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Abstract: This paper considers the reference signal generation problem for the multi-functional
operation of single-phase dynamic voltage restorers. For this purpose, a single-phase quasi type-1
phase-locked loop (QT1-PLL) is proposed. The pre-loop filter part of this PLL is composed of a
frequency-fixed delayed signal cancellation method and a two-stage all-pass filter. Thanks to the
frequency-fixed nature, the pre-loop filter is easy to implement and can provide rejection of any
measurement offset. Moreover, this PLL benefits from the excellent harmonic robustness property
of the conventional QT1-PLL. Small-signal modeling and gain tuning procedures are detailed in
this paper. In order to track the reference voltage signals generated by the proposed PLL, a super-
twisting sliding mode controller is also presented, which helps to achieve fast dynamic responses.
Laboratory-scale prototype-based experimental studies were conducted to validate the developed
reference generator and the controller. Experimental results show that the proposed method is fast in
detecting and compensating any grid voltage anomalies to maintain constant load voltage despite
voltage sag, swell, and harmonic distortions.

Keywords: grid-synchronization; dynamic voltage restorer; converter control system; sliding mode
control

1. Introduction

Power quality problems such as voltage sag, swell, and harmonics can significantly
affect the performance of critical loads that are used in hospital, water treatment plant,
data center, etc. In addition to harmonics, voltage sag and swells are quite common in
power grid and can be caused by many reasons such as lightning strike, accident, short
circuit, over loading, switching on or off large electrical loads, etc. In the case of water
treatment plant, voltage sag/swell can interrupt the treatment process including dissolved
air flotation, filtration, and disinfection. Any interruption in the process can take up to 8 h
to resolve, causing one-third production loss for the day. This highlights the importance of
mitigating voltage-related power quality problems.

In order to address power quality issues such as voltage sag, swell, and harmonics,
the dynamic voltage restorer (DVR) became very popular in recent times [1–4]. DVR can
compensate voltage sag, swell, and harmonics to maintain desired constant voltage at the
critical load side. In the literature, various topologies of DVR are proposed. However, the
most basic DVR topology is made of any dc voltage source such as battery, photovoltaic
panel, etc., together with a voltage source inverter with LC filter and a transformer. The
transformer provides galvanic isolation between the inverter and its secondary is connected
between the grid voltage and the load in series. The control system of DVR constantly
monitors grid voltage and injects compensation voltage when it detects any deviation from
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the desired voltage. This results in maintaining desired load voltage despite various power
quality disturbances at the grid.

The detection of voltage sag, swell, and harmonics plays a vital role in ensuring the
effective operation of DVR. Voltage sag and swells are typically short-lived incidents with
a time range of few milliseconds to a minute [5]. As such, fast and accurate detection of
sag and swell is essential for fast responsive DVR operation. In the ideal case, voltage
sag/swell can be detected very quickly by comparing the voltage magnitude with respect
to the ideal magnitude. However, calculating the magnitude can be tricky in the presence
of nonlinearities such as harmonics.

The first step in compensation voltage calculation is to generate the reference voltage,
which should be in-phase with the measured grid voltage. If the grid voltage is ideal,
i.e., has a frequency of 50 Hz (or 60 Hz) and contains no harmonics, then generating the
reference voltage is straightforward. However, this is not the case in practice. According to
the European standard EN 50160 [6], grid voltage can vary between −3 Hz and +2 Hz of
the nominal frequency. However, the grid frequency has to be within 1% of the nominal
value, i.e.,±0.5 Hz for 99.5% of the time. Moreover, harmonics are almost always present in
the grid due to the ever increasing penetration of nonlinear loads and converter-interfaced
distributed energy sources. All these factors complicate the reference voltage calculation.

