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Abstract: This paper studies the problem of joint power allocation and user association in wireless
heterogeneous networks (HetNets) with a deep reinforcement learning (DRL)-based approach. This
is a challenging problem since the action space is hybrid, consisting of continuous actions (power
allocation) and discrete actions (device association). Instead of quantizing the continuous space
(i.e., possible values of powers) into a set of discrete alternatives and applying traditional deep
reinforcement approaches such as deep Q learning, we propose working on the hybrid space directly
by using the novel parameterized deep Q-network (P-DQN) to update the learning policy and
maximize the average cumulative reward. Furthermore, we incorporate the constraints of limited
wireless backhaul capacity and the quality-of-service (QoS) of each user equipment (UE) into the
learning process. Simulation results show that the proposed P-DQN outperforms the traditional
approaches, such as the DQN and distance-based association, in terms of energy efficiency while
satisfying the QoS and backhaul capacity constraints. The improvement in the energy efficiency
of the proposed P-DQN on average may reach 77.6% and 140.6% over the traditional DQN and
distance-based association approaches, respectively, in a HetNet with three SBS and five UEs.

Keywords: energy efficiency; power allocation; user clustering; reinforcement learning

1. Introduction

With the exponential growth of wireless Internet-of-Things (IoT) sensors and ultra-
reliable requirement in the next-generation cellular networks, the global mobile data
traffic is expected to reach about 1 zettabyte by 2022 according to Cisco’s forecast [1].
To meet the demands of higher data traffic in wireless links either in fixed sensors for IoT
networks or mobile devices in cellular networks, the network infrastructure inevitably
will need to expand dramatically, which will result in tremendous escalation of energy
consumption and backhaul traffic. Energy efficiency and spectral efficiency are therefore
critical issues when designing next-generation wireless communication systems with
enabling quality-of-service (QoS) guarantees for radio devices with considerations of
efficient power consumption [2,3].

Enhancing the cell density is one of the approaches to meet the need of high date rate
under limited bandwidth in centralized networks. Heterogeneous networks (HetNets)
have therefore emerged as a standard part of future mobile networks to improve the
system capacity and energy efficiency through more flexible design of transmission power
allocation and smaller coverage sizes by densely deployed small base stations (SBSs) [3–5].
However, the interference problem caused from various SBSs is the primary challenge for
effective system capacity improvement.

1.1. Motivation

Cell densification of HetNet enhances the spectrum efficiency in an energy-efficient
way. On the other hand, cell densification potentially increases the inter-cell interfer-
ence, especially at the cell edges, which deteriorates the QoS of user equipments (UEs).
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Interference coordination schemes by means of radio resource allocation and power con-
trol can be implemented to achieve higher energy efficiency and spectral efficiency [2].
However, the growing complexity of wireless networks due to increased links and hetero-
geneous network structure create tremendous challenges for system designs, thus calling
for more intelligent techniques for effective yet efficient resource management strategies.
In this perspective, data-driven machine learning techniques have been regarded as vi-
able new approaches to dealing with complex network dynamics [5–10]. Compared with
traditional model-based algorithms [11–14], deep reinforcement learning (DRL), leverag-
ing recent advances in deep neural networks with reinforcement learning [15–17], can
autonomously extract features from the raw data with different formats and complex
correlations experienced by the mobile environments. This potentially reduces the cost
of data pre-processing [11,18]. In view of this, in this paper, we provide a reinforcement-
learning-based solution for power allocation and radio device association with the objective
of maximizing energy efficiency while satisfying the required QoS and wireless backhaul
capacity constraints.

1.2. Prior Work

In order to intelligently manage the interwoven dynamics underlying the wireless
sensor or mobile networks in which a variety of network parameters are generally un-
known, deep reinforcement learning (DRL)-based approaches have been applied to tackle
the challenges of radio resource management in wireless networks, e.g., [11,16,18–27], due
to DRL’s ability to extract features from raw data, learn complex correlations generated
by the mobile environment, and make sequential decisions through interactions with the
environment without knowledge of complete environment information. In the applications
of power allocation, the objectives can often be categorized into three types: capacity maxi-
mization in [11,19,20], energy saving in [16], and maximization of capacity for consumed
energy (which is defined as the energy efficiency) in [21–24].

