in the tables. The detection of the 3 × 3 filter size median filtered
images is challenging than the 5 × 5 filter size median filtered images. The performance of
PERB and GDCTF methods are comparatively low. It shows that many existing techniques
performance is good in the case of zero padded median filtered images only. Especially, the
zero padding increases the occurrence of zero’s in the filtered image in small size images
(Figure 7a). The higher number of zero’s helps the classifier to classify the images easily. To
overcome the zero artifacts, the first filtering is applied on the large size image and then
the required image size is cropped from the center region.

Table 1. Percentage of detection error onMF3 and MF5 images.

IMAGE
SIZE

JPEG
COM.

ORI vs. MF3 ORI vs. MF5

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

128 × 128

No 0.38 12.67 6.32 0.00 0.38 0.76 8.04 5.28 0.00 0.83

Q = 70 6.56 16.08 9.10 7.08 3.40 2.74 9.92 6.53 3.02 2.33

Q = 50 9.51 17.26 10.00 11.91 4.79 3.51 10.30 6.91 4.90 3.65

Q = 30 12.08 19.41 11.46 15.80 7.19 4.79 10.81 7.60 7.53 4.38

64 × 64

No 0.59 17.49 9.41 0.17 0.83 1.35 10.24 7.99 0.17 1.39

Q = 70 9.41 20.90 14.48 12.05 6.42 4.93 11.87 10.07 6.67 4.59

Q = 50 13.30 21.97 14.79 17.19 8.68 6.39 13.29 10.63 10.24 5.94

Q = 30 15.83 23.47 16.22 21.84 11.49 7.83 14.72 11.04 12.15 6.98

32 × 32

No 1.01 23.68 13.68 0.28 1.35 1.77 18.53 11.01 0.42 2.12

Q = 70 14.93 25.66 19.97 19.51 10.73 7.92 20.13 13.75 11.46 8.40

Q = 50 18.54 27.91 22.26 23.96 15.73 10.12 21.21 14.58 13.09 9.86

Q = 30 21.98 29.09 23.65 28.58 19.41 11.91 22.11 15.45 17.67 11.67

In Table 2, experimental results are shown for detection of non-filtered and mean
filtered images, ORI vs. AVG3 and ORI vs. AVG5. The results are given for image size
128 × 128, 64 × 64 and 32 × 32. The different image set are constructed using post JPEG
compression of quality Q = {70,50,30}. The detection of mean filtered images of 3 × 3 filter
size is more challenging than the 5 × 5 filter size. The performance of the proposed method
is better than GLF technique. The performance of GDCTF, PERB and SPAM is inferior in
the most of the cases. Actually, the detection of median filtered is more challenging than
any other filter because median filter is a non-linear filter.
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Table 2. Percentage of detection error on AVG3 and AVG5 images.

IMAGE
SIZE

JPEG
COM.

ORI vs. AVG3 ORI vs. AVG5

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

128 × 128

No 0.63 5.11 5.63 0.45 0.56 0.56 2.36 3.40 0.66 0.76

Q = 70 1.46 4.35 6.11 2.92 0.90 1.15 3.99 3.85 1.39 0.76

Q = 50 1.46 5.21 6.08 4.76 1.01 1.60 4.65 3.92 2.40 1.15

Q = 30 1.81 6.22 6.88 6.39 0.97 1.67 4.97 3.65 2.60 1.56

64 × 64

No 1.39 8.53 8.75 1.91 1.49 1.32 6.01 5.73 1.53 0.69

Q = 70 3.72 9.19 10.07 5.73 3.33 2.92 7.33 7.57 3.92 1.91

Q = 50 4.93 10.31 10.49 7.99 4.41 3.19 8.02 7.67 5.49 2.19

Q = 30 6.39 12.63 11.11 10.14 5.73 3.33 8.65 7.40 5.42 2.78

32 × 32

No 1.53 15.69 12.26 2.71 2.26 2.19 14.24 9.03 2.64 1.25

Q = 70 6.15 18.53 14.62 9.79 5.18 4.76 15.73 11.22 7.12 4.10

Q = 50 8.85 19.36 15.66 13.26 7.79 5.90 16.60 11.28 8.51 4.79

Q = 30 11.18 20.03 15.97 15.69 9.83 6.18 18.06 10.73 9.83 5.59

The Gaussian filter is also used to hide the traces of forgery. From analysis of ex-
perimental results provided in Table 3, the detection of Gaussian filtered images is more
challenging than the mean filtered images though less challenging than median filtered
images. Even for small size, 32 × 32 pixels and JPEG Q = 30, the proposed method gives
more than 88% and 91% detection accuracy for GAU3 and GAU5, respectively. PERB
method [8] give slightly better results for large size (128 × 128) and uncompressed image
set for the Gaussian filter 3 × 3. However, the computation cost of PERB is the highest.