In order to address the non-ideal characteristics of the measured grid voltage, re-
searchers often rely on phase-locked loop (PLL) [7–15] or similar techniques to generate the
reference voltage for DVR. Using PLL, first, the instantaneous phase of the grid voltage
fundamental component is estimated. This can then be used as the unit template for the
reference voltage. By multiplying the unit template with the desired amplitude, the actual
reference grid voltage can be calculated. In this study, we are considering a single-phase
DVR. However, traditional PLLs in the form of synchronous reference frame (SRF) PLLs
work only for three-phase systems. For single-phase systems, an additional orthogonal
signal generator (OSG) is required to implement SRF-PLL. In the single-phase DVR litera-
ture, various OSGs have already been used. In [16], a second-order generalized integrator
(SOGI) is used as the OSG. The effect of DC offset is not considered in [16]. Moreover,
despite having band-pass filtering property, traditional SOGI-PLL cannot completely reject
the dominant harmonics. Thus, multiple SOGIs need to be placed in parallel in order to
reduce the effect of dominant harmonic components. This can make the overall system
computationally complex. It is to be noted here that the conventional SRF-PLL can be
made robust to harmonics and DC offset by considering a slow loop-filter, i.e., by reducing
the bandwidth. This has been considered in [17]. Although this is an interesting practical
solution, this strategy is suitable for voltage compensation but not harmonics.

Self-tuning filter (STF) is similar to SOGI; however, in the case of STF, the error
feedback is independent of the grid frequency. In [18,19], the authors have applied STF as
the reference generator without considering frequency adaptation. As such, the reference
generator in [18,19] can be limiting when the grid frequency varies significantly. Quarter-
delay is another popular method for generating orthogonal signal. This approach is
considered in [20]. However, in off-nominal frequency condition, the required delay would
be fractional which increases computational complexity. In [21], an adaptive notch filter
(ANF) is used as the reference generator. However, the considered ANF did not use gain
normalization. This can make the convergence time slow in the presence of voltage sag.

Based on the literature review, it is clear that there is demand for a reference generator
that is robust to harmonics and DC offset while at the same time is computationally simple
to implement. For this purpose, in this study, a quasi type-1 PLL [22–24] is considered. This
PLL has been selected for several reasons. Firstly, it can provide amplitude normalization
without using any low-pass filter unlike conventional SRF-PLL, cf. [25]. Use of additional
low-pass filter in the amplitude normalization block will introduce tuning complexity as
there is one more gain to tune. Secondly, this PLL provides good harmonic robustness
thanks to the use of a moving-average filter. Finally, it has only one gain to tune unlike
SRF-PLL where the loop-filter has two tuning parameters. However, this PLL can work only
for three-phase system. Thus, a single-phase version of this PLL is proposed in this study.
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For this purpose, first, a half-cycle delayed signal cancellation method is applied to reject
the DC offset. Then, a frequency-fixed all-pass filter (APF) [26] is applied to generate the
orthogonal signal. However, single-stage APFs will generate double frequency oscillations
in off-nominal frequency conditions. As such, a two-stage APF is considered that can
eliminate the double frequency error. The APF is selected in this study as it can generate
orthogonal signals without using any tuning gain unlike other choices available in the
literature such as SOGI [16,27], ANF [21], etc. This is beneficial from the tuning simplicity
point of view. Finally, the filtered grid voltage signal and its orthogonal component are
used as the inputs to the quasi type-1 PLL. A small-signal model of the proposed PLL is
developed and validated. Finally, tuning of the PLL gain is also presented. Compared
to conventional PLL techniques summarized in [28], our approach is very simple to tune
as it has only one tuning gain. All the techniques summarized in [28] have at least three
parameters to tune if amplitude normalization is considered. Unlike most of the techniques
in [28], our quadrature signal generator is frequency non-adaptive. As such, there is no
frequency feedback which may be beneficial from the stability point of view.

Once the reference signal is generated, the role of control system is to follow/track the
reference. In the literature, synchronous frame approach in the form of proportional-integral
(PI) controllers [29] are widely used. Although this controller can be easily designed and
implemented, the dynamic response can be slow. In order to enhance dynamic performance,
advanced controllers such as model predictive control (MPC) [7,8], H∞ [30], and sliding
mode control (SMC) [31–33] are proposed in the literature. MPC can be sensitive to model
parameters mismatch. Computational complexity can be an issue forH∞ controllers. SMC
is often a suitable choice for controlling nonlinear systems in the presence of parameter
mismatch and/or external perturbations. As such, this technique has been selected in
this study.

The rest of this article is organized as follows: Section 2 explains the operation of the
proposed DVR together with the error model for controller development. Development of
the proposed reference signal generator is provided in detail in Section 3. Development of
the sliding-mode controller is provided in Section 4. Experimental results on a laboratory-
scale prototype together with simulation results are provided in Section 5. Finally, Section 6
concludes this paper.

