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Abstract: The architecture of spaces for people on the autistic spectrum is evolving toward inclusive
design, which should fit the requirements for independent, autonomous living, and proper support
for relatives and caregivers. The use of smart sensor systems represents a valuable support to
internal design in order to achieve independent living for impaired people. Accordingly, these
devices can monitor or prevent hazardous situations, ensuring security and privacy. Acoustic sensor
systems, for instance, could be used in order to realize a passive monitoring system. The correct
functioning of such devices needs optimal indoor acoustic criteria. Nevertheless, these criteria should
also comply with dedicated acoustic requests that autistic individuals with hearing impairment or
hypersensitivity to sound could need. Thus, this research represents the first attempt to balance,
integrate, and develop these issues, presenting (i) a wide literature overview related to both topics,
(ii) a focused analysis on real facility, and (iii) a final optimization, which takes into account, merges,
and elucidates all the presented unsolved issues.
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1. Introduction

Autistic people, their families, or caregivers need design processes capable of overcom-
ing the difficulties of everyday life. In 2020, the Center for Disease Control and Prevention
reported that approximately 1 out of 54 children in the U.S. is diagnosed with an Autism
Spectrum Disorder, in accordance with 2016 data [1]. In 2018, the European project “Autis-
tic Spectrum Disorder” evaluated the prevalence of ASD individuals in approximately
0.62–0.70% of the population in the European Union, although estimates of 1–2% have
been made in the latest large-scale surveys [2]. In Asia, a systematic review in six Asian
countries reported that the prevalence of individuals with ASD from 1980 to present was
14.8 individuals per 10,000 [3].

A percentage of 31% of ASD children present an intellectual disability (intelligence
quotient [IQ] < 70), 25% are in the borderline range (IQ 71–85), and 44% present IQ higher
levels (i.e., IQ > 85) [4]. Over the next decade, an estimated 500,000 teens (50,000 each year)
will enter adulthood and thus into a period of life where the school-based autism services
are usually not provided [5].

Parents, professional caregivers, doctors, teachers, etc. offer dedicated assistance
to ASD individuals and, most of the time, this support is needed 24 h a day. Special
education services are the costliest resources per individual, followed by tutorial support.
Accordingly, the cost of caring for autistic Americans reached $268 billion in 2015 and it will
rise up to $461 billion by 2025 in the absence of more-effective interventions and lifelong
supports [6]. In Europe, the estimate economic burden per individual for six months has
been estimated to vary in a range from 797 € to 11,189 €. Other health and social services are
an important part of the costs paid directly by individuals on the spectrum and caregivers.
As an example, the cost of hiring a caregiver for six months is estimated within a range
from 307.68 € to 4467.41 € [7].
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It is therefore of paramount social and economic importance to study and implement
alternative solutions offering the right support to everyday life for autistic people, from
childhood to adulthood.

For children, teenagers, and adults, the autistic spectrum presents various levels of
severity, from minimal to more acute forms, often accompanied by a diagnosis of mental
retardation or other co-morbidities [8]. Sudden variation in behaviors are very common and
even more common in people who also feature learning disabilities [9]. These facts often
occur when individuals may not partially or completely understand what is happening
around them and it may also be associated with a number of other factors including anxiety,
stress, and sensory processing differences [10]. Self-injurious behavior might be presented
as head banging on walls or other surfaces, hand or arm biting, hair pulling, eye gouging,
face or head slapping, skin picking, scratching or pinching, or forceful head shaking.

Autism is based on observable behaviors, described in the two available diagnostic
manuals edited by the World Health Organization [11] and the United States of Amer-
ica [12]. Depending on the severity of the level of required care, most individuals should be
assisted by specialized and dedicated staff, which entails the costs that families and care fa-
cilities have to bear [13]. As they reach adulthood, high functioning people (HFA) without
intellectual disabilities can aspire to independent living projects, if adequately supported
by care facilities, living, and working environments adapted to their needs [14]. Research
has shown that work activities that encourage independence reduce the symptoms of
autism and increase daily life skills [15].

Current technologies available for autistic people may feature wearable (bracelets
and smartwatches) and portable media (smartphones and tablets) used to prevent crises;
additionally, environmental sensors capable of monitoring different living conditions may
be utilized. The smart systems should be able to recognize any anomalous events or
moments of crisis and, for this reason, it should be designed ad hoc on the needs of each
user. Technology can therefore become an important aid, whether they are in a situation of
total need of care, or in situations of lower level of intervention (semi-independence) [16].
For example, an integrated sensor system could represent a chance to support autistic
people and their families or caregivers [17]. This system may reduce the cost of dedicated
personnel, offer some rest to the families, and increase the sense of autonomy.

Thus, in order to employ technological solutions to help and support autistic individu-
als and whoever takes care of them, it is of primary importance to study their peculiarities,
related to their relationships and attitudes with indoor spaces. Passive monitoring systems
can help to live as autonomously as possible in environments designed and built to meet
their needs [18]. For example, a possible form of smart assistance could be offered by
integrated sound sensor systems capable of capturing and analyzing noisy events linked
both to the occurrence of normal domestic accidents (e.g., falling from a staircase) and to
the manifestation of critical events related to some behaviors (e.g., banging head against
a wall) [19]. For the above-mentioned reasons, it is evident how sound sensors are very
useful and therefore worthy of investigation.

Accordingly, the use of sound detection devices implies that the acoustic field in the
rooms is adequate and suitable for their implementation [20]. In order to facilitate the use
of these sensors, the acoustic characteristics of the indoor spaces in which these systems
can be inserted should be studied, but at the same time, the acoustic requests essential by
autistic people have to be considered.

Therefore, the aim of this research was to understand how to combine the acoustic
necessities imposed by sensors and the acoustic indoor requirements presented by autistic
people with hearing impairments or hypersensitivity to sound.