Table 3. Percentage of detection error onGAU3 and GAU5 images.

IMAGE
SIZE

JPEG
COM.

ORI vs. GAU3 ORI vs. GAU5

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

128 × 128

No 0.73 5.99 0.45 0.35 0.63 1.01 3.65 3.19 0.45 0.87

Q = 70 2.19 8.28 1.39 3.47 1.63 2.33 5.01 4.44 1.98 1.91

Q = 50 2.74 9.39 1.46 4.55 2.19 2.67 6.16 4.72 3.16 2.26

Q = 30 3.13 10.30 1.56 5.45 2.47 3.09 6.93 5.03 3.82 2.50

64 × 64

No 1.49 9.43 7.60 0.69 1.56 1.25 5.99 5.80 0.73 1.18

Q = 70 4.48 11.24 10.38 7.05 3.62 3.23 6.79 7.78 3.82 3.13

Q = 50 6.53 13.36 11.04 8.99 5.66 4.44 7.83 8.58 5.90 3.89

Q = 30 8.51 15.58 12.12 12.22 7.19 5.24 9.68 9.24 7.33 4.93

32 × 32

No 1.74 16.83 11.42 1.84 2.15 1.42 12.74 7.99 1.15 1.67

Q = 70 7.81 17.81 14.93 11.91 7.47 5.07 13.34 11.74 7.81 4.90

Q = 50 10.59 19.79 16.18 14.79 9.66 7.40 16.14 12.78 9.65 6.91

Q = 30 13.72 22.91 17.53 19.72 11.95 9.79 18.40 13.72 13.23 8.96

A large dataset of ten thousand images is created by using UCID, BOWS2 [37],
Columbia [38], and RAISE [39] datasets. The images of 64 × 64 are created by cropping
center part. In Table 6, percentage of detection error is displayed for both 3 × 3 & 5 × 5
filter of median, mean and Gaussian filtering. The results are given for non-compressed
(NC), and compressed images with JPEG Q = {70,50,30}. However, the results are shown
the same pattern as shown in Table 1 for small sized dataset.
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Table 4. Percentage of detection error on 64 × 64 filtered images.

Technique NC Q = 70 Q = 50 Q = 30 Technique NC Q = 70 Q = 50 Q = 30

ORI
vs.

MF3

GLF 0.63 10.35 13.43 17.26

ORI
vs.

MF5

GLF 1.39 4.93 6.71 7.99

GDCTF 19.24 22.78 24.17 23.93 GDCTF 11.06 12.11 13.56 15.16

PERB 9.60 15.49 16.27 17.84 PERB 8.39 10.07 11.05 11.59

SPAM 0.19 13.01 17.36 22.71 SPAM 1.19 7.13 11.06 12.52

HSB-
SPAM 0.88 6.49 9.46 11.61 HSB-

SPAM 0.47 4.64 6.53 7.61

ORI
vs.

AVG3

GLF 1.43 3.90 5.03 6.96

ORI
vs.

AVG5

GLF 1.45 2.92 3.51 3.63

GDCTF 8.87 9.19 10.92 13.01 GDCTF 6.55 7.47 8.34 9.51

PERB 9.10 10.88 11.01 12.00 PERB 5.84 8.02 8.44 7.99

SPAM 2.04 6.07 8.39 10.14 SPAM 1.59 4.20 5.49 5.58

HSB-
SPAM 1.57 3.37 4.76 5.90 HSB-

SPAM 0.76 1.97 2.30 3.00

ORI
vs.

GAU3

GLF 1.64 4.75 6.92 8.93

ORI
vs.