Meng et al. [11] propose several DL-based algorithms to handle the power allocation
with the aim to maximize the sum rate in multiuser wireless cellular networks, in which
the DL-based data-driven approaches are demonstrated to outperform the traditional
model-based power allocation method. Nasir and Guo [16] utilize multi-agent deep RL
to adaptively control the discrete power level (i.e., the range of possible power values is
quantized into a number of discrete levels) for each user where the policy can be made
without requiring to know the instantaneous CSI. Park and Lim [18] tackle the problem
of discrete power allocation and mode selection in device-to-device (D2D) communica-
tion networks using DQN with energy efficiency as the reward in the learning process.
Amiri et al. [19] apply the cooperative Q-learning for power control at discrete levels,
but the effect of channel variations is not considered. Ahmed and Hossain [20] employ
deep Q-learning, which was originally proposed in [28], to update the transmission power
allocated for each user at the small cell base station in HetNet, in which the power is
quantized into discrete levels. Xu et al. [21] present a novel DRL-based technique for
resource allocation by considering power efficiency in cloud radio access networks (RANs)
and ensuring QoS guarantee. Lu et al. [22] propose a DRL-DPT framework, in which
the agent learns directly from the expected objective instead of critic value, for energy
efficiency maximization without explicit simulation results for QoS guarantee. Wei et al.
determine the number of users and subchannels with corresponding power allocation
in HetNets using a policy-gradient based actor–critic learning algorithm [23]. Instead of
quantizing the power into discrete levels, Meng et al. [11] model the power as a continuous
action and adaptively update the continuous power using the deep deterministic policy
gradient-based (DDPG-based) reinforcement learning [29,30]. While the above-mentioned
research successfully apply the DRL-based techniques to power allocation in heterogenous
networks, the problem of user association is not jointly considered, and various practical
constraints in the network are not accounted for, such as the limited backhaul capacity [13]
in each small cell base station. A novel energy-efficient joint power allocation and user



Appl. Sci. 2021, 11, 4135 3 of 19

association using deep reinforcement learning is studied by Li et al. in [24], where the
power is considered as belonging to a discrete set and the learning process is not bounded
by any constraints. A summary of the related work is provided in Table 1.

Table 1. Summary of Related Work in Power Allocation and User Association. A check mark “X"
means the issue in the column is considered in the corresponding reference, whereas a cross mark
“×" means otherwise.

Ref. Objective QoS
Constraint

Backhaul
Constraint

User
Association

Power
Allocation

Method

[11] Data Rate × × × Continuous DDPG

[16] Data Rate × × × Discrete Distributed DQN

[18] Power
Efficiency

× × × Discrete DQN

[19] Data Rate X × × Discrete DQN

[20] Data Rate × × × Discrete DQN

[21] Power
Efficiency

X × × × DQN

[22] Energy
Efficiency

X × × Continuous DRL-DPT

[23] Energy
Efficiency

× × Not
Exactly Continuous Actor-Critic

[24] Energy
Efficiency

× × X Discrete DQN

This
work

Energy
Efficiency

X X X Continuous P-DQN

1.3. Contributions of the Research

In contrast with existing studies, which quantized the continuous set into discrete
space [16,19,20], we propose utilizing the parameterized deep Q-network (P-DQN) to
handle the problem with a hybrid action space composed of discrete user association and
continuous power allocation [31]. This overcomes the difficulty of traditional DQN which
can cope with RL problems having discrete action spaces, either with intrinsically discrete
actions or with discrete actions quantized from continuous action space. In this work, we
provide a joint solution for power allocation and user association with the objective of
maximizing downlink energy efficiency under backhaul link constraint and QoS guaran-
tee using P-DQN. A flexible reward function is devised to meet each user equipment’s
QoS demands in different traffic scenarios, and a penalty mechanism is introduced when
the backhaul link constraint is violated. Simulation results demonstrate that the P-DQN
outperforms other approaches in terms of overall energy efficiency while satisfying QoS re-
quirements and backhaul constraints. The main contributions of this paper are summarized
as follows:

• We provide a joint solution for the power allocation and user association with the ob-
jective of maximizing downlink energy efficiency under backhaul link constraint and
QoS guarantee. We employ the novel model-free parameterized deep Q-network (P-
DQN) framework that is capable of updating policies in a hybrid discrete-continuous
action space (i.e., discrete BS-UE association and continuous power allocation).

• To the best of our knowledge, most DRL-based research about power allocation do
not consider the wireless backhaul capacity constraint and user QoS. We design the
flexible reward function to meet the QoS demands at different traffic scenarios and
introduce a penalty mechanism when the backhaul link constraint is violated. We ver-
ify by simulations that the proposed P-DQN framework outperforms other proposed
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approaches in terms of overall energy efficiency while satisfying QoS requirements
and backhaul constraints.

1.4. Organization

The rest of the paper is organized as follows. The system model is described in
Section 2. We next present the joint energy-efficiency maximization problem of clustering
decision and power allocation in Section 3. Simulation results are given in Section 4. Finally,
we provide concluding remarks in Section 5.

2. System Model
2.1. Heterogeneous Network

Consider the downlink of a two-tier HetNet composed of a macro base station (MBS),
J small BSs (SBS), and K UEs, with J = {1, 2, . . . , J} and K = {1, 2, . . . , K} being the sets of
SBSs and UEs, respectively. The system network is depicted in Figure 1. In this paper, we
assume there is no cross-tier interference in the network, which can be achieved by using
different frequency bands for transmissions in the two tiers (e.g., sub-6 GHz in tier 1 and
millimeter wave bands in tier 2).