2. Materials and Methods

A dedicated literature overview is presented, focusing at the same time on devices
sound field requests and acoustic indoor requirements for living spaces of autistic people
with hearing impairments or hypersensitivity to sound. With these results in mind, a real
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case study featuring a daily care facility dedicated to ASD individuals, with apartments for
autonomous living projects, was analyzed. Measurements of reverberation time performed
on all interesting rooms are depicted and obtained values were compared to the suggested
ones in the literature. Then, in order to comply with them, an optimization process is
presented. Measured values were used for the calibration of acoustic 3D models. These
will be useful to customize the indoor built environment and to study different sound
fields due to positions and the shape variations of sound absorbing elements. Thus, using
this approach, a dedicated discussion is addressed on sound field distribution, related to
sensors and ASD people requirements for different configurations of typical rooms. A
flowchart of the research approach is provided in Figure 1.
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Figure 1. Flowchart of the research approach.

2.1. Literature Results on Acoustic Devices Requirements and Their Uses

At present, the most widely used devices for indoor monitoring include infra-red
sensors, open/closed detectors, weather stations, kinematic sensors, webcams, and mi-
crophones for sound and speech recognition [21]. Sound and voice recognition systems
represent a good compromise between privacy and support [22]. They can monitor sound
levels without “being seen”, featuring the option to whether to record signals or not.

Sound and speech recognition technologies are classified as acoustic event detection
(AED) and sound source recognition systems (SSR). AED is designed to detect anomalous
acoustic events and were first developed only to assist video surveillance monitoring [23].
They are based on sound signal peculiarities, which can be composed of many different time
or spectral characteristics, amplitude levels (consequently different signal-to-noise ratio),
and durations. The detection algorithms are based on pre-processing techniques, necessary
to detect potential alarm signals [24]. These systems are mainly used for “security” in
outdoor environments or large spaces (garages, airports, stations, etc.).

SSR are devices that have been recently developed. They permit the switch from a
help button-driven request to an immediate sending of a distress call by means of the use
of people’s own voice or a specific event recognition. These technologies are becoming
increasingly popular today, especially thanks to the development of home automation
techniques within smart homes [25].

Sensors can provide information about a person’s posture and movement or detect
falls, etc. [26]. Smart homes are therefore useful to monitor activities or to help with
cognitive or physical disabilities in daily events [27]. In this case, they would make it
possible to monitor situations of annoyance or nervousness such as sudden noises coming
from outside (a loud horn or an individual screaming from the street), or from nearby
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environments (neighbor’s noise, etc.) and trigger the appropriate mechanism, if the
individual suffers emotional stress related to these factors [28].

Nowadays, there are many available solutions of acoustic recognition algorithms [29].
The involved systems feature one or more microphones or are even embedded in robots,
permitting them to follow individuals very closely. As far as voice command is concerned,
these systems are able to analyze and recognize many characteristics including intensity,
timbre, rhythm, and level [30]. This permits to distinguish whether to send an early
warning to the caregivers or not.

Such systems therefore permit non-autonomous people to maintain control of their
environment, activities, health, well-being, and sense of dignity [31]. Many of the above-
presented studies identify disabled people as the main stakeholders, in particular when
they are able to look after themselves, but they may need help when facing some difficult
tasks or any situations of risk, danger, and accident. Recognition systems can also be
implemented in order to emit reassurance signals (voices, music, light variation) in order
to avoid crises and panic.

Most problems encountered during the implementation phases are related to the
background noise and indoor reverberation conditions [32]. Accordingly, recognition
performance decreases significantly as devices are located away from the user’s mouth
(e.g., when positioned on the ceiling), due to reverberation increasing, and background
noise effect (masking) [33].

Indoor sound environment may be characterized by many objective parameters. One
of the most important is the measure of the energy decay in time (reverberation time RT).
This parameter depends on the sound-absorbing characteristics of the finishing and on
the volume of the room. Reverberation time is short for very sound absorbent rooms or
small close environments and increases proportionally to volume or the decrease in the
presence of sound absorbing materials [34]. For the acoustic qualification of a room, it is
also essential to study the distribution of sound energy during decay (i.e., whether this
energy is concentrated near the source or, conversely, a significant portion of it arrives with
a significant delay compared to the direct sound) [35]. The ratio between early and late
sound reflections is represented by the parameter clarity index (C50). This is an objective
qualification of the clarity of speech. Indeed, late reflections are unfavorable for speech
comprehension; anyway, if this delay does not exceed a certain time limit (50 ms), the
reflections will contribute positively to the speech clarity.

In addition, the percentage ratio between early sound reflections (between 0 and 50 ms)
and overall sound energy of the impulse response is defined in terms of definition (D50).

Few studies have focused on the determination of the optimal sound field conditions
related to the use of this sound device within the built environment. Lecouteux et al. [27]
reported that for reverberation time, the range comprised from 0.5 s to 0.7 s represents the
optimal conditions for the use of sound sensors in small environments; Petrick et al. [36]
demonstrated that strong disturbances are caused by reflections in most typical indoor
living area for sounds at frequencies below 250 Hz and above 2500 Hz. The identified
optimal reverberation time represents the combination of the requirements of good in-
telligibility and sufficient intensity level, depending on the listening conditions. A value
of 0.5 s at medium-high frequencies is characteristic of a normally furnished residential
environment [37].

Among all the other parameters, C50 and D50 represent further paramount room
acoustic indicators used to determine the quality of environments suitable for sensor
installation [38,39]. Parada et al. [40] showed that the full frequency-band of C50 is the
most relevant measurement of sound energy to predict phenomena recognition in terms of
correlation and mutual information. Sehr et al. [41] explained the high correlation between
the word accuracy and the definition D50, pointing out that if a value of 0.7 is verified
in a room, the sound intelligibility will be very good. These indexes represent the ratio
between the energy associated with direct sound and the one associated with the first and
subsequent reflections [42]. Therefore, C50 and D50 are certainly useful for the qualification
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of the indoor sound field. They permit correctly location of the acoustic recognition sensors
inside a room because they are influenced by room position. However, these parameters are
not commonly used as the RT, which, on the other hand, does not vary significantly because
of room location. In conclusion, some ranges have been found, but no studies on indoor
sound field distribution are available as well as information on device position selection.