GAU5

GLF 1.33 3.33 4.53 5.61

GDCTF 9.43 11.69 14.30 16.36 GDCTF 6.41 7.27 8.46 9.87

PERB 7.83 11.11 11.26 12.85 PERB 6.20 8.17 9.09 9.61

SPAM 0.71 7.12 9.71 13.32 SPAM 0.79 4.20 6.32 7.47

HSB-
SPAM 1.56 3.62 5.66 7.62 HSB-

SPAM 1.18 3.44 4.12 4.98

4.2. Results for Complex Scenarios

In this section, two complex scenarios are considered using UCID dataset. In Table 5,
the comparative results analysis between filtered images is provided. The provided re-
sults represent the percentage detection accuracy for the image set of size 64 × 64 pixels.
The image set contains uncompressed and post JPEG compressed image with quality
Q = {70,50,30}. The accuracy between median filtered images and other filtered images are
greater than 95% in uncompressed image set. The detection between filtered image set
pairs, AVG3 vs. GAU3, AVG3 vs. GAU5 and GAU3 vs. GAU5 are affected by post JPEG
compression and detection accuracy sharply decreased. In the case of JPEG compressed
images, HSB-SPAM method outperforms the existing methods such as SPAM, GLF, GDCTF
and PERB whereas the performance of all the methods including HSB-SPAM, SPAM and
GLF is quite promising in the case of uncompressed images.
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Table 5. Percentage of detection accuracy on filtered images.