2. DVR Modeling and Problem Formulation

In this study, we consider a single-phase DVR. A connection diagram of the DVR is
given in Figure 1. In this configuration, the DVR, which is a full-bridge voltage source
inverter, is connected in series through a transformer to the protected load. Isolation
between the load the DVR is provided by the transformer. Grid voltage sensor is used
to continuously monitor the deviation from the reference voltage, and the appropriate
compensation voltage is injected by the DVR to maintain the ideal voltage at the protected
load terminal. Filter current and compensation voltage dynamics of the DVR are given by
the following:

di f

dt
=

1
L f

(vi − vc), (1)

dvc

dt
=

1
C f

(
i f − ig

)
, (2)

where vi, vg, vc, i f , ig, L f , and C f denote the input voltage by the DVR, grid voltage,
compensation voltage, filter current, filter inductance, and filter capacitance, respectively.
The DVR voltage can be expressed as vi = uVdc where the DC-link voltage is denoted by
Vdc, and the control signal is given by u. Moreover, in the ideal case, one can also write
the following.

vc = vg − vL. (3)
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Figure 1. Topology of the considered DVR.

In normal operating condition, the compensation voltage given by (3) will be zero.
However, in practice, the grid voltage is never ideal. Various grid anomalies such as voltage
sag/swell, harmonics, noise, etc., are present. In this case, (3) can no longer be used for
the compensation voltage calculation. In order to ensure that the sensitive load voltage
remains as close as possible to the desired voltage, reference voltage needs to be calculated
and this voltage should be in-phase with the grid voltage fundamental for the efficient
operation by the DVR. Let us consider that the reference voltage is denoted by vref

c . Then,
the tracking error and its derivative are given by the following.

ξ1 = vref
c − vc, (4)

ξ2 = ξ̇1 = v̇ref
c − v̇c. (5)

Then, by substituting the DVR dynamical Equations (1) and (2) into (4) and (5), the
DVR tracking error dynamics can be obtained as follows:

dξ1

dt
= ξ2, (6)

dξ2

dt
= −δξ1 + δuVdc + w, (7)

where the coefficient δ = 1/
(

L f C f

)
and the perturbation term w(t) is given by the following.

w(t) = − 1
C f

dig

dt
− δvref

c − v̇ref
c .

It is assumed that the perturbation term w(t) has a bounded derivative and is upper
bounded by | dw

dt |≤ W,W > 0. Thus, the control of DVR is essentially divided into two
parts. In part 1, the problem is to generate the reference voltage vref

c from the measured
grid voltage vg. In part 2, the problem is to find the control signal u that will ensure that
the tracking errors converge asymptotically to zero. These two issues are addressed in the
following two sections.

3. Reference Signal Generator

In this Section, reference voltage vref
c will be generated from the measured grid voltage

vg. For this purpose, let us consider the singe-phase grid voltage signal model in time-
domain as provided below:

vg(t) = v0 + Vp sin
(
θg
)︸ ︷︷ ︸

v∅
g

, (8)
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where |v0| ≥ 0, Vp, and θg =
∫

ωgdt, θg(0) = φ are the DC offset, amplitude, and instan-
taneous phase with ωg being the grid frequency, and φ is the initial phase angle. The
frequency is ωg = ωn + δω, where ωn = 100π is the nominal frequency and δω is the
deviation from the nominal frequency. For efficient operation of the DVR, the reference
voltage should be in phase with the instantaneous phase of the grid voltage θg. Thus,
the process of extracting θg from the measured voltage vg is considered in this section.
For this purpose, a PLL-based approach has been considered in this study. Details are
provided below.