2.2. Literature Results on Hearing Impaired ASD Indoor Acoustic Requirements

In everyday life, people without cognitive impairment can process various practice
situations through pre-acquired mental schemes [43]. The process of selecting the arrange-
ment to correctly manage a situation is the basis of normal understanding. Thanks to this
schematic memory, it is possible to recognize the world as “familiar”. Anything that does
not correspond to the already measured experiential data is recognized as “extraneous”;
this is a very quick process. If most situation details fit well into a pattern, attention is
immediately driven by unknown ones. Conversely, if most details are not familiar at all, a
new pattern is processed [44]. Each pattern can also be considered as a large network of
memories with potential associative connections. When events follow our expectations,
some previously acquired memories reach the peripheral consciousness and arouse the
sensation of having already happened. Thus, it is possible to react. This cognitive process
is responsible for everyday normal living.

People on the autism spectrum may be characterized by severe and generalized
impairment in some areas of cognitive development including hyper- or hypo-reactivity to
sensory stimuli or unusual interest in particular details of the environment [45]. For high
functioning individuals (HFA) without intellectual disability, significant difficulties in the
process of social inference can be verified and, in particular, this dysfunction can occur
when they have to choose which information has to be taken into account [13]. However,
the qualitative compromises of these conditions should not lead to their isolation, but
rather to search for new approaches, which, thanks to the support of targeted design and
appropriate technology, will also permit the development of autonomy and increase their
sense of self-esteem and competence [46].

Autistic people can present high sound sensitivity [14]. A survey conducted on
168 Canadian families with 3–16 years old children on the spectrum [47] demonstrated
that the 87% of the respondents reported that their children were sensitive to noise. This
co-morbidity is related to great difficulties in focusing concentration on a single auditory
stimulus (e.g., someone’s voice), like noise from ventilation, doors opening, someone
coughing, cars in transit, etc. Their brains seem to treat all sounds with the same intensity
and thus importance [15]. If they try to separate the background noise from the direct
sound, they often fail. Accordingly, their brain processes all the perceived noise stimuli
featuring the same importance, trying to understand the meanings of all the sounds at the
same time [48].

On the other hand, autistic individuals can also present low sound sensitivity: in
this case, a “too quiet” environment could mean the absence of inputs. Thus, they will
feel the need to increase the sensory experience, for example, by tapping their fingers
insistently [49].

Therefore, the acoustic conditions of the indoor and outdoor environment are paramount
aspects that should be considered [50]. Avoiding the mitigation of household noises from
appliances and equipment could force them to use anti-noise headphones in order to
decrease sensory stimulation, distraction, and discomfort [51,52].

Nevertheless, it should also be considered that sometimes, they can also be the noise
source. Accordingly, some of them can be particularly active at night time and turn on
sound sources such as the TV or stereo, or use showers or water services, causing noise
in neighboring rooms [53]. This means that spaces for ASD people should be designed
considering the acoustics, in accordance with their profile and individual needs [54].
The diversity of neurological conditions means that the design of an intelligent home or
intelligent space cannot be randomly decided, but should respond precisely to the needs
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and wishes of the individual who will use it [55]. From all the above-mentioned results,
one can conclude that autistic individuals often present sensorineural hearing features.

2.3. Determination of the Optimal Sound Field Ranges for Autistic Individuals and
Acoustic Sensors

Ranges for hearing impaired individuals can be found, but research related to indoor
sound field distribution is neither available focused on individuals, nor on procedures or
approaches explaining how and where to select the speakers and listeners’ positions.

In this view, studies not directly related to ASD individuals are available so far
and can be used as reference. The American Speech Language Hearing Association [56]
recommends 0.4 s as the reverberation time for unoccupied rooms for children with hearing
loss and children with auditory learning difficulties or hearing disabilities. The UK Building
Bulletin 102 [57] contains the maximum mid-frequency reverberation time requirements for
newly-built environments and refurbishments. For spaces intended for users with special
hearing or communication needs, the recommended reverberation time is RT ≤ 0.4 s,
averaged from the 125 Hz to 4 kHz octave bands. The American National Standards
Institute [58] recommends a reverberation time of RT < 0.7 s for schools in the octave
frequency band of 500 Hz, 1000 Hz, and 2000 Hz. For the health care sector, Braam [59]
suggested RT values in the range between 250 Hz and 2000 Hz of between 0.4 and 0.7 s.
Marshall [60] pointed out that the speech intelligibility in a room is excellent, if C50 ≥ 2 dB
and D50 > 0.6. Furthermore, Griesinger [61] clearly related C50 with vowel recognitions.
These data are also confirmed by Ansay and Zanin [62] and Shield and Dockrell [63], where
it is also highlighted that a good clarity and definition are not necessarily related to a room
destination, but are valid in any situations. For this reason, in this research, those values
were considered the best ones to be used.

The study of the peculiarities above described suggests that the best approach is
not to “standardize” acoustic characteristics, but rather to use “user-centered design” ap-
proaches [64]. Once the space has been designed, taking into account for the customizations
for each user, smart technology can support in a non-invasive way, permitting the reduction
in anxiety, daily stress, psychological hazards [26], and solving important issues such as
autonomy, dignity, security, and privacy [65].

2.4. Real Facility Study on Indoor Sound Field

In order to apply the literature results, in the present research, a real facility was
identified and chosen as a case study. Rooms are furnished taking into consideration
only hazardous issues, and walls and floors are realized without considering indoor
acoustic problems.

Seven different rooms designed for daily-care and apartment groups dedicated to ASD
people have been investigated by means of on-site acoustic measurements. Furthermore,
by means of numerical simulations, an in-depth investigation and a parametric study have
been developed, respectively, focused on indoor sound field and on furniture and sound
absorbing panels distribution.

The selected structure, inaugurated in 2019, is composed by three floors of 2700 m2

each. After a major renovation, it became a multipurpose center used for both semi-
residential and residential spaces for autistic people. The structure houses a day center
for adults and an experimental afternoon center for adolescents, some skills labs, an
art workshop, a gym, a conference center, a music room, a canteen, a large kitchen for
workshops, and also relaxing and hosting areas for parents.

The structure overall design was the product of a doctoral dissertation [66]. The
issues of sound insulation and the need to prepare the rooms in such a way that both
guests and caregivers are adequately protected from an acoustic point of view were widely
considered. As an example, particularly sensitive zones such as those related to individual
therapy clinics are located in separate areas from the rest of the building and from the
outside. Likewise, noisy spaces such as the gymnasium, soft rooms, and activity rooms
such as music and art are located as not to interfere with the therapy and living areas. This
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structure, particularly recent and suitably designed, therefore represents the ideal starting
point for this study.