The MBS is equipped with an antenna array of size NT , which is assumed to be larger
than the the number of SBS J, i.e., and NT > J. Orthogonal frequency division multiple
access (OFDMA) is utilized for the downlink communication between SBSs and UEs, with
a total number of subchannels Nsub.

Figure 1. An illustration of the considered wireless network. Each cluster consists of an SBS and its
serving UEs.

2.2. User Association

Each UE is assumed to be associated with only one SBS, but each SBS can serve
multiple UEs using OFDMA. The UEs served by the same SBS constitute a cluster. Let Fk
denote the set of subchannels allocated to the kth UE and cj,k ∈ {0, 1} represent the status
of user association, i.e., cj,k = 1 if the kth UE is associated with the jth SBS and cj,k = 0
otherwise. Then, the set of UEs in the cluster j is given by Cj = {k : cj,k = 1, k ∈ K},
with |Cj| being the number of UEs in Cj. The SBS serving the kth UE can be represented by
Sk = {j : cj,k = 1, j ∈ J }. Note that, since each user is assumed to be associated with only
one SBS in this paper, |Sk| equals one. The set of active SBSs is J active = {j | |Cj| > 0}.

The spectral efficiency of the kth UE is given by

ρk = ∑
f∈Fk

log2

(
1 + SINRk, f

)
, (1)

where the signal-to-noise-plus-noise ratio (SINR) is

SINRk, f =
∑J

j=1 cj,kgj,k, f Pj,k, f

σ2 + Ik, f
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with gj,k, f being the channel gain between the jth SBS and the kth UE in subchannel f , Ik, f

the interference observed by the kth UE, and σ2 the noise power. Specifically, the channel
gain is defined as gj,k, f = |hj,k, f |2, where hj,k, f is the corresponding channel coefficient.
The transmit power Pj,k, f from SBS j to UE k in subchannel f needs to satisfy the power
constraint 0 ≤ ∑k∈Cj ∑ f∈Fk

Pj,k, f ≤ PSBSj ,max, where PSBSj ,max is the maximum transmit
power of the jth SBS. The user sum-rate for the jth cluster is given by

ρSBS
j = ∑

k∈Cj

ρk =
K

∑
k=1

cj,kρk. (2)

We consider the scenario that each SBS allocates orthogonal subchannels to different
UEs within its serving coverage, so there is no intra-cluster interference in each cluster.
Each UE can acquire at least one subchannel for data transmission if the cluster size (i.e., the
number of served UEs) is not larger than the number of subchannels. Without intra-cluster
interference, the interference term Ik is composed only by the inter-cluster interference and
can be expressed by

Ik, f = ∑
u/∈CSk

∑
f∈Fk∩Fu

gj,k, f Pj,u, f . (3)

Detailed notation descriptions are summarized in Table 2.

Table 2. Notation summary.

Notation Definition

J ,K set of SBSs and set of UEs
Fk set of subchannels allocated to the kth UE
Sk the SBS serving the kth UE
Bsub subchannel bandwidth
NT MBS antenna array size
PT total power consumption at all the SBSs.
gj,k, f channel gain between SBS j and UE k in the f th subchannel
hj,k, f channel coefficient between SBS j and UE k in the f th subchannel
PSBSj ,max maximum power available at the jth SBS
Pj,k, f * transmit power from SBS j to UE k in the f th subchannel
pUE

k ** transmit power from the associated SBS to UE k
|J active| number of active SBSs
σ2 noise power
Ik, f interference experienced by UE k in subchannel f
Cj the set of UEs in cluster j
cj,k link indicator between SBS j and UE k
cUE user association
SINRk, f SINR for UE k in the f th subchannel
ρk capacity for UE k
νk capacity threshold for UE k
ρSBS

j user sum-rate for SBS j
RSBS

j maximum downlink data rate for SBS j

* For the optimization approach. ** For the DRL-based approach.

2.3. Power Consumption

The system power consumption includes the operational power, which is the mini-
mum amount of power to keep the SBS active, and data transmission power. Operational
powers for SBSs and MBS are expressed as Po,SBS and Po,MBS, respectively. The total power
consumption of all SBSs is

PT = |J active| · Po,SBS + ∑
j∈J

∑
k∈Cj

∑
f∈Fk

Pj,k, f ,
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where | J active | is the number of active SBSs.