3.1. DC Offset Rejection

Measurement offset v0 causes estimation error in the estimated phase. Thus, rejection
of this offset is essential in order to eliminate the steady-state error. For this purpose, the half-
cycle delayed signal cancellation (DSC) method is a popular choice in the literature [34,35].
The same approach is considered here. For this purpose, let us consider half-cycle delayed
version of the signal vg as follows:

vtd
g (t) = v0 + Vp sin

(
ωg(t− td) + φ

)
,

= v0 −Vp sin
(
θg
)
, (9)

where td = T
2 with T = 2π

ωg
being the period of the grid voltage signal. Then, the DC offset

can be eliminated by the following operation.

v̂∅
g =

1
2

(
vg − vtd

g

)
. (10)

In implementing Equation (10), the actual period of the grid voltage is required. In the
off-nominal frequency condition, the amount of required dely could be a fraction, thereby
increasing computational complexity. A potential solution is to use the nominal period;
however, this will introduce amplitude and phase attenuation in the off-nominal condition.
In this study, only extracting the phase is required. thus, appropriate compensation of the
phase delay is necessary to eliminate the error. For this purpose, let us consider the transfer
function of the DSC operation (10) as provided by the following:

v̂∅
g

vg
(s) = Gdc(s) =

1− e−tds

2
, (11)

where the estimated value is indicated by .̂ The discrete-time version of the transfer
function (11) is given by the following:

Gdc(z) =
1− z−Nd

2
, (12)

where the required delay is given by as Nd = td fs with fs being the sampling frequency. By
substituting s = jωg, the phase angle of the transfer function (11) is given by the following.

∠Gdc(s) = tan−1
{

tan
(

π

2
−

Tωg

4

)}
,

=
π

2
−

Tωg

4
,

=
π

2
− T

4
(ωn + δω),

=
π

2
− T

4
2π

T
− T

4
δω,

= − T
4︸︷︷︸

kdc

δω. (13)
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In calculating (13), it is assumed that ωn = 2π/T. Equation (13) shows that the use of
nominal period in (10) causes a phase delay of −kdcδω in the off-nominal frequency case.
This phase needs to be compensated in the loop-filter to eliminate the phase error in the
off-nominal frequency condition.

3.2. Tuning-Free Fixed-Frequency Orthogonal Signal Generator

Once the DC offset is eliminated, the signal v∅
g can be used to generate an orthogonal

signal component. In this study, we are considering an all-pass filter (APF) [26,36]. APF is
a first-order filter, and it can be used to generate orthogonal signals without any tuning
gain. This filter can be used either as frequency-adaptive or non-adaptive configurations.
In this study, a frequency-fixed operation is considered same as the DC offset rejection
method, as highlighted in Section 3.1. The frequency-fixed APF transfer function is given
by the following:

v∅⊥
g

v∅
g

(s) = APF(s) =
ωn − s
ωn + s

, (14)

where superscript ⊥ indicates orthogonal signals. A time-domain block diagram of APF is
provided in Figure 2. Similarly to Section 3.1, the frequency-fixed operation of the APF will
introduce amplitude and phase attenuation in the estimated orthogonal signal. As such,
characterization of the APF is needed to determine the necessary compensation mechanism.
Phase-angle of the transfer function (14) is given by the following.

∠APF(s) = tan−1

(
2ωgωn(

ωg −ωn
)(

ωg + ωn
)). (15)

For small frequency drift, i.e., δω ≈ 0, it can be assumed that ωg + ωn ≈ 2ωg. Then,
the phase angle (15) can be approximated as follows.

∠APF(s) ≈ tan−1

(
1

ωg
ωn
− 1

)
.

≈ −π

2
− tan−1

(
ωg

ωn
− 1
)

,

≈ −π

2
−

−π

4
+

ωg
ωn

2
+

(
ωg
ωn

)2

2!
+ · · ·

. (16)

Figure 2. Time-domain implementation of frequency-fixed APF.
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By ignoring the high-order (2nd and above) terms from the Taylor series expansion
in (16), this equation can be simplified as follows.

∠APF(s) ≈ −π

2
−
(
−π

4
+

ωg

2ωn

)
,

≈ −π

4
−

ωg

2ωn
,

≈ −π

4
− (ωn + δω)

2ωn
,

≈ −π

4
− 1

2
− δω

2ωn
. (17)

As shown in (17), the first two terms are frequency independent while the third term
depends on frequency variation. This term, i.e., k′φ = 1/2ωn, needs to compensated.

