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Abstract: This paper focuses primarily on the mean square consensus problem of a class of nonlinear
multi-agent systems suffering from stochastic impulsive deception attacks. The attacks here are
modeled by completely stochastic destabilizing impulses, where their gains and instants satisfy all
distributions and the Markovian process. Compared with existing methods, which assume that only
gains are stochastic, it is difficult to deal with systems with different types of random variables. Thus,
estimating the influence of these different types on the consensus problem is a key point of this paper.
Based on the properties of stochastic processes, some sufficient conditions to solve the consensus
problem are derived and some special cases are considered. Finally, a numerical example is given
to illustrate the main results. Our results show that the consensus can be obtained if impulsive
attacks do not occur too frequently, and it can promote system stability if the gains are below the
defined threshold.

Keywords: consensus; multi-agent systems; impulsive attacks; deception attacks; stochastic process

1. Introduction

With the development of hardware equipment and communication technology, the col-
laborative control problem has recently become the focus of studies of complex sys-
tems [1–3]. The consensus of multi-agent systems (MASs) plays an important role in the field
of collective behaviors, owing to its excellent model assumptions and extensive application
scenarios such as control of the formation of unmanned aerial vehicles [4], restoration of a
power system [5], intelligent and sustainable supplier selection of supply chains [6], etc.

In real-world application scenarios, communication among agents may be affected by
the environment or various attacks, especially human-made malicious attacks, which is
likely to cause the system to become unstable. For attack scenarios, generally speaking,
they may be classified into two main categories: denial-of-service (DoS) attacks [7–10]
and deception attacks [11–13] (for more details, refer to [14]). DoS attacks are attacks
that make the data of sensors and controllers unavailable, resulting in packet time delays
or packet drops in the signal transmission. In contrast, deception attacks are attacks
that have the ability to obtain and tamper with the transmitting data and the commands
from controllers. DoS attacks can destroy communication topologies and can damage
the stability of the systems. Compared with DoS attacks, deception attacks are more
moderate and difficult to detect, which quietly makes the system unstable. Thus, deception
attacks have attracted a lot of interest and has become one of our main concerns. Much
research on deception attacks has been conducted in recent years [15–19]. For instant,
consider the existence of false data injection attacks; the authors in [16] investigated
the security issue in the state estimation problem of a networked control system. Similarly,
in the presence of deception attacks, the authors [19] studied secure synchronization of
MASs by means of impulsive control. However, in the above research, the results were
based on a linear or an additive assumption and assumptions on the attack model were
made, resulting in narrow scopes of applications.
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Taking this restriction into account, models with more simulation significance and prac-
tical application value were established by means of stochastic processes, especially
the Bernoulli distribution [20–24], in which the gains of attacks were assumed to be
a stochastic Bernoulli variable. For example, the authors in [21] investigated the con-
sensus of linear MASs under deception attacks with stochastic Bernoulli variables. It is
worth noting that the attacks mentioned above were described as discrete events. When
the state of the system suffers instantaneous disturbances and experiences sudden changes
at certain moments, the system may be attacked. This is a so-called impulsive attack.
An impulsive attack is a form of attack that causes instantaneous changes to the state of
the system. Models of impulsive attacks with stochastic gains seem to be sufficiently good
at neglecting positions. However, in actuality, such a problem is also vital to the stability of
systems as we do not know a priori when attacks are made. Suppose that both the gains
and instants of the impulsive attacks are stochastic. The author in [25] first considered
these two characteristics of an attack, and then, some sufficient conditions for almost stable
general Lipschitz-type nonlinear systems were derived. However, the work in [25] still
used restricted gains under the Bernoulli distribution and the influence of attacks was
assumed to monotonically decrease, which become restrictive assumptions.

On the other hand, focused on the variability in an environment, a model relying
on a Markovian chain is appropriate in general. Taking this into account, the consensus
with Markovian switching topologies has become a hot issue regarding the performance of
multi-agent systems with external disturbances. However, most existing methods such as
the works in [26,27] for a consensus with attacks only considered cases where topologies
or systems contained Markovian properties rather than attacks. Though some authors did
assess attacks in a Markovian form such as the works in [9,28], most of these works were
concerned with DoS attacks; the type of variable chosen, such as gains; or assumptions
about the effects of a combination of attacks instead of deception attacks. As a result,
the works above do not fully consider the characteristics of the attack, and thus, a general
work on both gains and instants of deception attacks still has not yet been conducted.