3. Problem Formulation
3.1. Optimization Problem

We aim for a joint solution optimizing for the user association and transmit power
allocation with the objective of maximizing energy efficiency, which is defined as the
achievable sum rate per consumed power, in the downlink of the two-tier HetNet while
considering QoS guarantee and wireless backhaul link capacity constraints. The problem
can be formulated as

max
{cj,k},{Pj,k, f }

1
PT

K

∑
k=1

ρk (4a)

subject to C1 : ∑
j

cj,k = 1, cj,k ∈ {0, 1}, ∀j ∈ J , k ∈ K (4b)

C2 : 0 6 ∑
k∈Cj

∑
f∈Fk

Pj,k, f 6 PSBSj ,max, ∀j ∈ J , k ∈ K (4c)

C3 : ρk > νk, ∀k ∈ K (4d)

C4 :| Cj |6 |Cj|max, ∀j ∈ J (4e)

C5 : ρSBS
j 6 RSBS

j , ∀j ∈ J (4f)

C1 in (4b) assumes that each UE is served by only one SBS, and C2 in (4c) refers to transmit
power limit at the jth SBS with PSBSj ,max the maximum power available at the jth SBS. C3 in
(4d) indicates the QoS requirement for each UE, where νk is the capacity threshold for UE k.
C4 in (4e) is the cluster size constraint with |Cj|max the maximum allowable number of users
in Cj. This ensures that UEs in the same cluster are assigned different subchannels to avoid
intra-cluster interference. C5 in (4f) indicates the backhaul link capacity constraint, where
RSBS

j is the maximum achievable downlink data rate for SBS j. Note that the subchannel
assignment is assumed to be known and is not considered in this work.

The strategy in (4a) attempts to maximize the energy efficiency by finding the optimal
user association and power allocation, which is generally a challenging problem with
various unknowns and hybrid unknown spaces (continuous power and discrete clustering)
in the system. Furthermore, the optimization problem in (4a) deals with a one-shot scenario
at a certain time instant which needs to be re-evaluated when the network evolves to the
next time instant. To tackle the challenges, we are therefore motivated to resort to the
techniques of reinforcement learning (RL).

3.2. Reinforcement Learning

RL as one kind of machine learning is well known for its capability of making deci-
sions sequentially in dynamic environments, where the decision-making agent interacts
with the environments by an appropriately chosen action which is based on its past expe-
riences learned through a reward function and on its current environment state the agent
is experiencing [15]. These constitute the three fundamental elements in an RL: state (st),
action (at), and reward (r(st, at)). Typically, an RL formulates the environment dynamics
as a Markov decision process (MDP), and the primary objective is to determine the action
contingent upon a certain state at each time step such that the expected discount cumulated
reward is maximized. More specifically, traditional Q-learning aims at finding the action
that maximizes the action-value function Q(s, a) defined by

Q(s, a) , E

[
∞

∑
k=0

γkr(st+k, at+k)
∣∣∣st = s, at = a

]
, (5)

where γ is the discount factor.
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It is a challenging task to evaluate the Q-function in (5) in many applications, since
the statistical properties between any two states are often not easy to obtain. Fortunately,
thanks to the advancement in deep neural networks (DNNs), evaluations of the Q-function
in (5) can be well approximated by properly designed DNNs [28]. Specifically, during the
training phase, the weights in the deep Q learning (DQN) network are trained to extract
features from raw data with corresponding target values obtained by the recursive Bellman
equation developed from (5). The success of DQN has led to an explosive subsequent
development in the area of deep reinforcement learning (DRL), such as the more stabilized
version of the DQN (double DQN in [32]), the extension to continuous actions using the
deep deterministic policy gradient (DDPG) in [29], and the TD3 [33].

3.3. State, Action, and Reward Function

In this research, the state, action, and reward function associated with the penalty
mechanism for the wireless backhaul capacity constraint in the considered RL-based joint
power allocation and user association are defined as follows:

• State: The state at the tth time slot is defined as the user data rate in that time slot

st = [ρ1(t), . . . , ρK(t)]. (6)

• Action: The action in the tth time slot is defined as

at =
[
cUE(t), pUE(t)

]
, (7)

where cUE = [cj,k]j=1:J,k=1:K, with cj,k ∈ {0, 1}, j ∈ J , k ∈ K, and pUE(t) indicat-
ing the sets of user associations and power allocations, respectively. More specif-
ically, the power allocation set is given by pUE(t) =

[
pUE

1 (n), . . . , pUE
K (n)

]
, where

pUE
k (t) = [PSk ,k, f (t)] f : f∈Fk

is the vector of allocated power for data transmission in all
subchannels assigned to UE k from its associated SBS Sk.

• Reward: We aim to maximize the overall energy efficiency as in (4a) while maintaining
QoS for each US and satisfying the backhaul link capacity constraint for each SBS.
Hence, the reward rt at the tth time slot is defined as

r(st, at) =

{
r
′
(st, at), if ρSBS

j ≤ RSBS
j , ∀j ∈ J ,

r
′
(st, at)− rth, if ρSBS

j > RSBS
j , for some j ∈ J ,

(8)

where

r
′
(st, at) , λ1Zκ1(t) − λ2Zκ2(t),

with κ1(t) = 1
PT

∑K
k=1 ρk(t) being the system energy efficiency and

κ2(t) =
K

∑
k=1

(ρk(t)− νk)
2

being the penalty term which discourages the agent from taking the actions such that
the capacity of each user deviates too much from the QoS threshold, and Zκ1(t) and
Zκ2(t) are the Z-scores (i.e., standardized results) of κ1(t) and κ2(t), respectively. rth is
a threshold used to reduce the likelihood of violating the backhaul capacity constraint.