It is well known that single-phase grid voltage can be represented by an unbalanced
two phase-system. It was shown in [36] that single-stage frequency-fixed APF cannot
effectively remove the unbalanced component as the bandwidth of the unbalanced com-
ponent rejection part is very narrow. As such, the unbalanced component will appear as
double the fundamental frequency component after Park transformation. Thus, in order to
eliminate this error, the double frequency component needs to be rejected. This issue can be
solved by increasing the bandwidth of the notch component. In the literature, a two-stage
APF has been suggested for this purpose. The two-stage APF effectively increases notch
bandwidth and enables frequency-fixed APFs to reject off-nominal frequency unbalanced
components. However, the two-stage APF will double the phase delay in the off-nominal
frequency condition. As such, the required phase compensation value is computed by
kφ = 2k′φ = 1/ωn.

3.3. Implementation in PLL

The previous two subsections detailed the procedure for obtaining DC offset elimi-
nated signal v∅

g and its orthogonal component v∅⊥
g . These signals can be used as the input

to PLL. The overall block diagram of the proposed PLL is provided in Figure 3. This section
details the operating principle of this PLL. Before describing the phase detector operation
of this PLL in our case, let us consider APF-filtered signals in the steady-state:

vβ(t) = −Vp cos
(
θg + δφ

)
, (18)

v′∅g (t) = −Vp sin
(
θg + 2δφ

)
, (19)

where δφ is the off-nominal frequency phase attenuation by each stage of the APF. As per
Figure 3, using the signal v∅

g (t) and v′g(t), vα(t) is obtained as follows.

vα(t) =
v∅

g (t)− v′∅g (t)
2

,

≈ Vp sin
(
θg
)
+ δφ cos

(
θg
)
. (20)

Figure 3. Overall block diagram of the proposed PLL.
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The phase detector of the considered PLL is provided by the following.[
vd
vq

]
=

[
cos(ω̂t) sin(ω̂t)
− sin(ω̂t) cos(ω̂t)

][
vα

vβ

]
. (21)

Then, direct-axis and quadrature-axis voltages can be obtained directly from (21). By
applying a quasi-locked condition, i.e., ω − ω̂ ≈ 0, the direct-axis and quadrature-axis
voltages can be rewritten as follows.

vd = vα cos(ω̂t) + vβ sin(ω̂t),

=
Vp

2
(sin((ω + ω̂)t + φ) + sin((ω− ω̂)t + φ)) +

δφ

2
(cos((ω− ω̂)t + φ))

−
Vp

2
(
sin
(
(ω + ω̂)t + φ + 2δφ

)
− sin

(
(ω− ω̂)t + φ + 2δφ

))
+

Vp

2
δφ

2
(cos((ω + ω̂)t + φ)),

≈
Vp

2
(
sin(φ) + sin

(
φ + δφ

))
+

Vp

2
(
sin(2ω̂t + φ)− sin

(
2ω̂t + φ + δφ

))
+

δφ

2
cos(φ) +

δφ

2
(cos(2ω̂t + φ)). (22)

vq = −vα sin(ω̂t) + vβ cos(ω̂t),

=
Vp

2
(cos((ω + ω̂)t + φ) + cos((ω− ω̂)t + φ))−

δφ

2
(sin((ω + ω̂)t + φ))

−
Vp

2
(
cos
(
(ω + ω̂)t + φ + δφ

)
− cos

(
(ω− ω̂)t + φ + δφ

))
+

Vp

2
δφ

2
(sin((ω− ω̂)t + φ)),

≈
Vp

2
(
cos(φ) + cos

(
φ + δφ

))
+

Vp

2
(
cos(2ω̂t + φ)− cos

(
2ω̂t + φ + δφ

))
+

δφ

2
sin(φ) +

δφ

2
sin(2ω̂t + φ). (23)

Double frequency components in (22) and (23) can easily be filtered by applying
moving average filter (MAF) with half-cycle window length. The transfer functions of MAF
in continuous and discrete domain are provided by the following.

MAF(s) =
1− e−tds

tds
, (24)

MAF(z) =
1
N

1− z−Nd

1− z−1 . (25)

By applying MAF to (22) and (23) and also assuming negligible off-nominal frequency
phase shift, filtered vd and vq can be approximated as follows.

v′d = Vp sin(φ), (26)

v′q = Vp cos(φ). (27)

Filtered voltages are then fed to the loop-filter of QT1-PLL, as shown in Figure 3.