With the discussion above, this paper aims to establish a more universal model for
deception attacks and provides some sufficient conditions for the consensus of multi-agent
systems. The contributions of this paper can be summed up as follows:

• Taking destabilizing impulse into account, and based on the Markovian properties,
a general model for impulsive deception attacks is established, where the gains do not
obey any specific distribution and instants are assumed to obey the Markovian chain.

• In addition, some special cases including both the characteristics of attacks and Marko-
vian properties are considered.

The remainder of this paper is organized as follows. The main results about the con-
sensus for system (1) are derived in Section 3 based on the novel model for the impulsive
deception attacks introduced in Section 2, and a corresponding numerical example is
provided in Section 4. The conclusion and some interesting topics of future work are given
in Section 5.

Notation 1. Let R be a set of real numbers and N be a set of positive integers. Let Rn be the n-
dimensional Euclidean space; furthermore, In is the n-dimensional identity matrix and 1n is
the n-dimensional column vector with one element. Let M be a matrix or vector, for which the trans-
position is represented by MT , and its deduced norm or norm is represented by |M|. Let λmax(A)
and λmin(A) denote the largest and nonzero smallest eigenvalue of the matrix A, respectively.
A matrix B is said to be a symmetric positive definite matrix if B = BT and xT Bx > 0 for any
nonzero vector x. For any function h : R→ R, we define h(t+) = lim∆t→0+ h(t + ∆t), h(t−) =
lim∆t→0− h(t + ∆t). In addition, let (Ω,F ,Ft≥0,P) be a complete probability space with respect
to the filtration Ft≥0, which satisfies the common conditions, i.e., right continuous and F0 contains
all P-null sets. Let E[·] (E[·|·]) denote the (conditional) expectation of a stochastic process.
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2. Preliminaries

Before presenting the system models and the problem statement, we first give some
necessary knowledge about graph theory, which is used to describe the communication
topology among MASs. In this paper, we consider the MASs with N agents and the topol-
ogy can be represented by a digraph G = (V , E ,A), where V is the set of vertices, E ⊆ V ×V
is the set of edges, and A = [aij]N×N is called the adjacency matrix. When the jth agent
sends information to the ith agent, there exists an edge between them and aij = 1;
otherwise, aij = 0. Let the diagonal matrix D = diag{d̄i} be the in-degree matrix
and d̄i = ∑N

j=1 aij, i = 1, 2, . . . , N. Then, the Laplacian matrix L = [lij]N×N can be de-

fined as L = D−A, where lij = −aij, i 6= j and lii = ∑N
j 6=i aij.

Let us consider that generally nonlinear multi-agent systems (NMASs) consist of N
agents and that each can be described as follows:

ẋi(t) = Axi(t) + B f (xi(t)) + Cui(t), t ≥ t0. (1)

where xi(t) ∈ Rn and ui(t) ∈ Rn are the system state and external input control, respec-
tively. Function f : Nn → Nn denotes the nonlinear items satisfying the well-known
Lipschitz condition. A, B, and C are constant matrices with approximate dimensions.

Before presenting the controller considered in this paper, we first provide some expla-
nations about the impulsive deception attacks, so that readers can understand the design of
the controller more clearly. The configuration of NMASs under impulsive deception attacks
is shown in Figure 1. Generally, controllers generate control signals according to states
measured by sensors and then send them to the actuators. For MASs, data transmissions
are heavily dependent on topologies and wireless transmission technology. If attackers
launch data modification or false data attacks to topologies in discrete-time manners or
calls impulsive attacks, they result in instantaneous jumps in the transmitted signal.