The selected therapy rooms for the analysis are as follows (Figure 2a–d):

− therapy room no. 1: 10 m2,
− therapy room no. 2: 21 m2,
− therapy room no. 3: 6 m2,
− therapy room no. 4: 12 m2.

Furthermore, three other environments were taken into account: a soft room of
12 m2 dedicated as aa multisensory environment for the well-being of children and adults
(Figure 2e), an atelier of 76 m2 for an art workshop (Figure 2f), and a bedroom of 16 m2

related to residential apartments (Figure 2g–h).
Rooms for individual therapy present different sizes, featuring (i) an entrance door

and no window, (ii) very few pieces of furniture (a table and two chairs and few toys),
(iii) lights, and (iv) few sound absorbing panels located on the ceiling. Some therapy
rooms also feature glasses behind whom parents or other staff can attend therapy sessions.
Rooms are realized using prefabricated traditional sandwich panels (pre-painted sheet
metal/insulating material/pre-painted sheet metal type) and are located in an area of the
building, which is particularly insulated from external noise (no windows) and from noise
coming from inside (Figure A1, Appendix A).
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These spaces need to be very quiet because this is one of the important user require-
ments. Inside each therapy space, a single operator works with a single individual and
thus it is of paramount importance that nothing disturbs the quiet relationship and that
acoustic requirements related to speech clarity and definition are fulfilled.

The soft room is located inside the day-center, equipped with impact resistant layering
on the walls (up to about 2.10 m height), resilient flooring, and soft cubes, useful both for
playing and limiting patients in particular moments of venting and crisis. In this room,
the insertion of acoustic sensors may be useful to recognize events (screams, blows) and
activate a process of help request (i.e., alert an additional operator and simultaneously
trigger a process of audio-visual support).

The atelier (or art room) is a very large room used for collective works, wherein to
host many guests and operators. Here, the main need for voice recognition devices would
be to identify a help request coming from the operators, for example, through keyword
detection. At the same time, a good distribution of the sound field coupled with a very high
clarity and definition of the speech make it possible for ASD individuals to understand
caregivers clearly.

The typical room in the residential apartments is 9 to 12 m2 large (hosting one or two
individuals) and features large windows and a private bathroom. Guests can spend the
night alone, while the operator remains in a neighboring room. For this reason, the main
need for voice recognition devices is to identify a help request made by the operator, for
example, through a keyword detection. At the same time, clarity and definition values
need to be very high, featuring very small variation of the indoor sound field, in order to
avoid that intelligibility alters when changing position.

In order to investigate the indoor sound field in every room, impulse response mea-
sures were conducted, in accordance with ISO 3382-1 standard [67] using, where possible,
six positions for receivers and two positions of dodecahedral noise source, equipped with
logarithmic sine sweep. In smaller rooms (therapy room no. 3), only four receiver positions
and one source position were used. Results permit the analysis of the acoustic field in terms
of indoor sound distribution, reverberation time, clarity and definition, in accordance with
the indications in the literature. During measurements, tables, chairs, furniture, and other
facilities in the rooms were not removed, doors and windows were closed, and electrical
equipment was turned off. The receiver positions were set at 1.6 m from the ground and the
measurement results were obtained using sound receiving points located at appropriate
distance from the boundary surfaces, in accordance with [68]. However, the very local
effect of interference between incident and reflected sound is not fully appreciable by
means of present acoustic simulations. Anyway, we can consider valid the areal sound
field near the sensor.
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Then, 3D acoustic simulations were used to study possible alternative or optimized
configurations. To this aim, measured RT values (T30) were used to calibrate the 3D models,
which then permit the calculation of C50 and D50. The 3D acoustic ray tracing method was
used and calibration was carried out fitting the partitions’ sound absorbing coefficients
until results were similar to the measured ones.

Standard deviation was then computed by means of Equation (1):

σdev =

√
1
N ∑n

i=1(xi − µ)2 (1)

where xi is the measured value and µ is the average of all measured values.
Furthermore, the mean difference was calculated (Equation (2)):

∆mean =
1
N ∑n

i=1|xi − µ| (2)

2.5. Indoor Design Effects

By means of this investigation, it is possible to understand if the studied facility
complies with the defined ranges and if the indoor sound field distribution is suitable for
the positioning of the sensors and individuals. Then, it is conceivable to foresee and insert
acoustic interventions usable to optimize indoor environments for both autistic people and
sensor positioning requirements. Indoor spaces characterized by different areas, volume,
and destinations were simulated and it is possible to use them as starting points for a
general definition of acoustic design principles. Different spaces were further investigated
from an acoustic point of view: rooms with medical and civil destination (small size room:
therapy room no. 4 and bedroom) and the activity room (large size room: atelier).

The influence of the indoor design and of the furniture positions on the indoor sound
field are shown and analyzed by means of numerical simulations, considering the acoustic
sensors and ASD individuals’ combinations of needs. Thus, four configurations were
developed and studied:

(i) empty room;
(ii) furnished room;
(iii) sound absorbing areas positioned only on the ceiling; and
(iv) sound absorbing areas positioned partially on the corners and partially on the ceiling.

This configuration may eventually be split into two variations in order to achieve
better spatial distribution: (iv,a) where sound absorbing areas are distributed along
the perimeter between side walls and ceiling, and (iv,b) where sound absorbing areas
are distributed partially on the corners and partially on the ceiling.

Sound absorbing surface quantity is constant in configurations (iii) and (iv). Therefore,
only their layouts are varied. Results will be compared and evaluated also using the just
noticeable difference approach as depicted in [66–68].

