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Abstract: With the advancement of the technological field, day by day, people from around the world
are having easier access to internet abled devices, and as a result, video data is growing rapidly. The
increase of portable devices such as various action cameras, mobile cameras, motion cameras, etc., can
also be considered for the faster growth of video data. Data from these multiple sources need more
maintenance to process for various usages according to the needs. By considering these enormous
amounts of video data, it cannot be navigated fully by the end-users. Throughout recent times, many
research works have been done to generate descriptions from the images or visual scene recordings
to address the mentioned issue. This description generation, also known as video captioning, is
more complex than single image captioning. Various advanced neural networks have been used in
various studies to perform video captioning. In this paper, we propose an attention-based Bi-LSTM
and sequential LSTM (Att-BiL-SL) encoder-decoder model for describing the video in textual format.
The model consists of two-layer attention-based bi-LSTM and one-layer sequential LSTM for video
captioning. The model also extracts the universal and native temporal features from the video frames
for smooth sentence generation from optical frames. This paper includes the word embedding with a
soft attention mechanism and a beam search optimization algorithm to generate qualitative results. It
is found that the architecture proposed in this paper performs better than various existing state of the
art models.

Keywords: video captioning; Bi-directional long short-term memory; attention-mechanism; video to
text; video description generation

1. Introduction

Throughout recent years, people are having easier access to a massive proportion
of visual data in various online platforms, which usually contain the following—sound,
visual scene, and sometimes textual data. The advancement of hand-held contraptions and
client devices prepared for obtaining chronicles has been colossal. Moreover, the amount
of recording videos is increasing in online platforms that are in different forms. A report
showed that web traffic recordings might increment to 82% in 2021, which announced 73%
of total traffic in 2016 (e.g., Netflix and YouTube) [1]. These integrated multiple-sourced
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pieces of information require more analytic processing powers and also require a huge
amount of storage space. By bearing in mind these gigantic measures of video information,
the end-users cannot explore required data in an efficient manner. A succinct, video
synopsis featuring the essential pieces of the video will help in the ordering and quicker
recovery of the required information. It will likewise be valuable in the route, notice, and
information investigation throughout a large video.

Researchers are very keen to find various techniques to find solutions that can ad-
dress the effective access of the video data. They performed various video summarization
techniques such as visual frame reductions [2–7] and described the video in a textual
formation [8–35]. Frame reduction by applying deep learning approaches is a method to
discard the video’s useless or low attention frames. That process reduces the run-time of a
video and saves some storage space. The textual-based summarization of visual recordings
is much more efficient than frame reduction techniques. Nowadays, visual and textual data
are integrated. Researchers performed a crucial work for developing such deep learning
methods to describe a video in the textual form [11–13]. Video summarization in textual
formation is addressed to the problem of producing textual data from visual contents.
Visual textual formation is one of the successors of image captioning [36–42]. In past explo-
ration, the researchers utilized different Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and so on for generating image and video descriptions [10–20].
The outcomes from the past researchers demonstrated promising results in their works.
Semantic measurements from visual substance comprehension through different deep
learning techniques improved by the researchers have demonstrated the productivity and
the effectiveness of video captioning.

The encoder-decoder model is one of the utmost communal techniques for the tex-
tual description generation from the video. Usually, an encoder consists of CNN, where
CNN remains extracting features from the video frames, and a decoder, with the RNN
model responsible for the sentence generation. However, with the rapid advancements of
various neural network, researchers have now incorporated RNN features in the encoder
stage [10,11,13–17]. They also found promising results from their RNN based LSTM frame-
works. The LSTM is suggested to exhaust the evaporating angles issue by empowering the
network to realize when to overlook past hidden positions and refresh hidden positions
by incorporating memory cells. Therefore, we proposed a method called “attention-based
bidirectional LSTM and sequential LSTM” (Att-BiL-SL) encoder-decoder model for de-
scribing the video in textual format. While most of the existing models work with single
layered bi-LSTM, LSTM, or GRU approaches, the model of this study consists of two layers
of attention-based bi-LSTM and one layer of sequential LSTM for video captioning. The
model also extracts the universal and native temporal features from the video frames for
smooth sentence generation that was absent in some previous models. With the mentioned
two-layered attention-based bi-LSTM and one-layered sequential LSTM for extraction uni-
versal and native features, this study also includes word embedding with a soft attention
mechanism in the encoder section to generate qualitative results. Through rigorous analysis,
it is found that the model of this research work has outperformed various existing models.