3.4. Small-Signal Modeling and Tuning

A small-signal model of the proposed PLL can be obtained by considering the signal
flow in Figure 3. For this purpose, first, the small-signal model of the pre-loop filters needs
to be developed. The first pre-loop filter is the delayed signal cancellation block, which is
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given by transfer function (11). This transfer function can be converted into synchronous
reference frame by substituting s = s + jωn.

DSCdq(s) =
1 + e−tds

2
. (28)

The transfer function of the APF in synchronous reference frame can be obtained by
applying the Park transformation to single-stage APF and is given by the following Gautam
et al. [26].

APFdq(s) =
s + 2ωn

2(s + ωn)
. (29)

In our study, a two-stage APF is considered. As such, the effective transfer function is
given by the following.

APF2
dq(s) =

(
s + 2ωn

2(s + ωn)

)2
. (30)

Considering the pre-loop filters, the small-signal model is shown in Figure 4, where
γ = kdc + kφ is the overall phase compensation gain.

Figure 4. Small-signal model of the proposed PLL.

The proposed PLL has only one parameter to tune, which is the frequency estimation
gain k f . This gain can be tuned in several ways. Two of the popular approaches are based
on open-loop phase margin and settling time. The later is considered in this study. In order
to tune gain k f using this method, a +2 Hz frequency step is considered. Considering a 2%
settling time, settling time versus the gain k f is given in Figure 5. From this figure, k f = 89
has been found to provide the fastest settling time. This value has been considered as the
optimal gain for k f . Considering this value of k f ,validation of the small-signal model is
provided in Figure 6.

50 100 150
30

40

50

60

70

Figure 5. Settling time versus k f for a +2 Hz frequency step change.
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Figure 6. Small-signal model verification of the proposed PLL with k f = 89.

Once the phase of the grid voltage fundamental component is estimated, the reference
compensation voltage can be calculated as follows:

vref
c = Vref

p sin
(
θ̂g
)
, (31)

where reference magnitude is provided by Vref
p . The design of the control signal u based on

the reference grid voltage (31) is detailed in the next section.

4. Super Twisting Sliding Mode Controller Design

In this Section, tracking error dynamics (6) and (7) will be used for the control design.
For this purpose, let us consider that the control signal is composed of u = u0 + un,
where u0 is the nominal control signal and un is the nonlinear part of the control signal.
If we consider u0 = (1/Vdc)ξ1 and un = uST/(δVdc), then the total control signal can be
written as follows.

u =
1

Vdc

(
ξ1 +

uST
δ

)
. (32)

Then, the tracking error dynamics (6) and (7) can be rewritten as follows.

dξ1

dt
= ξ2, (33)

dξ2

dt
= uST + w. (34)

Tracking error dynamics (33) and (34) can be viewed as a perturbed second-order
integrator. Numerous control techniques can be employed to stabilize the error under the
presence of perturbation w(t). In this study, we consider a second-order SMC [31,37] in
the form of super-twisting SMC [38]. In order to design the super-twisting SMC, let us
consider the following sliding surface.

σe = ξ2 + λ1ξ1, λ1 > 0. (35)

Then, the controller uST in (34) can be designed as follows:

uST = −λ1ξ2 − λ2|σe|
1
2 sgn(σe)− λ3

∫ t

0
sgn(σe(τ))dτ, (36)

where sgn(.) is the conventional signum function and the gains λ2 and λ3 are selected as
follows.

λ3 > W, λ2
2 > 4λ3. (37)

In order to analyze the stability of the controller (36), let us consider the derivative of
the sliding surface (35) together with (33), (34), and (36) as provided below.

σ̇e = −λ2|σe|
1
2 sgn(σe)− λ3

∫ t

0
sgn(σe(τ))dt + w(t). (38)
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Let us consider the following variables.

ζ1 = σe, (39)

ζ2 = −λ3

∫ t

0
sgn(σe(τ))dτ + w(t), (40)

dw
dt

= η(t). (41)

Then, the dynamics of the sliding surface (38) can be rewritten as follows.

dζ1

dt
= −λ2|σe|

1
2 sgn(σe) + ζ2, (42)

dζ2

dt
= −λ3

∫ t

0
sgn(σe(τ))dτ + η(t). (43)

Then, for the selected control gain (37), finite-time convergence of the variables ζ1 and
ζ2 can easily be established by using the results presented in Levant [37]. In order to im-
plement the super-twisting controller, (32), (35), and (36) are required. An implementation
block diagram of the super-twisting sliding-mode controller is provided in Figure 7.