One of the challenges when transforming a traditional optimization problem into a
DRL problem is to devise proper handling of the constraints in the original optimization
problem. In this paper, the penalty term in κ2(t) is designed to improve the QoS satisfaction
in constraint C3 through reducing the number of UEs whose achievable rates are much
higher or lower than the capacity thresholds. The weights λ1, λ2 ∈ [0, 1] control the
significance of the corresponding term. Operators can tune the weights λ1 and λ2 according
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to their needs, e.g., setting λ1 > λ2 at off-peak traffic periods and λ1 < λ2 at peak traffic
hours to enhance each user’s service experiences. Note that the reward function defined
in (8) may not be feasible in practice, and judicious setting for the associate weights λ1 and
λ2 are needed based on trial-and-error efforts. Furthermore, in order to guide the agent to
follow the backhaul link constraint, a penalty mechanism is introduced here for the agent
to adjust corresponding actions. If one of the SBSs experiences a sum rate that violates the
backhaul capacity constraint, the agent receives a penalty and restarts a new episode in
the learning process. On the other hand, in this paper, the cluster size constraint is dealt
with by including only the legitimate discrete actions, each of which allows no more than
Nsub users in each cluster, in the constrained discrete action space for the entire learning
process. This guarantees the output of the discrete action satisfies the cluster size constraint.
Finally, in order to accommodate the power constraint in C2, techniques mentioned in the
above can also be utilized. Alternatively, in this work, modifications have been made to the
power constraint such that each user’s allocated power is restricted by ∑ f∈Fk

Pj,k, f ≤ Pk,max,
where the per-user maximum power Pk,max is assumed to be Pk,max = 1

|Cj |
PSBSj ,max for k ∈ Cj.

In this case, the total power constraint in C2 can be satisfied, though in a suboptimum
fashion. This per user power constraint can be facilitated by the actor-parameter network
in the proposed P-DQN in a much easier way.

3.4. Parameterized Deep Q Network

Recent progress in deep RL (DRL) approaches has made the DRL, such as DQN,
a viable technique to tackle various resource allocation problems in wireless networks.
However, in order for DQN to be able to solve the joint power allocation and user associa-
tion problem considered in this work, the continuous action space in the power allocation
has to be quantized into discrete action space first. Quantization of the continuous action
space may round off potentially optimal power allocations. Moreover, the complexity of
the DQN increases exponentially with the dimension of the action space, leading to unde-
sirable huge consumption of power and slowdown of convergence speed. To overcome
this difficulty, in this paper, we propose employing the P-DQN [31,34] for the joint power
allocation and user association because of its capability of solving problems with hybrid
action space.

The parameterized action space is denoted by by APA = {(c, xc)|xc ∈ Ac, for all c ∈
Ad}, where Ac and Ad are the continuous and discrete action spaces, respectively. When
the discrete action c takes all possible combinations into consideration without constraints,
the discrete action space Ad = {[ck,j] : ck,j ∈ {0, 1}, k ∈ K, j ∈ J }. Each discrete action c
has a corresponding continuous parameter xc ∈ Xc, where Xc is the set of all users’ power
allocations pUE(t) in this work, for a discrete action c. The primary network of the P-DQN
(without the stabilizing target networks) is presented in Figure 2. The primary network
in Figure 2 consists of an actor-parameter network xc(s; θ) with weights θ, which maps
the state c and each discrete action to its corresponding continuous parameter, and an
actor network Q(s, c, xc; ω) with weights ω, which evaluates the action-value Q-function,
i.e., the long term expected cumulative reward Q(s, a) defined in (5), and the action can be
explicitly represented by the 2-tuple a = (c, xc) to emphasize the hybrid nature in the action.
Typically, the weights θ in the actor-parameter network can be determined by maximizing
the expected action-value function E[Q(s, c, xc(c; θ); ω)]. Furthermore, the weights ω in the
actor network can be updated by minimizing the mean-squared error E[(yt−Q(st, at; ω))2],
where yn is the target value in the network and at = (c(t), xc(t)) [28,31].

In order to stabilize the P-DQN, an additional target network, combining the original
primary network shown in Figure 2, is built to produce the target value yt needed in the
actor network [28]. Furthermore, to expedite the training process, an experience replay
buffer D is implemented to provide random samples for evaluating the means appearing
in the loss functions of both the actor network and actor-parameter network. With the
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replay buffer, the loss functions for the actor-parameter xc(s; θ) and the actor Q(s, c, xc; ω)
can be obtained by the following sample means:

Lx(θ) = − 1
N

N

∑
i=1

Q(si, ci, xci (si; θ); ω)

LQ(ω) =
1
N

N

∑
i=1

(yi −Q(si, ci, xci (si; θ); ω))2,

where yi = ri + γ max
c′

Q
(

si+1, c
′
, xc′ (si+1; θ−); ω−

)
is evaluated by the target network for

stability with weights θ− and ω−, (si, ci, xci , ri, si+1) ∈ D is sampled from the replay buffer,
and N is the size of the mini-batch (i.e., sample size). The weights θ and ω are updated
according to

θ ← θ − αa,p∇θ Lx(θ) (9)

ω ← ω− αa∇ω LQ(ω), (10)

where αa,p and αa are the learning rate for the weights in the actor-parameter and actor
network, respectively.