Controller 1 Controller 2 Controller N……

Agent 
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Agent 
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Agent 

2

Agent 

NCommunication topology

31a 2 3la

21a

4l Na
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6Nla
32la
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Information from 

Neighbors 

Agent 1 Agent 2 …… Agent N

A1 A2 … ANSNS2S1 …

Figure 1. Configuration of NMASs under impulsive deception attacks (where Ai and Si denote
the actuator and sensor of the ith agent, respectively, and li denotes the lith agent, i = 1, 2, . . . , N).
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Under the configuration reflected in Figure 1, in this paper, we consider the following
common linear feedback controller under Markovian impulsive attacks:

ui(t) = K
N

∑
j=1

aij(xj(t)− xi(t)) +
+∞

∑
k=1

dkxi(t)δ(t− tk). (2)

where K ∈ R is the feedback gain for designed controller. Let I := {tk}+∞
k=1 denote

the impulsive sequence in Dirac form, i.e., the function δ, and dk denotes the impulsive
gains. In addition, we assume that xi(t) is right-hand continuous at t = tk, meaning that
xi(t+k ) = xi(tk). Since the destabilizing impulse is adopted to model the impulsive attacks
here, one can obtain the fact that dk > 0 or dk < −2. Note that ∑+∞

k=1 dkxi(t)δ(t− tk) here
denotes impulsive attacks.

Remark 1. Let Ti(t, t0) and N̄i(t, t0) denote the total impulsive intervals and the occurrence
number for the ith modes of impulses over the interval [t0, t], respectively. Hence, we have N̄(t, t0) =

∑
p
i=1 N̄i(t, t0), which denotes the total number of impulses over the interval [t0, t].

Considering that the stabilization problem of an error system with ideal dynamics is a common
method to tackle the consensus of multi-agent systems. Define the error state as ei(t) := xi(t)−
x̄(t) = xi(t)− 1

N ∑N
i=1 xi(t), which also can be written as e(t) = [eT

1 (t), eT
2 (t), . . . , eT

N(t)]
T =

Ex(t) = ((IN − 1
N 1N1T

N)⊗ In)x(t), and the vector of states x(t) = [xT
1 (t), xT

2 (t), . . . , xT
N(t)]

T .
Then, we can rewrite system (1) with controller (2) in the error system in a compact form as follows:{

ė(t) = He(t) + B̄F(e(t)), t 6= tk, t ≥ t0

e(tk) = ηke(t−k ), t = tk.
(3)

where H = IN ⊗ A− KL⊗ C. Define B̄ = IN ⊗ B and function F(e(t)) = E f (x(t)), where
the vector function f (x(t)) = [ f T(x1(t)), f T(x2(t)), . . . , f T(xN(t))]T . Moreover, ηk = 1 + dk,
and then, one has |ηk| > 1 according to the values of dk.

Before ending this section, here, we present some assumptions and definitions used in this paper.

Assumption 1. Suppose that there exists p types of impulses, and both the gains and instants of
impulsive sequence are stochastic. The gains ηk take values from a finite set G = {µi}i∈Γ satisfying
E[µ2

i ] = υi < +∞ and ϑ = maxi∈Γ{υi}, and Γ := {1, 2, . . . , p}. The impulsive sequence
{tk}+∞

k=1 is governed by a right-continuous homogeneous Markovian chain with p modes, i.e., for
t ∈ [tk, tk+1), rk := r(t) = i ∈ Γ with the generator Λ = [λij]p×p, i, j ∈ Γ given by

P(rt+h = j|rt = i) =

{
λijh + o(h), i 6= j,
1 + λijh + o(h), i = j.

where h > 0, limh→0
o(h)

h = 0 and λij denotes the transition rate from i to j, which satisfies that
λij ≥ 0 for i 6= j and λii = −∑j 6=i λij.

According to properties of the Markovian chain, we know that the impulsive interval τ(k) =
tk − tk−1 satisfies the exponential distribution, i.e., τ(k) ∼ Exp(λi), when rk = i and λi = |λii|.
Moreover, we obtain the transition probability that pij =

λij
λi

for i 6= j and pij = 0 for i = j.
Based on Assumption 1, we further assume that ηk is a stochastic process on (Ω1,F 1,F 1

k∈N,P1),
where F 1

k∈N = σ(η1, η2, . . . , ηk) is the filtration of F 1. On the other hand, the impulsive instants
satisfies the Markovian chain, meaning that r1, r2, . . . , rk are independent random variables on
a probability space (Ω2,F 2,F 2

k∈N,P2); similarly, F 2
k∈N = σ(r1, r2, . . . , rk) is the filtration of

F 2. Hence, denote Ω := Ω1 ×Ω2,F := F 1 ×F 2,P := P1 ×P2, and Fk := σ(F 1
k ×F 2

k).
As a result, the jointly stochastic process {(rk, ηk)}k∈N can be defined on the probability space
(Ω,F ,Fk,P).
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Assumption 2. The nonlinear function f : R→ R is said to be satisfied the Lipschitz condition
if there exists a constant κ > 0 such that

| f (x1)− f (x2)| ≤ κ|x1 − x2|. (4)