Figure 7. Block diagram of super-twisting sliding-mode controller with λa = 1/Vdc and
λb = 1/(δVdc).

5. Simulation and Experimental Results

In this Section, simulation and experimental results are reported. The experimental
setup used in this study is demonstrated in Figure 8. Here, a Texas Instrument C2000
series micro-controller is used to implement the proposed control and estimation algorithm.
Parameters of the setup and control gains are provided in Table 1.

Figure 8. Experimental setup used in this study.
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Table 1. Experimental study parameters.

System and Control Parameters Values

Controller gains
PLL gain k f = 89

Grid: voltage and frequency 120 V (rms) 50 Hz
Grid: impedance Rg = 1 mΩ, Lg = 0.1 µH

Transformer turns ratio 1:1
DC link voltage, Vdc 120 V

LC filter L f = 0.8 mH, C f = 50 µF
Sensitive series load R = 100 Ω

Numerical simulation using Matlab/Simulink is conducted by considering the same values.
In the first test, the grid voltage suddenly experiences a≈30% sag. From approximately

170 V (peak), the grid voltage dropped to roughly 120 V (peak). Experimental results are
provided in Figure 9. The results show that in order to mitigate the effect of grid voltage
sag at the sensitive load side, the DVR was very quick to react and supplied the necessary
50 V in-phase compensation voltage. As a result, constant voltage was maintained at the
load side. In the second test, voltage swell was considered, and the results are provided
in Figure 10. Here, grid voltage increased to 210 V, which is roughly a 25% change from
the nominal value. Unlike the first test, here, out-of-phase compensation voltage needs
to be generated in order to reduce the voltage at the sensitive load end. As shown in
Figure 10, the proposed enhanced QT1-PLL was very successful in generating the required
roughly 40 V out-of-phase compensation voltage, and the sliding mode controller ensured
the tracking of the reference compensation voltage by the DVR. These results show that
the proposed approach can handle both sag and swell conditions. In the real grid, in
addition to voltage sag/swell, harmonics are also a problem. The presence of harmonics
will render the sensitive load voltage distorted. As a result, power quality degrades. In
order to mitigate this issue, harmonic compensation is also required. In the final test, the
grid voltage suddenly became distorted, and the results are provided in Figure 11. The
proposed PLL can extract the fundamental component with high harmonic robustness. As
a result, quick estimation of the grid harmonics was performed by PLL, and DVR injected
the necessary harmonic compensation voltage to ensure very low distortion at the load
side. The results in Figure 11 validate the suitability of the proposed PLL in a distorted
grid condition.

Figure 9. Experimental responses of vg, vc, and vL subject to voltage sag in the grid.
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Figure 10. Experimental responses of vg, vc, and vL subject to voltage swell in the grid.

Figure 11. Experimental responses of vg, vc, and vL subject to voltage harmonics in the grid.

In order to check the robustness of the used controller, we have used numerical
simulations. In the simulation test, voltage sag and harmonics are considered. The nominal
value of the filter inductor is 0.8 mH. This value is used to synthesize the control law.
Simulation results with ±25% variation in the filter inductor are provided in Figure 12.
The results in Figure 12 show that the response of DVR is very similar when the system
parameter experienced a ±25% change from the nominal value. This shows that the sliding
mode controller is robust to parameter variations.