3. Results and Discussion

From the above-mentioned literature review (Sections 2.1 and 2.2), the range
RT = 0.4 ÷ 0.7 s (mean values for the octave frequency bands of 500 Hz, 1000 Hz, and
2000 Hz) appears to be optimal for both the application of microphones and for subjects
particularly sensitive to auditory stimuli. From the point of view of C50, the literature
also suggests aiming at C50 ≥ 2 dB (same RT frequency range), while for D50, the selected
range is, as for RT, the one comprising all the found limits: D50 ≥ 0.7. Graphical results are
reported in Figure 3, where the grey rectangles highlight the chosen reference ranges.
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The measured RT frequency trends (average of six positions) for each room are re-
ported in Figure 4. As above-mentioned, these values were used to calibrate 3D models.
In Table A1, the measurement accuracy is depicted, highlighting very small variations
in the tested results. The RT frequency trend in each analyzed room was quite linear
only for a specific room (Soft room); small rooms (Th. Room nos. 1, 3, 4, and bedroom)
presented RT frequency values between 0.5 and 0.8 s; the largest rooms (Th. Room no. 2
and atelier) depicted a volcano-shape pattern with higher values (RT > 1 s) at 500 Hz. In
terms of arithmetic (RT) and logarithmic (C50 and D50) mean values, three out of seven
rooms resulted in being out of the optimal considered ranges for the reverberation time
parameter. It is worthy to remark here that every room was equipped with some sound
absorbing panels.
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Figure 4. Measured reverberation time (T30) for different rooms.

In Appendix A, Figure A2a–g describes the room models considered for the acoustic
simulations, furnished as in the real conditions, while, in Figure A3a–g, the results in terms
of the Q–Q plots referring to reverberation time (octaves bands) are reported, demonstrating
a very good agreement between the measured results and simulated ones. The calibration
of 3D models permits the consideration of also clarity C50 and definition D50. The results
in terms of the averaged values related to the frequency range 250 ÷ 2500 Hz of all the
investigated parameters are reported in Table 1. Results are listed considering the average
of all receiver positions for RT, while values were retrieved at a distance of 2 m from the
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source for C50 and D50. This range was chosen in accordance with the work of Kertész and
Turunen [34].

Table 1. Arithmetic (RT) and logarithmic (C50 and D50) average acoustic parameters for each room (250 ÷ 2500 Hz
frequency range).

Th. Room 1 Th. Room 2 Th. Room 3 Th. Room 4 Soft Room Bedroom Atelier
RT [s] 0.66 0.88 0.64 0.75 0.44 0.64 0.94

C50 (dB) 3.8 3.5 5.6 4.5 3.9 6.9 5.1
D50 [-] 0.69 0.67 0.77 0.72 0.70 0.92 0.65

It is evident how some rooms do not respect the selected ranges depicted in Figure 3
and thus some measured environments should be acoustically improved to achieve better
indoor acoustic comfort.

By means of 3D simulations, the indoor sound field distribution related to the objective
parameters could be investigated, permitting the search for focusing phenomena, other
scattering issues, and the material distribution inside rooms. These events may affect
operative sensor conditions and speech clarity and definition. Accordingly, if reverberation
increases, the difficulty in identifying and recognizing a sound signal will rise. For example,
the spatial distribution of the reverberation time included in therapy room no. 2 (Figure 5)
shows how the corner positions do not represent the optimal device locations. Even if
corners could embody good places where no obstacles to such furnishings, chandeliers,
curtains, or other objects are present, they are unfortunately the room points where rever-
beration is higher and different from the source area. The sound field analysis of C50 and
D50 (Figures 6 and 7) shows that the optimal positions for the acoustic recognition devices
are located in the proximity of the spaces most likely to be occupied by users (e.g., on top of
a table, near the center of the ceiling or walls, etc.). This means that placing sensors adjacent
to the ceiling is not the best choice because of the reverberation increasing. Preferably,
an installation of several devices is suggested. Since simulations demonstrate that corner
positions have to be avoided, central points on vertical partitions have to be preferred. At
the same time, the definition of the most probable caregiver–individual position inside the
room is helpful to select the correct layout. This is to ensure that autistic individuals will
not suffer from indoor sound field focalization or huge variations when moving around in
a room or echo and/or annoying reverberant phenomena.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 27 
 

  

Figure 5. Simulated RT for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 s to 
red = 0.89 s). 

   

plan view section 

Figure 6. Simulated C50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 7.5 to red 
= 14). The red line marks the section plan. 

   
plan view section 

Figure 7. Simulated D50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 to 
red = 0.97). The red line marks the section plan. 

The same results obtained for therapy room no. 2 can be applied to therapy room no. 
4. Conversely, the atelier may require the application of several devices in order to better 
acquire soundwaves. 

The soft room presents the lowest values of reverberation time because of the con-
tained “soft” furnishing, composed of sound-absorbing materials like polyurethane 

Figure 5. Simulated RT for therapy room no. 2: spatial distribution at 1000 Hz (graduation range
from purple = 0.85 s to red = 0.89 s).



Appl. Sci. 2021, 11, 3942 12 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 27 
 

  

Figure 5. Simulated RT for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 s to 
red = 0.89 s). 

   

plan view section 

Figure 6. Simulated C50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 7.5 to red 
= 14). The red line marks the section plan. 

   
plan view section 

Figure 7. Simulated D50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 to 
red = 0.97). The red line marks the section plan. 

The same results obtained for therapy room no. 2 can be applied to therapy room no. 
4. Conversely, the atelier may require the application of several devices in order to better 
acquire soundwaves. 

The soft room presents the lowest values of reverberation time because of the con-
tained “soft” furnishing, composed of sound-absorbing materials like polyurethane 

Figure 6. Simulated C50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range
from purple = 7.5 to red = 14). The red line marks the section plan.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 27 
 

  

Figure 5. Simulated RT for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 s to 
red = 0.89 s). 

   

plan view section 

Figure 6. Simulated C50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 7.5 to red 
= 14). The red line marks the section plan. 

   
plan view section 

Figure 7. Simulated D50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 to 
red = 0.97). The red line marks the section plan. 

The same results obtained for therapy room no. 2 can be applied to therapy room no. 
4. Conversely, the atelier may require the application of several devices in order to better 
acquire soundwaves. 

The soft room presents the lowest values of reverberation time because of the con-
tained “soft” furnishing, composed of sound-absorbing materials like polyurethane 

Figure 7. Simulated D50 for therapy room no. 2: spatial distribution at 1000 Hz (graduation range from purple = 0.85 to
red = 0.97). The red line marks the section plan.