Definition 1. System (1) is said to be mean square consensus under Markovian impulsive attacks
for any given initial value of system states x(t0) if

lim
t→+∞

E
[
|ei(t)|2

]
= 0, ∀i = 1, 2, . . . , N. (5)

3. Main Results

Theorem 1. Under Assumptions 1 and 2, the mean square consensus of system (1) with con-
troller (2) under the Markovian impulsive attacks can be reached if there exist symmetric positive
definite matrix P and feedback gain K such that

p

∑
j=1

max
i∈Γ
{pij}

λjυj

λj − γ
< 1 (6)

where γ = ρβ < minj∈Γ{λj}, ρ = λmax(P)
λmin(P) , β = λmax(Π), and Π = HT + κB̄T + PH + κB̄.

Proof. Consider the following Lyapunov function candidate

V(t, e(t)) = eT(t)Pe(t). (7)

For t ∈ [tk−1, tk), one can obtain the derivatives of V(t, e(t)):

D+V(t, e(t))

= ėT(t)Pe(t) + eT(t)Pė(t)

≤ eT(t)
(

HT P + κB̄T P + PH + κPB̄
)

e(t)

≤ γV(t, e(t)).

(8)

where γ = ρβ.
For t = tk, caused by the impulsive attacks, we have

V(tk, e(tk)) = eT(tk)Pe(tk)

= η2
k eT(t−k )Pe(t−k )

≤ η2
k eγτk V(tk−1, e(tk−1)).

(9)

Since the items eγτk and V(tk−1, e(tk−1)) are nonnegative random variables, by taking
the expectation and utilizing the properties of the conditional expectations, we obtain

E[V(tk, e(tk))]

≤ E[E[η2
k eγτk V(tk−1, e(tk−1))|Fk−1]]

= E[E2[E1[η2
k eγτk V(tk−1, e(tk−1))|F 1

k−1]|F
2
k−1]

= E[V(tk−1, e(tk−1))]E[E[η2
k eγτk |rk−1]].

(10)

For t ∈ [t0, t1), it follows from (8) that we have

E[V(t, e(t))] ≤ E[E[eγτ1 |r0]]E[V(t0, e(t0))]
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from which one can get that, for t = t1,

E[V(t1, e(t1))] ≤ E[E[η2
1eγτ1 |r0]]E[V(t0, e(t0))].

For t ∈ [t1, t2), we obtain a similar result from (8) and (10):

E[V(t, e(t))] ≤ E[E[eγτ2 |r1]]E[V(t1, e(t1))]

from which one can get that, for t = t2,

E[V(t2, e(t2))] ≤
2

∏
l=1

E[η2
l eγτl |rl−1]E[V(t0, e(t0))].

By mathematical induction, one can finally obtain that, for t = tk,

E[V(tk, e(tk))]

≤ E[V(t0, e(t0))]
k

∏
l=1

E[E[η2
k eγτl |rl−1]]

= E[V(t0, e(t0))]E[
k

∏
l=1

E2[E1[η2
k ]e

γτl |rl−1].

(11)

Let il ∈ I, l ∈ N. Since the impulsive sequence {ηk, rk, k ∈ N+} with respect to tk is
a Markovian chain and the impulsive interval τ(k) ∼ Exp(λi), then we have

E[
k

∏
l=1

E2[E1[η2
l ]e

γτl |rl−1]]

=
p

∑
i1=1

p

∑
i2=1

. . .
p

∑
ik=1

k

∏
m=1

E2[E1[η2
im ]e

γτim ]|rim−1 ]

× P(ri1 = i1, ri2 = i2, . . . , rik = ik)

≤
p

∑
i1=1

p

∑
i2=1

. . .
p

∑
ik=1

k

∏
m=1

∫ +∞

0
eγsλim e−λim sds

×
k

∏
m=1

max
i∈Γ
{piim}E

1[η2
im ]

≤
p

∑
i1=1

p

∑
i2=2

. . .
p

∑
ik=1

k

∏
m=1

λimE1[η2
im ]

λim − γ
max
i∈Γ
{piim}

= θk.