Experimental results as shown in Figures 9–11 independently considered voltage
sag, swell, and harmonics. In practice, in addition to these characteristics, phase and/or
frequency of the grid voltage may also change simultaneously in the worst case scenario. In
order to asses the performance of the proposed method, two additional simulation studies
were considered. In the first test, grid voltage experienced −0.5 p.u. sag and −25◦ phase
change simultaneously. In the second test, in addition to the sag, the grid voltage also
experienced +25◦ phase change and +1 Hz frequency change. In both cases, the fault cleared
after 100 ms and the grid became distorted after fault clearance. Numerical simulation
results for the first and second test are provided in Figures 13 and 14. Results show that
the proposed control method is very fast (roughly 1 cycle convergence time) despite very
abrupt changes in grid voltage parameters. However, it is to be noted here that the load
voltage transients are not that smooth compared to the case when only one parameter
changed, such as in Figure 12. Smooth transient load voltage scan be obtained by either
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freezing the PLL or by using a very slow one [17]. However, this type of solution will not be
able to provide efficient harmonic compensation. As such, a trade-off between the dynamic
response and smooth transient behavior has to be made in PLL parameter selection.
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Figure 12. Simulation results for controller robustness check. (a) Grid voltage; (b) capacitor voltage;
(c) load voltage.
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Figure 13. Simulation results for combined voltage sag and phase change at the grid. (a) Grid voltage;
(b) capacitor voltage; (c) load voltage.
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Figure 14. Simulation results for combined voltage sag, frequency, and phase change at the grid.
(a) Grid voltage; (b) capacitor voltage; (c) load voltage.
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6. Conclusions

In this paper, an enhanced single-phase quasi type-1 PLL was proposed to generate
the reference compensation voltage for the multi-functional operation of a single-phase
dynamic voltage restorer. A super-twisting sliding-mode controller was also proposed to
track the reference voltage. The developed PLL is highly robust to grid voltage harmonics,
which resulted in very low total harmonic distortion at the sensitive load-side. Moreover,
thanks to a super-twisting controller, fast tracking of the compensation voltage was also
achieved. Stability analysis and tuning of the PLL are presented by using small-signal
modeling. The developed control method has been validated in a laboratory-scale pro-
totype. The experimental results show that the proposed controller is very effective in
compensating any grid voltage abnormalities, which in turn contributes to keeping the
voltage at the sensitive load-side to remain very close to the ideal reference voltage.
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35. Sevilmiş, F.; Karaca, H. A fast hybrid PLL with an adaptive all-pass filter under abnormal grid conditions. Electr. Power Syst. Res.
2020, 184, 106303. [CrossRef]

36. Ramezani, M.; Golestan, S.; Li, S. Non-frequency sensitive all-pass filter based single-phase PLLs. In Proceedings of the 2016
IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016; pp. 1–5.

37. Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924–941. [CrossRef]
38. Derafa, L.; Benallegue, A.; Fridman, L. Super twisting control algorithm for the attitude tracking of a four rotors UAV. J. Frankl.

Inst. 2012, 349, 685–699. [CrossRef]

http://dx.doi.org/10.1007/s12046-017-0653-5
http://dx.doi.org/10.1109/TPEL.2004.826504
http://dx.doi.org/10.1109/TII.2016.2587769
http://dx.doi.org/10.1007/s00202-017-0666-4
http://dx.doi.org/10.1049/iet-pel.2013.0924
http://dx.doi.org/10.1109/TEC.2021.3061027
http://dx.doi.org/10.1109/TPEL.2014.2329917
http://dx.doi.org/10.1109/TEC.2021.3130492
http://dx.doi.org/10.1109/TPEL.2021.3074986
http://dx.doi.org/10.1109/JESTPE.2021.3085124
http://dx.doi.org/10.1109/TIM.2020.2982232
http://dx.doi.org/10.1109/TPEL.2017.2653861
http://dx.doi.org/10.1016/j.isatra.2019.05.001
http://dx.doi.org/10.1109/TPEL.2006.890002
http://dx.doi.org/10.1109/MIE.2020.2986165
http://dx.doi.org/10.1109/TIE.2020.3038089
http://dx.doi.org/10.1109/TIE.2018.2868303
http://dx.doi.org/10.11591/ijpeds.v12.i1.pp121-129
http://dx.doi.org/10.1016/j.epsr.2020.106303
http://dx.doi.org/10.1080/0020717031000099029
http://dx.doi.org/10.1016/j.jfranklin.2011.10.011

	Introduction
	DVR Modeling and Problem Formulation
	Reference Signal Generator
	DC Offset Rejection
	Tuning-Free Fixed-Frequency Orthogonal Signal Generator
	Implementation in PLL
	Small-Signal Modeling and Tuning

	Super Twisting Sliding Mode Controller Design
	Simulation and Experimental Results
	Conclusions
	References