The residue of this paper is organized as follows. We review the previous video
description generation methods and try to find the limitations of those models in Section 2.
The proposed framework is illustrated in Section 3, accompanied by the overall process.
In Section 4, we discuss the experimental procedure along with implementation details.
In Section 5, the proposed model is compared with previous baseline models. Moreover,
this section reveals the results of our model, which overtakes the various previous model.
In Section 6, we discuss the quantitative analysis and limitations of our proposed method.
Lastly, Section 7 accomplishes the paper by deliberating the model results and the possibility
of future work.
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2. Related Work
2.1. Template Matching

Early video textual formation strategies [43,44] generally utilized predefined formats
to produce video portrayals. The conceivable semantics with visual classifiers were first
identified here and were subsequently fed in the required formats into the model. It is
instinctive that the consequences of format put-together strategies are exceptionally reliant
concerning the predefined formats’ nature. The past work was the predefined punctuation
rules sent in a layout-based strategy comprised of the subject, verb, and object represented
as <SVO> design [45–58]. This technique can create literary development from a video in
syntax-based principles and that is simple to actualize. In any case, it neglects to perceive
accurate highlights, activities, and targets through a whole video. There are some lost,
misidentified, and wrong information eliminated after the video. This strategy relies
upon video substance, and yield collection suffered because of the surmised limitation.
Additionally, those strategies are an earlier procedure to caption a video.

2.2. End-to-End Model

In the latest years, analysts are centered on different deep learning ways to deal with
video captioning. End-to-end encoder and decoder approaches are likewise becoming well
known for their promising outcomes [9–11,13]. In this model, the encoder encoded the
component vectors from the basic structures through a neural network. In addition, the
decoder comprised of a repetitive neural network interprets the highlights and produces
sentences. LSTM is a distinct type of RNN with the ability of disappearing gradient
problems. To understand the temporal dynamics of skeletal sequences, several LSTM-based
models were applied previously. An attention-based spatial-temporal graph convolutional
LSTM network was proposed by [59] for recognizing the karate action from the videos.
Using the benefits of the Delaunay technique, the authors found effective spatiotemporal
structure information of actions in karate and improved the feature extraction by applying
the attention-enhanced graph convolutional LSTM networks. They also constructed a
small and researchable dataset for karate action and tactics recognition. Not only are
LSTM-based approaches utilized in image recognition systems, but they may also be used
to identify and solve a wide variety of problems. For example, they are employed in
time-series forecasting [60], energy consumption forecasting [61], and metallic gear life
span prediction [62].

Although an RNN is comprised of LSTM or GRU for generating video descriptions,
those models likewise presented a consideration instrument for taking a gander at the
semantic area in a video outline, as far as producing printed depictions [15,17,20]. In those
models, CNN alludes to the semantic areas of the edges, and RNN fuses the following
indispensable words to deliver sentences. Those models were exceptionally prepared
to utilize the different CNN and RNN models. Gao et al. [15] presented consideration
systems with LSTM [52] to distinguish notable developments of the visual scene, and
the technique created sentences with unexpected semantic substances. They considered
the 2D and 3D CNN portrayal and an LSTM decoder to create a particular word and
subsequently utilized the multimodal word-embedding framework to produce the video
depiction semantically. In any case, the issue with this model is that the model can only
deliver a single line sentence from the visual substance, and different ongoing models are
producing the best outcomes rather than this captioning model. The Bi-LSTM [16] was
likewise utilized for video captioning. Visual information was encoded with a forward and
reverse pass extracted from the VGG-16 CNN [42] architecture and merged the sentences
in a sequential model. The technique can create each word recurrently in every period. The
model presented just single-layer Bi-LSTM and solely integrated global temporal features.

Video Response Map (VRM) with medium-level attention to generate video descrip-
tions was proposed in [8]. Authors utilized the VGG-16 [42] pre-trained on ImageNet [57]
for separating the video features and went with the highlights through twofold LSTM to
create descriptions. The shaded video frames were taken into consideration, the model



Appl. Sci. 2022, 12, 317 4 of 19

was compared among the past cutting-edge models, and it resulted in promising outcomes.
Sah et al. [30] proposed a semantic content synopsis of long recordings. The highlights from
the visual substance were successively removed and later passed through a decoder to
deliver textual depictions. Moreover, the long captions subsequently went through another
RNN to deliver the Neural Language Generation (NLG) based textual summarization.
Another decent model proposed by Xu et al. [12] enhanced the audiovisual captioning
superiority by joining semantic concepts with audio amplifier features. A video descriptive
model, combining spatial and temporal analysis, was proposed by Danny et al. [18] that
can take care of different areas in given regions, dependent on what was shown in the
past regions. A technique to generate numerous sentences from the visual data has been
proposed by Song et al. [14]. The strategy expanded the RNN model by past and exact
next dissemination with a non-linear layer. This technique can deal with vulnerability by
applying a hidden state. The model additionally neglected to catch the high-level temporal
structure of the visual frames.