At a given state s, the actor-parameter network produces the continuous parameters,
which maximize the average Q(s, c, xc; ω) for each discrete action c. Then, the actor network
determines the action (c, xc) = arg max

(c,xc)
Q(s, c, xc; ω) after the action-value Q-function has

been evaluated with the aid of the target network. In the training phase, the off-policy
scheme is implemented where the agent selects the action based on ε-greedy policy and
generates the Q-target using the greedy policy for exploration. The algorithm of the
proposed P-DQN with the target networks is summarized in Algorithm 1.

Figure 2. Illustration of the primary network in P-DQN. At each time slot, the actor-parameter

xc(s; θ) decides the continuous parameter x(s; θ) =
[

xc1 (s; θ), . . . , xc|Ad |
(s; θ)

]T
based on the current

state s. Then actor Q(s, c, xc; ω) takes the action according to the current state s and the continuous
parameter x(s; θ).
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Algorithm 1 Parameterized Deep Q-Network (P-DQN) Algorithm with the quasi-static target networks.

Input: Learning rates
{

αa, αa,p
}

, exploration parameter ε, mini-batch size B, a probability distribution ξ.

Initialize network weights ω, ω−, θ, and θ−.

for t = 1, 2, . . . , T do

Determine the action parameters xc(st; θt) by the actor-parameter network.

Select action at = (ct, xct) according to the ε-greedy policy:

at =

{
a sample from the distribution ξ, with probability ε
(ct, xct) : ct = arg max

c∈Ad
Q(st, c, xc; ω)by the actor network, with probability 1− ε.

Take action at , observe reward rt and the next state st+1.

Store the experience (st, at, rt, st+1) into D.

Draw N samples of experience (si, ai, ri, si+1) randomly from D.

Define the target yi by

yi =

 ri, if si+1 is the terminal state,
ri + γ max

c′∈Ad

Q
(

si+1, c
′
, xc′ (si+1; θ−); ω−

)
, otherwise.

Use (yi, si, ai) to compute the gradient ∇ω LQ(ω) and ∇θ Lx(θ).

Update the parameters ω, ω−, θ, θ−.

end for

4. Simulation Results
4.1. Simulation Setup

In the simulation, a HetNet with three SBSs and five UEs uniformly located in a
macrocell with radius 500 m is considered. Backhaul transmission model considered
in [35] is adopted in the simulations. The MBS is equipped with 100 antennas and has
20 beamforming groups [35]. Slow Rayleigh fading channels are adopted for simulations
where the channel remains unchanged throughout each episode. The Rayleigh channel
coefficient is modeled as h ∼ CN (0,1). We also adopt the non-line-of-sight path-loss
model for urban MBSs and SBSs [36]. Each subchannel is randomly allocated to a user,
and the subchannel allocation is assumed known for the agent. The other settings of the
simulation are summarized in Table 3. The Adam optimizer is employed for all DNNs that
are embedded in P-DQN. The ε-greedy algorithm and Ornstein-Uhlenbeck noise is used
for explorations of discrete actions and continuous parameters, respectively. We set the
threshold rth = 0.1, discount factor γ = 0.95, batch size N = 128, the maximum number of
episodes as 2000, and the maximum steps per episode as 100. Other parameter settings
used in the P-DQN are given in Table 4. The simulation codes used in this research can be
found in [37].
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Table 3. Simulation Parameters.

Parameter Value

Carrier frequency fc = 2 GHz

Subchannel bandwidth Bsub = 15 kHz

Number of subchannels Nsub = 3

Number of subchannels per user |Fk| = 1

MBS antenna array size NT = 100

MBS beamforming group size Ng = 20

The radius of the entire network 500 m

Number of SBS J = 3

Number of UE K = 5

SINR threshold of UE νk = 1 for each UE

Path loss model a. 30.53 + 36.71× log10 dj,k
(a. and b. indicate the model in dB, dj,k in km
for UE and SBS, respectively) b. 19.77 + 3.91× log10 dj

in dB, dj in km

Rayleigh channel coefficient h ∼ CN (0,1)

Noise power spectral density N0 = −174 dBm/Hz
Maximum transmit power of SBS PSBSj ,max = 24 dBm

Maximum cluster size |Cj|max = Nsub = 3

Transmit power of MBS PMBS = 43 dBm

Operational power of SBS Po,SBS = 0.5 W

Operational power of MBS Po,MBS = 130 W

Table 4. The settings for the deep neural networks used in the P-DQN.