Furthermore, it is possible to highlight that reverberation time does not change sen-
sibly when varying position and height within the room. Thus, this parameter cannot
be sufficient to choose appropriate positions for sensors and to describe optimal indoor
acoustic conditions for autistic individuals. Conversely, C50 and D50 also provide variation
along the z-axis. For this reason, they are essential for the determination of final sensors
and the individuals’ locations. Accordingly, they provide very useful indications on the
best sound field within rooms, thus highlighting where it is better to sit or place individuals
on the spectrum.

The same results obtained for therapy room no. 2 can be applied to therapy room
no. 4. Conversely, the atelier may require the application of several devices in order to
better acquire soundwaves.

The soft room presents the lowest values of reverberation time because of the contained
“soft” furnishing, composed of sound-absorbing materials like polyurethane foams. Spatial
distribution of reverberation time and definition at 1000 Hz frequency band (Figure 8)
were quite good and it can be highlighted that when corner focusing is still present, the
phenomenon is very limited. This means that the indoor sound field can be considered
homogenous. In this case, the absence of furnishing accessories and the possible movement
of the user inside the room will not affect the sensor positioning. For the same reason,
when individuals are stepping around in the room, they do not perceive sensible clarity
and definition alterations because no JND was found (Figure 8).
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From this investigation, it can be concluded that even if some rooms fairly fulfil the
acoustic requirements in terms of RT, C50, and D50 (Figure 3, Table 1), they failed to correctly
host both devices and individuals because of the sound field distribution issues. Thus,
dedicated optimization is needed.

Most of the analyzed rooms need to be studied in order to optimize reverberation for
both the requirements of acoustic sensors and autistic people. In order to improve the values
of the objective parameters (RT, C50, and D50), sound absorption units can be increased by
using suitable walls and ceiling finishing materials, or appropriate furnishing accessories.

The living space acoustics can be controlled by the insertion of sound absorbing
elements of various types, but in the case of autistic users, it could be helpful to follow the
fundamental concept of “simplicity” [69,70]. In few words, this implies the reduction in
the furnishing accessories in the rooms and avoiding the insertion of suspended sound
absorbing elements such as buffers.

Rooms with long reverberation times, characterized by acoustically highly reflective
surfaces, are particularly unsuitable for many types of individuals with hearing impairment:
some ASD children, for example, will find the room distressing; children with hearing
problems may also perceive the noise as painful because reverberation and poor acoustic
definition and clarity is amplified by their hearing aids [71].

Therefore, available solutions have to be sorted in order to meet the individuals’
needs and attitudes, avoiding traditional choices and carefully analyzing acoustic interven-
tions. For example, thick textured curtains hanging from windows may represent sound
absorbing elements in the room. The placement of sound absorbing panels (such as micro-
perforated or open cells material panels) may alter the wall’s appearance. Accordingly,
individuals on the spectrum could dislike discontinuity related to vertical walls [72,73].
Beds, cushions, armchairs and sofas are commonly present within the environments of
autistic people and they represent intrinsically sound absorbing elements; the implemen-
tation of these furnishing accessories in terms of sound absorbing surfaces could then
be considered.

The possible inclusion of all of these elements in the indoor environment should
therefore be studied in advance, in order to optimize the indoor acoustic characteristics of
the room and to define the possible addition of sound absorbing units.

Sound Field Distribution and Layout Optimization

The first investigated case was the therapy room (small room, medical space), wherein,
excluding the presence of sound absorbing furniture, carpets, or curtains, the sound
absorbing units can be increased only by using ceiling elements or positioning sound
absorbing panels on the upper part of the walls (Figure A4). Configurations (i) and (ii)
have already been discussed in Section 3.

If an entire ceiling is chosen as a sound absorbing surface (configuration iii), the
reverberation time of the room decreases at 1000 Hz from 0.87 s (Figure 5) to 0.62 s



Appl. Sci. 2021, 11, 3942 14 of 26

(Figure 9, right) as a mean value; thus, the indoor sound field fulfills the optimal range for
sensor devices, but it fails to comply with the best ASD individuals’ requirements (0.4 s).
Consequently, more sound absorbing surfaces are needed. Using frequency representations
and considering for the sake of brevity 250 Hz representing low frequencies and 1000 Hz
for mid-high ones (Figure 9), it is possible to highlight that corners present wave focusing
in both cases. From the subjective point of view, no sensible difference with regard to JND
was assessed in the blue and light blue areas. Conversely, when stepping inside green,
yellow, and red ones, RT varied and one JND could be verified.
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range from purple = 0.87 s to red = 0.91 s) and at 1000 Hz (right-graduation range from purple = 0.62 s to red = 0.68 s).

In order to achieve better spatial performance using the same amount of sound absorb-
ing surface, more distributed configurations are required. For this room, two variations of
configuration (iv) have been proposed in order to verify if different configurations are to be
chosen or if they provide similar results. Thus, in Appendix A, Figure A4 depicts the (iv,a)
and (iv,b) sound absorbing area layouts and Figure A5 shows the results for configurations
(iv,a) and (iv,b) for the reverberation time parameter at 250 Hz. Figure 10 presents the
results at 1000 Hz. For the sake of brevity, only RT mapping is represented while C50 and
D50 are reported in tables.
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A more distributed application of sound absorbing material eliminates focusing
effects in corners and improves the sensor range and individuals’ perception. However,
different spatial allocations can create visual discontinuities, which should comply with
the individual requests of continuity and simplicity. For this reason, an acoustic neutral
masking surface could be needed to hide the sound absorbing panels.
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It is worthy to highlight that in these configurations, the reverberation time does
not denote any significant variation in most available areas; thus, the two configurations
provide the same effects. For this reason, in the following, only one configuration will be
investigated as configuration (iv).

Table 2 shows the comparison of the analyzed configurations for therapy room no.
4 in terms of C50 and D50 (average of the frequency range 250–2500 Hz, retrieved at 2 m
from the source). As it is possible to notice, the values of these parameters increased when
moving from configuration (ii) (Table 1) to (iii) and presented non-significant variations in
configurations (iv,a) and (iv,b).

Table 2. Comparison of the analyzed setup for therapy room no. 4 in terms of C50 and D50 indexes.