(12)

where θ = ∑
p
j=1 maxi∈Γ{pij}

λjυj
λj−γ < 1.

Substituting (12) into (11), we get that

E[V(tk, e(tk))] ≤ θkE[V(t0, e(t0))]. (13)

from which we obtain that, with condition (6)

lim
k→+∞

E[V(tk, e(tk))] = 0. (14)

which indicates that limk→+∞ E[|e(tk)|2] = 0. Hence, the consensus of system (1) can be
achieved, and the proof of Theorem 1 is completed.
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Remark 2. Note that the parameters γ and λj must satisfy γ < minj∈Γ{λj}. If we choose
γ ≥ minj∈Γ{λj}, we can easily know that

∫ +∞
0 eγsλil e

−λil
sds = +∞, so the condition that

γ < minj∈Γ{λj} is necessary. Moreover, from (6), we can find a fact that the nonlinear functions
has a negative effect on the consensus of system (1), which cannot deal with a high-density impulsive
attack. If the system considered is linear, then the condition (6) can be released to adapt more
general cases.

Corollary 1. Under Assumptions 1 and 2, if κ ≡ 0, then the consensus of system (1) with
controller (2) under Markovian impulsive attacks can be reached if there exist symmetric positive
definite matrix P and feedback gain K such that

p

∑
j=1

max
i∈Γ
{pij}

λjυj

λj − γ
< 1. (15)

where γ = ρβ < minj∈Γ{λj}, ρ = λmax(P)
λmin(P) , β = λmax(Π), and Π = HT + H.

Remark 3. The impulsive attacks in this paper are assumed to be stochastic, and since we do not
further restrict the distribution of impulsive gains, the explicit relations between the consensus
(or system stability) and the impulsive gains are ambiguous, where E[ηk] is replaced by E[η2

k ].
For the above reason, it may be hard to obtain E[η2

k ] as we do not know the distribution to which ηk
subjected; we need a prior known E[η2

k ] when the clear distribution is unknown. On the other hand,
it is common and suitable to assume that the gains from attacks satisfy the Bernoulli distribution
such as that in the work of [25], representing the occurrence of attacks. Moreover, the condition (6)
shows that a large feedback gain is needed if the strength of impulsive attacks is strong. If the
gains are deterministic (i.e., ηk = η > 1, k ∈ N), then we can get the following corollary, which is
the direct result of model simplification, so the proof is also omitted here.

Corollary 2. Under Assumptions 1 and 2, then the consensus of system (1) with controller (2)
under Markovian impulsive attacks can be reached if there exist symmetric positive definite matrix
P and feedback gain K such that

p

∑
j=1

max
i∈Γ
{pij}

λjη
2

λj − γ
< 1. (16)

where γ = ρβ < 0, ρ = λmax(P)
λmin(P) , β = λmax(Π), and Π = HT + H + κB̄T + κB̄.

Remark 4. From the condition (16), one can observe that the dynamics of considered NMASs are
stable without impulsive attacks. The reason for this restrictive condition is that the impulsive
effects taken into account in this paper are destabilizing, which means that the parameter η always
bigger than one. As a result, though the condition γ < minj∈Γ{λj} is satisfied, one can find that
the inequality (16) never holds when γ ≥ 0. Therefore, the restrictive condition γ < 0 in (16)
is required.

In the following, we further assume that the Markovian chain obeyed by the impulsive sequence
{tk}+∞

k=1 is irreducible and that it adopts a stationary distribution ε̄ = (ε̄1, ε̄2, . . . , ε̄p).

Theorem 2. Under Assumptions 1 and 2, then the consensus of system (1) with controller (2)
under Markovian impulsive attacks can be reached almost surely (a.s.), if there exist symmetric
positive definite matrix P and feedback gain K such that

∑i∈Γ λi ε̄i ln(E[η2
i ]) + γ < 0. (17)

where γ = ρβ; ρ = λmax(P)
λmin(P) ; andβ = λmax(Π), where Π = HT + H + κB̄T + κB̄, and ε̄i, i ∈ Γ

is the element of the stationary distribution adotped by the impulsive sequence.
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Proof. From (11), we get that for ∀t ≥ t0

V(t, e(t)) ≤
k

∏
l=1

η2
l eγ(t−t0)V(t0, e(t0))

=
N̄(t,t0)

∏
k=1

η2
k eγ(t−t0)V(t0, e(t0)).