Actor Actor-Parameter

Learning rate αa = 10−5 αa,p = 10−5

Exploration ε-greedy Ornstein-Uhlenbeck noise

Number of Outputs |Ad| K · |Ad|

Hidden layer ReLu, 16
ReLu, 128
ReLu, 512

ReLu, 256

Number of Inputs K + K · |Ad| K

4.2. Performance Analysis

In the simulations, we compare the proposed P-DQN for joint user clustering and
power allocation with the following approaches:

• Nearest SBS + Random Power: Each UE is associated with the nearest SBS. Random
power means that each SBS serves the UEs in its cluster with random powers in a way
that the resulting sum rate within the cluster cannot exceed the power and backhaul
capacity limit.

• Best Channel + Random Power: Each UE is associated with the SBS with the best
received signal power, which depends on the UE-SBS distance as well as the small-
scale fading effect. Furthermore, each SBS serves the UEs in its cluster with random
power allocations under the power and backhaul capacity constraint.
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• P-DQN Association + Random Power: The user association policy is accomplished
by the proposed P-DQN, whereas each SBS serves the UEs in its cluster with random
powers under the total power and backhaul capacity constraint.

• Random Association + P-DQN Power: Each SBS allocates the power to its serving
UEs based on the policy determined by the P-DQN. Each UE is randomly associated
with one SBS in such a way that the random association policy obeys the backhaul
link constraint.

• DQN with Five Discrete Power Levels: The continuous power space is quantized

into L non-uniform power intervals, with L discrete power levels
PSBSj ,max

10L with L ∈
{0, . . . , L− 1}. In this simulation, L is set to 4.

We set the weights (λ1, λ2) = (0.43, 0.16) for both the P-DQN with the cluster size
constraint and the P-DQN without the cluster size constraint, which allows us to observe
the effect of the cluster size constraint in C4. Figure 3 depicts the average normalized
reward versus steps over 500 realizations during the training phase. It shows the conver-
gence of the user association and power allocation algorithm using the proposed P-DQN.
Note that, while the P-DQN approach without cluster size constraint provides higher
reward as can be seen from Figure 3, it cannot guarantee all UEs’ QoS. Figure 4 shows the
effectiveness of the proposed P-DQN algorithm, as it outperforms other approaches in
terms of both the reward and the energy efficiency. The numerical values of the reward and
energy efficiency obtained in Figure 4 and averaged over all time steps are summarized
in Table 5. The improvement in the energy efficiency of the proposed P-DQN on average
may reach 77.6% over the traditional DQN and 140.6% over the nearest-distance-based
association approaches.
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Figure 3. Convergence property of the proposed P-DQN algorithm.

Figure 6c, the P-DQN without the cluster size constraint tends to have all UEs served
only by one SBS in the pursuit of small-system power consumption (as large operational
power is consumed by any active SBS).
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Table 5. The average standardized value of the reward and the energy efficiency, obtained from the
results in Figure 4 and averaged over all time steps. The method index in the table is: (A) P-DQN
with Cluster Size Constraint, (B) Nearest SBS + Random Power, (C) Best Channel + Random Power,
(D) P-DQN Association + Random Power, (E) Random Association + P-DQN Power, and (F) DQN
with Cluster Size Constraint.

Method Index Average Reward Average Energy Efficiency

(A) 0.8957 6.1770

(B) −0.7453 2.5677

(C) −0.7499 2.6169

(D) 0.1968 4.6477

(E) −0.1327 3.3923

(F) 0.1186 3.4773

Table 6 shows that each UE obtains 83.47% of the required QoS, and each SBS obeys the
wireless backhaul capacity constraint at each timeslot through the proposed P-DQN with
the cluster size constraint. However, the percentage of QoS satisfaction for the methods
with random power or random association is about 50%. The percentage of QoS satisfaction
of the proposed P-DQN with the cluster size constraint is higher than that of the other
approaches, as a penalty term is used in the reward function to realize each UE’s QoS as
much as possible in the proposed P-DQN. For Random Association + P-DQN Association,
the ratio is even smaller than 5%. For DQN with cluster size constraint, the ratio is even
smaller than 1%, as the quantized power levels suffer from round-off imperfections, while
the continuous action learned by the P-DQN allows for a better QoS with appropriate
continuous power allocation.

Table 6. The percentage of wireless backhaul link constraint satisfaction and QoS satisfaction.
The method index in the table is as follows: (A) P-DQN with Cluster Size Constraint, (B) Nearest SBS
+ Random Power, (C) Best Channel + Random Power, (D) P-DQN Association + Random Power, (E)
Random Association + P-DQN Power, and (F) DQN with Cluster Size Constraint.