METHODS
MF3 MF3 MF3 MF3 MF3 MF5 MF5 MF5 MF5 AVG3 AVG3 AVG5 AVG5 AVG3 GAU3

MF5 AVG3 AVG5 GAU3 GAU5 AVG3 AVG5 GAU3 GAU5 GAU3 GAU5 GAU3 GAU5 AVG5 GAU5

Image Size 64 × 64 Uncompressed

GLF 94.55 99.27 98.00 99.17 99.27 98.96 98.19 98.99 99.10 95.00 94.00 97.99 97.48 96.00 84.00

GDCTF 67.00 76.00 86.00 74.00 81.00 70.00 80.00 70.00 75.00 70.00 70.00 77.00 70.00 75.00 67.00

PERB 83.54 81.08 88.33 79.55 81.11 85.49 76.70 88.02 87.19 61.53 64.27 86.98 82.74 82.85 66.56

SPAM 98.96 99.26 99.48 99.69 99.69 99.72 99.65 99.72 99.76 87.88 92.53 96.77 95.80 87.15 84.03

HSB-SPAM 96.32 99.82 99.65 99.41 99.48 99.34 98.30 99.41 99.55 96.90 96.00 98.33 97.99 97.78 86.00

Image Size 64 × 64 JPEG Q = 70

GLF 89.93 93.58 96.76 86.67 92.78 95.38 93.85 93.72 94.97 82.57 69.55 97.35 96.15 96.56 76.70

GDCTF 68.00 76.00 87.00 70.00 80.00 66.00 79.00 80.00 69.00 57.00 58.00 91.00 67.00 73.00 62.00

PERB 81.91 74.86 88.58 69.20 81.22 85.31 80.87 87.47 88.68 58.82 56.81 87.33 81.46 82.88 67.47

SPAM 83.40 87.05 93.75 76.91 90.97 91.81 90.52 91.18 92.53 59.65 61.11 95.63 84.20 86.22 74.27

HSB-SPAM 91.99 96.38 98.74 92.60 96.52 98.29 96.87 95.69 97.74 82.81 71.93 99.13 98.53 98.56 78.95

Image Size 64 × 64 JPEG Q = 50

GLF 87.57 90.49 97.71 87.74 90.97 93.19 93.30 92.85 92.64 75.83 62.33 96.25 95.31 96.53 74.31

GDCTF 67.00 74.00 87.00 70.00 79.00 64.00 77.00 63.00 66.00 60.00 59.00 79.00 69.00 73.00 63.00

PERB 81.39 75.87 89.41 68.47 82.67 84.90 79.51 86.15 86.42 60.03 55.63 87.60 81.08 83.02 67.57

SPAM 79.65 83.44 92.36 78.33 87.92 87.29 88.16 86.98 87.12 59.34 57.12 89.20 83.16 84.13 70.31

HSB-SPAM 89.68 95.06 98.43 92.18 95.65 96.10 95.76 95.06 95.65 78.00 64.89 98.50 97.34 98.00 76.63

Image Size 64 × 64 JPEG Q = 30

GLF 86.42 87.74 97.15 80.73 89.10 88.75 92.53 87.71 87.33 71.77 58.99 96.15 94.24 95.38 71.94

GDCTF 67.00 71.00 87.00 65.00 75.00 61.00 76.00 61.00 64.00 60.00 52.99 80.00 71.00 75.00 64.00

PERB 81.04 75.38 89.31 67.53 82.05 81.11 79.83 82.88 82.36 59.31 55.07 87.60 81.18 82.85 69.65

SPAM 76.77 79.34 92.29 69.69 84.27 79.51 85.31 80.17 79.34 54.17 54.51 88.82 81.91 84.03 68.37

HSB-SPAM 88.35 92.11 97.88 88.05 93.64 92.56 94.85 91.80 91.97 71.42 61.24 97.43 96.13 96.07 75.03

In Table 6, the different filter size is used in training and testing set. For example,
if ORI and MF3 pair is used in training set, then ORI and MF5 pair is used in testing,
where median, mean and Gaussian filtering with filter size 3 × 3 and 5 × 5 is used. In
experimental results, the proposed method are better results for 3 × 3 filter size in training
pair and 5 × 5 in testing pair in comparison to 5 × 5 filter size in training pair and 3 × 3 in
testing pair. In most of the cases, the detection error of the proposed method is less than
other methods.
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Table 6. Percentage of detection error for different filter size on training and testing sets.

JPEG
COM. Training: ORI-MF3 & Testing: ORI-MF5 Training: ORI-MF5 & Testing: ORI-MF3

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

NC 0.97 17.49 10.76 1.08 0.07 15.84 22.87 20.59 0.11 1.38

Q = 70 9.68 21.00 14.24 8.33 5.83 34.68 24.81 26.05 25.69 19.02

Q = 50 12.37 21.94 14.84 11.73 7.92 35.46 27.80 28.21 27.22 26.42

Q = 30 13.64 23.36 15.96 12.89 10.20 34.79 30.04 29.37 30.23 28.55

Training: ORI-AVG3 & Testing: ORI-AVG5 Training: ORI-AVG5 & Testing: ORI-AVG3

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

NC 11.51 8.41 8.26 1.27 3.14 18.54 15.88 16.89 16.48 17.00

Q = 70 19.02 10.16 9.30 5.31 4.07 19.99 19.21 18.87 29.93 16.93

Q = 50 11.29 11.10 9.90 5.49 5.08 20.18 20.37 20.59 32.10 18.31

Q = 30 8.63 12.71 10.01 6.32 4.97 20.18 21.00 21.79 36.25 21.11

Training: ORI-GAU3 & Testing: ORI-GAU5 Training: ORI-GAU5 & Testing: ORI-GAU3

GLF GDCTF PERB SPAM HSB-
SPAM GLF GDCTF PERB SPAM HSB-

SPAM

NC 1.08 9.12 7.62 0.89 0.71 1.61 14.20 9.94 1.42 1.27

Q = 70 3.59 11.62 9.94 3.96 3.33 6.09 16.59 11.40 8.26 6.24

Q = 50 5.23 13.23 10.05 5.57 3.92 7.92 18.12 11.70 10.13 7.88

Q = 30 6.13 15.10 11.81 7.21 4.56 10.46 21.00 12.97 13.15 8.48

5. Conclusions

In this paper, a filtering detection method based on HSB-SPAM has been proposed
without any prior information on the modification or forgery. The performance of the
proposed detector was verified to detect three types of filtering operations—Median, mean
and Gaussian filtering. The proposed method gave higher accuracy than the conventional
detectors, especially on JPEG compressed images. The main reason behind the higher
accuracy was the use of higher significant bit-plane for difference arrays, where more effec-
tive feature set could be constructed by the proposed method. In addition, the proposed
method considered the multiple difference arrays for stronger feature set. As a result, the
proposed detector with the Markov chain could achieve a higher accuracy than the existing
filtering detection techniques in the most cases of the scenarios. Further, the proposed
method was also superior in terms of cross-analysis. In the future, the proposed method
will be examined for some other types of image operators that can provide promising
results in many scenarios and robust techniques can also be proposed that can detect
modifications of the image.
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