(18)

Note that the impulsive interval τ(k) ∼ Exp(λi), i ∈ Γ; then using the Ergodic
theorem [29], the strong law of large number, and the properties of the homogeneous
Markovian chain, for i ∈ Γ, we can obtain that

lim
t→+∞

N̄i(t, t0)

t− t0
= lim

t→+∞

N̄i(t, t0)

Ti(t, t0)

Ti(t, t0)

t− t0

= lim
t→+∞

N̄i(t, t0)

∑
N̄i(t,t0)
k=1 τk

ε̄i

= λi ε̄i, a.s.

(19)

Then, it follows from (17) and (19) that

E[V(t, e(t))]

≤
N̄(t,t0)

∏
k=1

E[η2
k ]e

γ(t−t0)E[V(t0, e(t0))]

=
p

∏
i=1

(E[η2
i ])

N̄i(t,t0)eγ(t−t0)E[V(t0, e(t0))]

= e(∑i∈Γ λi ε̄i ln(E[η2
i ])+γ)(t−t0)E[V(t0, e(t0))]

= ω̄1(E[V(t0, e(t0))], t− t0) a.s.

(20)

where the function ω̄1(r, s) := e(∑i∈Γ λi ε̄i ln(E[η2
i ])+γ)sr. Define ω̄2(r, s) := ω̄1(r,s)

ε for an
arbitrarily small ε ∈ (0, 1). By employing the Markov’s inequality [[30], p. 111, (18.1)]
to (20), we have for t ≥ t0

P{V(t, e(t)) ≤ ω̄2(E[V(t0, e(t0))], t− t0)}

≥ 1− E[V(t, e(t))]
ω̄2(E[V(t0, e(t0))], t− t0)

≥ 1− ε.
(21)

From (20), we know that limt→+∞ E[V(t, e(t))] = 0. Hence, the consensus of system (1)
can be achieved almost surely, and the proof of Therorem 2 is completed.

Remark 5. Compared with the parameters in Theorem 1, from (17), one can observe that the con-
dition γ < minj∈Γ{υ} is removed by employing the properties of stationary distribution of
Markovian chain.

4. Numerical Examples

In this section, a numerical example with four different cases corresponding to the re-
sults established in the previous section is presented, and the last one is given to illustrate
the case when gains of attacks |ηk| ≤ 1, k ∈ N. Consider the NMASs with four agents, for
which the communication topology is described as Figure 2. The dynamics of each agent
can be described as follows:

ẋi(t) = Axi(t) + B f (xi(t)) + Cui(t). (22)
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where the system states xi(t) = [xT
i1(t), xT

i2(t)]
T ∈ R2. ui(t) is shown in (2), and the non-

linear function f (xi(t)) = (tanh(xi1(t)), tanh(xi2(t)))T . The constant matrices A, B, and C
are given as follows:

A =

[
0.1 0
0 0.1

]
, B =

[
0.4 −0.02
−1 0.6

]
, C =

[
0.2 0.1
0 0.2

]
.

which implies κ = 0.505 and β = 1.234 with K = 0.1.

1 2

3 4

Figure 2. The communication topology of the NMASs (22).

Choose P = I2; then ρ = 1 and γ = ρβ = 1.234. Suppose a generator of the considered
Markovian chain is given as the matrix Λ

Λ =


−4 2 1 1
1 −5 2 2
2 1 −4 1
2 2 1 −5

,

from which we know that γ = 1.234 < minj∈Γ{λj} = 4, from which the transition
probability matrix Q can also be derived as

Q =


0 0.5 0.25 0.25

0.2 0 0.4 0.4
0.5 0.25 0 0.25
0.4 0.4 0.2 0

,

and for which the Markovian chain is described in Figure 3, where we only present a local
part of the whole Markovian chain.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System running time:  t

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
he

 it
h 

of
 a

tta
ck

s:
  i

=
1,

2,
3,

4

Figure 3. The Markovian chain generated by the probability transition matrix Q.
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In addition, set the initial values of system state

x(t0) =
[

xT
1 (t0), xT

2 (t0), xT
3 (t0), xT

4 (t0)
]T

=
[
1.5 0.6 0.5 −1.2 −1.5 −0.6 −0.5 1.2

]T

which can also be randomly generated. Moreover, we can verify that the average values

of x(t0) is xave = 0. Let the error state defined as |ei(t)| =
√

x2
i1(t) + x2

i2(t). As shown
in Figure 4, the error trajectories of agents do not reach an agreement in the absence of
a controller, in other words, system (22) is unstable without control.