Method
Index

Percentage of Backhaul
Constraint Satisfaction

Percentage of
QoS Satisfaction

(A) 100.00% 83.47%

(B) 100.00% 44.91%

(C) 100.00% 44.42%

(D) 100.00% 50.22%

(E) 100.00% 4.87%

(F) 100.00% 0.58%

In Figure 5, we analyze the interference power experienced by each UE under various
approaches. The results in Figure 5a,c,e demonstrate that the interference each user experi-
ences in the “Nearest SBS + Random Power” approach is higher than that in the “P-DQN
with Cluster Size Constraint” approach and “P-DQN Association + Random Power” ap-
proach. By comparing the results in Figure 5a,e, it can be seen that random power allocation
does not have much impact on each user’s received interference level. On the other hand,
by comparing the results in Figure 5c,e, we observe a noticeably increased interference level
in UE 3 and UE 4, which implies that the interference is largely dominated by the result of
user association. The results here indicate that the user association policy learned by the
proposed P-DQN with cluster size constraint generally tends to determine the matching
between UEs and SBSs such that the inter-cluster interference can be managed to a lower
level, as shown in Figure 5a, which results in a higher system throughput.
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The increased level of interference in UEs (such as UE 3 and UE 4) observed in
Figure 5c can be explained with the aid of Figure 6, which plots the locations of each UE
and SBS with their association status being specified by colors. The association results and
physical distances between each user and all SBSs in Figure 6 can provide insights into the
interference level each UE experiences under different association strategies. For example,
the increased interference in UE 4 in Figure 5c can be analyzed by comparing Figure 6b
with Figure 6a. More specifically, while UE 4 in Figure 6a associated with SBS 2 under
the proposed P-DQN with cluster size constraint is interfered only by inter-cluster signals
transmitted from SBS 1, this UE 4 associated with SBS 2 in Figure 6b under the “Nearest
SBS” (i.e., nearest distance) association approach can potentially be interfered with by
inter-cluster signals from SBS 0 and SBS 1. It can be seen from Figure 6b that SBS 0 could
strongly interfere with UE 4, due to the short distance between SBS 0 and UE 4, thus leading
to the increased interference level in UE 4 as shown in Figure 6b. Finally, as for the case
of P-DQN approach without cluster size constraint, the system suffers from intra-cluster
interference, which significantly impacts the interference level in each user as shown in
Figure 5b. Since keeping an SBS active demands huge operational power, we can see from
Figure 6c that the P-DQN without a cluster size constraint tends to have all UEs served
only by one SBS in pursuit of less overall system power consumption.

In contrast with the user association schemes based on the distance or the channel
quality between a UE and an SBS, the P-DQN-based user association tends to activate
fewer SBSs, which leads to less consumption of overall operational power in the SBSs and
results in a higher energy efficiency. More specifically, as illustrated in Figure 6a, where
different colors refers to different clusters, we see thatUE 0, UE 2 and UE 3 are associated
with SBS 1, and UE 1 and UE 4 are connected to SBS 2, whereas SBS 0 is not active when
employing the policy learned by P-DQN with the cluster size constraint.
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(a) P-DQN with Cluster Size Constraint.
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Figure 5. Cont.
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(c) Nearest SBS + Random Power.
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(d) Best Channel +Random Power.
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(e) P-DQN Association + Random Power.
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Figure 5. Average interference level of all power allocation and user association approaches. P-DQN
association and P-DQN power refer to those of “P-DQN with Cluster Size Constraint”.
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(b) The nearest SBS or the best channel policy.

-500 -400 -300 -200 -100 0 100 200 300 400 500

Distance(m)

-500

-400

-300

-200

-100

0

100

200

300

400

500

D
is

ta
n

c
e

(m
)

Network Geometry

MBS

SBS0

SBS1

SBS2

UE0

UE1UE2

UE3

UE4

(c) P-DQN without Cluster Size Constraint.

Figure 6. The results of user association. (a) P-DQN with cluster size constraint. (b) The nearest SBS
policy. (c) P-DQN without cluster size constraint. Each SBS and its associated UEs are shown in the
same color.
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5. Conclusions

In this paper, we have studied the joint problem of user association and power al-
location using P-DQN in the downlink of a two-tier HetNet without knowledge of the
environment transition probability. The wireless network has been formulated as a pa-
rameterized action Markov decision process with a hybrid (discrete-continuous) action
space. The P-DQN has been adopted as a model-free framework to avoid quantization
noise resulting from rounding the continuous power space into discrete levels. With the
consideration of realistic scenarios, we have designed the reward function as the energy
efficiency with QoS constraint per user as well as backhaul capacity constraint. We have
introduced a penalty mechanism when the constraints are violated. We have also uti-
lized the cluster size constraint for intra-cluster interference mitigation. In simulations,
the proposed P-DQN has been verified to outperform other traditional methods in terms of
overall energy efficiency while satisfying QoS requirements and backhaul constraints. The
improvement in the energy efficiency of the proposed P-DQN on average may reach 77.6%
over the traditional DQN, both with the cluster size constraint. Meanwhile, the proposed
P-DQN may still suffer from the curse of dimensionality when dealing with problems with
sizable action spaces. It will be worthwhile to investigate advanced DRL techniques (such
as the DDPG technique or the multi-agent RL), in future work, capable of handling the
problems of joint user association and power allocation, which typically have large action
spaces in scenarios of practical interest.
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