Configuration (iii) Configuration (iv,a) Configuration (iv,b)
Frequency 250 Hz 1000 Hz 250 Hz 1000 Hz 250 Hz 1000 Hz
C50 (dB) 10 14.5 8 12 8.5 13

D50 0.9 0.96 0.8 0.95 0.85 0.95

The second case is represented by the bedroom (small room). The difficulties are
related to the presence of large windows, doors, and furnishing accessories that could be
sound reflecting (desks, wardrobes, shelves) and sound absorbing (bed, curtains). Their
position affects the layout of the sound absorbing elements and, consequently, the insertion
of the microphone sensors.

Diverse conditions can be analyzed as described above. In Figure A6 of Appendix A,
configurations (i) and (ii) are described. From the simulation, it is possible to retrieve a
mean reverberation time value for the empty room at about 1.3 s at the 1000 Hz frequency.
As expected, the inclusion of furnishing accessories in the room (a desk, a wardrobe, and
a bedroom with winter blanket and pillow) led to a lower reverberation time (RT = 0.7 s
at 1000 Hz). Figure 11 shows the comparison in terms of the indoor distribution of the
reverberation time at high frequency (in Appendix A, Figure A7 depicts the reverberation
time at 250 Hz and Figure A8 the configurations outlines).
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Figure 11. Reverberation time for bedroom for configurations: (i) empty room (left-graduation
range from purple = 1.33 s to red = 1.37 s), (ii) room with furniture (right-graduation range from
purple = 0.72 s to red = 0.76 s). Spatial distribution at 1000 Hz.

In this case, the presence of a very large window and the absence of sound absorbing
elements on the ceiling create an uneven acoustic field. The sound focusing in the cor-
ner remains rather marked at low frequency. The need to add sound absorbing units is
mandatory for both the insertion of acoustic sensors and for autistic individuals’ purposes.
Accordingly, one JND variation was verified in both sound field distribution. Simula-
tions demonstrate that a ceiling sound absorbing surface could be sufficient to improve
reverberation time at low frequencies. As described, it can also be placed inside the room
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in different ways. Appendix A, Figure 8, reports the modeled room for the following
configurations: (iii) with sound absorbing surface distributed only on the ceiling and (iv)
with the sound absorbing surface distributed partially on corners and partially on the
ceiling. Figure 12 shows the comparison of the spatial distribution of the reverberation
time parameter at 1000 Hz for the modeled configurations (in Appendix A, Figure A9,
the acoustic field distribution at 250 Hz is reported). Table 3 shows the comparison of
the analyzed setup for the bedroom in terms of C50 and D50 (average of the frequency
range 250–2500 Hz, retrieved at 2 m from the source). In this room, it could be highlighted
that values increased, changing from configuration (i) to (iii) and provided non-significant
variations for configurations (iii) and (iv). Accordingly, no JND variations were found.
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Figure 12. Reverberation time for bedroom for configurations: (iii) with sound absorbing surface
distributed only on the ceiling (left-graduation range from purple = 0.64 s to red = 0.67 s), (iv) with
sound absorbing surface distributed partially on corners and partially on ceiling (right-graduation
range from purple = 0.7 s to red = 0.73 s). Spatial distribution at 1000 Hz.

Table 3. Comparison of the analyzed setup for the bedroom in terms of the C50 and D50 indexes.

Configuration (i) Configuration (ii) Configuration (iii) Configuration (iv)
Frequency 250 Hz 1000 Hz 250 Hz 1000 Hz 250 Hz 1000 Hz 250 Hz 1000 Hz
C50(dB) 4.7 5.5 10.35 9.95 11 10.7 10.6 10

D50 0.74 0.78 0.92 0.91 0.92 0.92 0.92 0.9

The quality of indoor sound field distribution at the low and high frequency range
improves if the sound absorbing material is located only on the ceiling. The sound focus in
corners decreases significantly, but these positions do not represent the best locations for
sound detection devices. These facts demonstrate how configurations (iii) and (iv) suit the
requirements of both autistic individuals and sensors, avoiding corners.

The last case is illustrated by the atelier (large room). In Appendix A, configurations
(i), (ii), (iii), and (iv) models are reported in Figure A10. The reverberation time for
configuration (i) was about 2.9 s at 1000 Hz and decreased at about 0.9 s when inserting
pieces of furniture as configuration (ii) (Figure 13). For a complete description of the low
frequency, readers may refer to Appendix A, Figure A11.
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Figure 13. Reverberation time for atelier for configurations: (i) empty room (left graduation range from purple = 2.06 s to
red = 2.98 s), (ii) room with furniture (right-graduation range from purple = 0.97 s to red = 1.03 s). Spatial distribution at
1000 Hz.

Figure 14 shows the spatial distribution comparison of the reverberation time param-
eter at 1000 Hz. For a better understanding of low frequency range, in Appendix A, the
sound field distribution is reported (Figure A12).
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Figure 14. Reverberation time for atelier for configurations (iii) with sound absorbing surface distributed only on the
ceiling (left-graduation range from purple = 0.59 s to red = 0.64 s), (iv) with sound absorbing surface distributed partially on
corners and partially on ceiling (right-graduation range from purple = 0.5 s to red = 0.55 s). Spatial distribution at 1000 Hz.

Comparing the same sound absorbing areas, it is possible to highlight that the rever-
beration decreased to 0.62 s in configuration (iii) and to 0.52 s in the (iv) one. In addition,
sound focusing in corners decreased in the latter case. In configuration (iii), one JND was
assessed while in (iv), no JND variations were found, thus no subjective sensible indoor
sound field differences were present.

On the other hand, definition (Figures 15 and 16) and as a consequence, clarity did not
increase significantly thanks to the furniture. For this purpose, sound absorbing material
insertions are needed. Figure 15 shows the distributions of D50 for configurations (i) and
(ii) at 1000 Hz, while Figure 16 shows the comparison in terms of D50 at 1000 Hz for
configurations (iii) and (iv).