Figure 4. The error trajectories of agents in the absence of controller.

In the following, we consider four cases of stochastic attacks, in which the first three
examples are given to illustrate some results proposed in the previous section and the last
example is given to illustrate the case in which gains of attacks are below the defined
threshold, i.e., |ηk| ≤ 1, k ∈ N. Let the time step of all the simulations in this section be
step = 0.01.

Remark 6. As we know, the Markovian process can reflect the random jump phenomenon in the real
world well and is widely used in many production activities. The cases given here are used to
simulate different kinds of malicious human-made network attacks in reality as well as possible
attack phenomena in engineering applications such as some transformers that suffer from cyber
attacks and result in functional failure in the power grid.

Case 1: Stochastic gains and instants.

In this case, based on the condition that |ηk| > 1, k ∈ N, we assume that gains
of the impulsive deception attacks µ1 = 1.1ξ1, µ2 = −1.2ξ2, µ3 = −1.1ξ3, and µ4 =
1.2ξ4, where ξi, i = 1, 2, 3, 4 satisfy the Bernoulli distribution with expectations E[ξ1] =
0.5,E[ξ2] = 0.1,E[ξ3] = 0.2, and E[ξ4] = 0.1, respectively. Then, we can verify that
υ1 = 0.605, υ2 = 0.144, υ3 = 0.242, and υ4 = 0.144. In addition, instants of attacks obey
the Markovian chain, for which the generator is presented as above.

Based on the given conditions, one can get that ∑4
j=1 maxi∈Γ{pij}

λjυj
λj−γ = 0.682 < 1.

Thus, by employing Theorem 1, the consensus of system (22) can be achieved as Figure 5
shown. Compared with Figure 4, we know that the error states of system (22) can converge
to zero from Figure 5 with controller (2), and according to Definition 1, the consensus of
system (22) can be achieved.
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Figure 5. The error trajectories of agents in Case 1 with stochastic gains and Markovian instants.

Case 2: The Markovian chain is a stationary distribution.

From the given generator, the stationary distribution ε̄ = (0.273, 0.227, 0.273, 0.227)
can be obtained. In addition, we assume that gains of the impulsive deception attacks
take values from the following random valuables such that µ1 = −1.5ξ1, µ2 = 2ξ2, µ3 =
−1.5ξ3, and µ4 = 1.2ξ4, where ξ1 and ξ2 are the discrete variables obeying the following
distribution:

ξ1 0.7 −0.7 0.8 ξ2 0.6 −0.6 0.8

Pr 0.5 0.4 0.1 Pr 0.6 0.2 0.2

In contrast, ξ3 and ξ4 satisfy the Bernoulli distribution with expectations E[ξ3] =
0.5 and E[ξ4] = 0.1, respectively. Thus, we know that υ1 = 1.136, υ2 = 1.664, υ3 =
1.125, and υ4 = 0.144; therefore the condition in Theorem 2 can be checked such that
∑i∈Γ λi ε̄i ln(E[η2

i ]) + γ = −0.117 < 0 with K = 0.1 and β = 1.234. As a result, the con-
sensus of system (22) can be achieved by employing Theorem 2, as shown in Figure 6.
Similarly, we know that the error states of system (22) can converge to zero from Figure 5
with the controller (2), and and according to Definition 1, the consensus of system (22) can
be achieved.

Figure 6. The error trajectories of agents in Case 2 with Markovian instants adopting a
stationary distribution.
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Case 3: Determined gains and stochastic instants.