In the case of a large size room such as the atelier, the quality of the indoor sound
field distribution improves if the sound absorbing material is distributed both on corner
positions and on the ceiling. From the point of view of subjective perception, 10 JND
occurs in (i) configuration, four in (ii), two in (iii), and only one in (iv). This demonstrates
how good improvements in indoor sound field quality can be provided. In this case, the
material discontinuities on the ceiling and corners could be masked in order to prevent
individual dislikes.
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4. Conclusions

Recent statistics highlight how autism diagnoses have been growing in years; their
life expectancy demonstrates that they could be strongly dependent on parents and care
facilities for a very long period of life. Indoor environmental assistive technology matched
with inclusive design represents a valid support in order to achieve autonomy for them,
their families, and caregivers. The sound field can be implemented to best accommodate
the needs of autistic people with hearing impairment or hypersensitivity to sound and at
the same time, the requirements of the noise sensors.

In this work, the use of (i) a wide literature review, (ii) measurements and investiga-
tions on real premise, and (iii) the use of 3D acoustic simulations, demonstrate that the
indoor sound field, achievable with furniture or with sound absorbing materials distri-
bution, has to be optimized from the point of view of acoustic sensors and the needs of
autistic users. To this aim, in order to achieve better acoustic spatial requirements, it is first
imperative to evaluate in detail what are the likes and dislikes of individuals on the autistic
spectrum. Then, it is important to estimate the positioning modalities and locations of the
necessary sound absorbing surfaces. At the same time, the size of the room influences the
decision process.

Therefore, from a vast literature review, important results are identified and could be
resumed as follows:

• the literature presents many lacks on the autistic individuals’ indoor sound field
requirements. However, the literature only provides some ranges for sound devices;
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• in the present literature, no indoor acoustic requirements have been found to be
dedicated to autistic individuals. Some works deal with hearing and learning impaired
people’s necessities; and

• no indoor sound field distribution study is present nor for sound sensors, neither for
individuals on the autism spectrum.

Given the above-mentioned conclusions, this research is able to provide the following
new findings:

3 reverberation time RT, clarity C50, and D50 are the identified acoustic objective pa-
rameters, capable to consider both the sensors and individuals’ indoor requirements.
The best ranges for indoor sound field, considering both the requirements for sound
devices and ASD individuals are in the octave frequency range of 500 Hz, 1000 Hz,
and 2000 Hz: 0.4 s ≤ RT ≤ 0.7 s; C50 ≥2 dB; D50 ≥ 0.7;

3 sound absorbing areas affect sensor positioning, visual aspects, indoor requirements,
and sound field distribution. For this reason, for small rooms, regardless of the
destination (medical, residential, etc.), a continuous absorbing ceiling is to be preferred
in comparison to discrete surfaces. In the case of large rooms, the opposite has to
be favored. If individuals dislike interruptions, a covering sound absorbing surface
should be used; and

3 indoor sound field distribution influences the position selection of both sound sensors
and individuals and has to be optimized in advance: (i) Just noticeable difference
analysis showed that it is possible to provide homogeneous indoor sound fields,
suitable for both the requirements for sensors and autistic people; (ii) acoustic sensors
do not have to be placed in corners, but close to the spaces most likely to be occupied
by users (e.g., on the center of the ceiling or walls, close to a piece of furniture, etc.).
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Appendix A

Table A1. Accuracy of the measurements.

Th. Room 1 Th. Room 2 Th. Room 3 Th. Room 4 Soft room Bedroom Atelier
σ Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ Mean

100 0.025 0.018 0.040 0.029 0.084 0.060 0.101 0.072 0.054 0.039 0.103 0.073 0.128 0.142
125 0.024 0.017 0.010 0.007 0.029 0.021 0.054 0.039 0.026 0.019 0.078 0.055 0.024 0.099
160 0.085 0.060 0.206 0.146 0.006 0.005 0.087 0.062 0.093 0.066 0.107 0.076 0.080 0.063
200 0.067 0.048 0.023 0.017 0.107 0.076 0.018 0.013 0.047 0.033 0.018 0.013 0.145 0.241
250 0.146 0.103 0.091 0.065 0.021 0.015 0.100 0.071 0.064 0.046 0.098 0.070 0.156 0.249
315 0.040 0.028 0.043 0.031 0.027 0.019 0.025 0.018 0.023 0.017 0.035 0.025 0.075 0.164
400 0.063 0.045 0.285 0.202 0.025 0.018 0.006 0.004 0.091 0.064 0.052 0.037 0.059 0.083
500 0.013 0.009 0.173 0.122 0.019 0.014 0.057 0.040 0.038 0.027 0.050 0.036 0.060 0.072
630 0.000 0.000 0.001 0.001 0.036 0.026 0.017 0.012 0.002 0.002 0.060 0.043 0.052 0.032
800 0.031 0.022 0.025 0.018 0.036 0.026 0.002 0.002 0.036 0.026 0.021 0.015 0.089 0.080

1000 0.027 0.019 0.018 0.013 0.047 0.033 0.007 0.005 0.035 0.025 0.051 0.036 0.091 0.102
1250 0.017 0.012 0.086 0.061 0.028 0.020 0.023 0.016 0.008 0.006 0.006 0.004 0.050 0.092

https://www.autismeurope.org/about-autism/acceptable-language/
https://www.autismeurope.org/about-autism/acceptable-language/
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Table A1. Cont.

Th. Room 1 Th. Room 2 Th. Room 3 Th. Room 4 Soft room Bedroom Atelier
σ Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ Mean

1600 0.009 0.007 0.025 0.018 0.013 0.009 0.021 0.015 0.018 0.013 0.023 0.016 0.025 0.017
2000 0.023 0.017 0.006 0.004 0.035 0.025 0.016 0.011 0.044 0.031 0.038 0.027 0.038 0.058
2500 0.017 0.012 0.025 0.018 0.000 0.000 0.045 0.032 0.064 0.046 0.004 0.003 0.051 0.031
3150 0.026 0.019 0.007 0.005 0.063 0.045 0.005 0.004 0.026 0.019 0.001 0.001 0.031 0.029
4000 0.052 0.037 0.016 0.012 0.019 0.014 0.008 0.006 0.043 0.031 0.028 0.020 0.035 0.049
5000 0.005 0.004 0.27 0.012 0.016 0.012 0.016 0.012 0.039 0.028 0.035 0.025 0.017 0.034
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Figure A2. (a–g). Images of the rooms recreated for the acoustic simulation program.
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Figure A12. Reverberation time for atelier for configurations (iii) with sound absorbing surface distributed only on the 
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