In this case, we further assume that gains of the impulsive deception attacks is a con-
stant ηk ≡ η = 1.2 and that instants are assumed to be the same as that in Case 1. Note that
the gains in this case are always bigger than one, and according to Remark 4, we know
that system (22) must be stable without impulsive deception attacks. Thinking about
the conditions (16), we reselect the system matrices A as

A =

[
−4 0
0 −4

]
With the parameters given or calculated above, one can obtain that γ = ρβ =

−7.479 < 0 and ∑4
j=1 maxi∈Γ{pij}

λjη
2

λj−γ = 0.978 < 1. Therefore, the consensus of sys-
tem (22) can be achieved by employing Corollary 2, and the result is shown as Figure 7.
Note that, in this case, the parameter γ needs to be less than zero, the reason can be found
in Remark 4. Similarly, from Figure 7 and Definition 1, we can obtain the consensus as
error states converge to zero.

Figure 7. The error trajectories of agents in Case 3 with determined gains and Markovian instants.

Case 4: Stochastic gains and instants with dk ∈ [−2, 0].

In this case, we further assume that dk ∈ [−2, 0], k ∈ N and that gains of the impulsive
deception attacks µi, i = 1, 2, 3, 4 take values from µ1 = 0.9ξ1, µ2 = −0.9ξ2, µ3 = 0.8ξ3,
and µ4 = −0.8ξ4, where ξi, i = 1, 2, 3, 4 satisfy the Bernoulli distribution with expectations
E[ξ1] = 0.1,E[ξ2] = 0.1,E[ξ3] = 0.1, and E[ξ4] = 0.1, resceptively.

Then, we can verify that υ1 = 0.081, υ2 = 0.081, υ3 = 0.064, and υ4 = 0.064. In addi-
tion, instants of attacks obey the Markovian chain for which the generator is presented as

above. Hence, based on the given conditions, one can get that ∑4
j=1 maxi∈Γ{pij}

λjυj
λj−γ =

0.180 < 1. Thus, by employing Theorem 1, the consensus of system (22) can be achieved as
shown in Figure 8.
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Figure 8. The error trajectories of agents in Case 4 with stochastic gains and Markovian instants.

Remark 7. From Case 4, we can find that impulsive attacks can stabilize an unstable system when
gains belong to [−2, 0]. In fact, we can find its theoretical support from the error system (3). When
dk ∈ [−2, 0], one can get that |ηk| = |dk + 1| ≤ 1. The impulses can stabilize an unstable system,
as we know, when the gains of impulses are less than one. Thus, the error system (3) can be stabilized
with impulsive control.

Remark 8. In order to further compare the simulation results with the controller, we give the fol-
lowing simulations with attacks but without control and a system with control but without an
attack. For a system (3) affected by the attack and no controller added, the error trajectories of
the agents are depicted in Figure 9. From Figure 9, we can find that the error states of system (3)
become bigger and bigger, meaning that consensus cannot be reached under attacks without the con-
troller. In addition, for the system that is not attacked, the error trajectories of agents with control
are depicted in Figure 10, from which we know that system (22) can achieve consensus under
the common controller ûi(t) = K ∑N

j=1 aij(xj(t) − xi(t)) and without the influence of attacks

∑+∞
k=1 dkxi(t)δ(t− tk).

Figure 9. The error trajectories of agents affected by an attack without the controller.



Appl. Sci. 2021, 11, 3926 14 of 16

Figure 10. The error trajectories of agents with control but without an attack.

5. Conclusions

In this paper, a more general model for impulsive deception attacks where both gains
and instants are stochastic was established, and the consensus problem of the nonlinear
multi-agent system under stochastic impulsive attacks was considered. The sufficient con-
ditions were derived with the help of some properties of the stochastic process, and some
special cases with more or fewer assumptions were also considered, including the de-
termined, linear, and stationary processes. It can be found that the convergence rate of
the NMASs and the transition rates were crucial for stabilization of the considered systems.
Moreover, we find that the consensus under impulsive attacks can be maintained if the fre-
quency of attacks is small, i.e., the probability of the random variables cannot be too large.
Finally, a numerical example with four cases was provided to verify the effectiveness of
the obtained results. Further works will attempt to generalize the Markovian assumption to
the semi-Markovian process and will take continuous disturbances into account, as the im-
pulsive intervals with semi-Markov assumption can be used to satisfy any distributions
instead of only the exponential distribution while the continuous disturbances are likely to
exist in many cases.
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