Another approach can be found, which is a double-stream RNN for a video description
in a textual formation [19]. The method focused on the hidden state of both visual and
semantic streams to produce meaningful sentences from the visual contents. The structure
incorporated a semantic component extraction strategy and twisted it with word embed-
ding. At that point, the visual and semantic stream together produced an important textual
description from a visual scene. Another approach that included adaptive attention and
mixed loss optimization for performing video captioning was presented by Xiao et al. [21].
The technique included a reinforced adaptive attention mechanism. The procedure was
likewise prepared in the word-level loss and sentence-level loss model. The strategy addi-
tionally tackled the biased issue of those sorts of losses. A stateful human-centered visual
captioning system that can extract facial and visual features from the visual contents and
pass through a two-layer LSTM with an attention mechanism to produce efficient video
caption in which the model was able to extract human actions and objects [22].

An interesting method was proposed using a refocused video encoder [23]. The method
with refocused RNN with spatial-visual features was introduced for better video captioning.
The refocused video encoder looked up two times with predicted key features to avoid
unwanted temporal information. The spatial information from the different regions was
passed through a decoder with detailed features. A semantic enhanced encoder-decoder
network method with LSTM was used by researchers in [24]. The method presented extracts
motion features, appearance features, and global features for video description generations.
The method also introduced reinforcement learning, which can ensure a better quality of
sentence generation in previous research.

The structure presented in [25], incorporates an action module and motion module for
sports video captioning, which is ready to perceive human-related activities with objects
during sports. The structure also introduced a pose attribute detection module and a
description generation module, the entire system, followed by an attention mechanism.
The content branch and the semantic branch encoder were introduced by Liu et al. [26].
The method illustrated a very promising result in terms of two different datasets. The RNN
based decoder with soft attention produces the semantic sentence for visual inputs. A model
that can produce better captioning due to maintaining the sentences’ semantic attention is
presented by Xiao et al. [27]. The model introduced two independent attention mechanisms
to point the soft attention through visual features and attributes another attention focused
on visual signals and text documentation. The framework proposed in [28] introduced an
extended version of the encoder-decoder system to overcome the manual selection process.
A modal attention network can dynamically point out the important features from the
video frames and generate a sentence. Chen et al. [29] proposed a video to text summary
method, which also generated the textual caption of videos, and then they again summarize
the generated sentences to produce a short description of visual content. Those methods
are the footprint of various visual summarization methods.
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A joint model to generate video descriptions and produce abstractive summarization
from those visual portrayals that can deliver visual captioning and summarization is
depicted in [31]. It is one of the cutting edge and productive habits of textual summarization
from visual content. Authors in [32] presented a semantic and temporal attention-based
technique for a video description in textual formation. The model can expressly join
with the high-level visual idea to create temporal attention and included an encoder to
extricate the highlights from a visual substance and decoder for the sentence generation.
A scene-edge GRU strategy for video descriptions was presented by Hao et al. [33]. The
technique presented another encoding framework that can experience the skeleton of a
video outline, and the GRU can be ready to search for suspending video frames, which can
be prepared with no prior annotation information. The method also outperformed in terms
of S2VT models. “Spatio-temporal ranked attention network” for the video description
generation in textual format has been performed by Cherian et al. [34]. The two-way
strategy was utilized such as spatio-temporal and temporal-spatio. The model is comprised
of LSTM based temporal ranking capacity that can powerfully catch activities from the
visual frames. The setting outperformed in various datasets and broke the previous top-tier
benchmark records.

It can be observed that most of the related models incorporate single layered bi-LSTM,
LSTM, or GRU strategies to generate video captions. However, the novelty of this research
work is that it proposes a two-layer attention-based bi-directional LSTM as an encoder and
a dedicated single layer forward pass LSTM as a decoder for generating video description
semantically. While different CNN models of other studies mine the video structures’
features to suckle into the encoder and decoder model for the enriched video description
generation, our video depiction model, in contrast with the others, is fit for extricating
different high-level features. This study also includes an efficient word embedding with a
soft attention mechanism in the encoder section to generate qualitative results. We have
positioned towards better extricating visual data from the frames, which is revealed in
the outcomes. As far as multifaceted computational nature, the proposed model is very
reasonable for predicting inconspicuous information.

3. Proposed Methodology

The proposed framework of our video captioning is demonstrated in Figure 1. Our
framework includes input video, feature extraction module, encoder module, decoder
module, and a sentence generation portion. The method is sequential, and the outcome of
the model comprises sentences. This section has discussed the inclusive framework of our
model for text generation from visual frames.

3.1. Feature Extraction

To appreciate the visual substance in a video, an elevated level component preparing
stage is imperative for separating film attributes. These characteristics are discovered using
CNN on various gages that are steady to helper varieties. The previous studies [42], [57]
discussed different pre-trained neural networks utilized to catch the highlights through the
video frames.

The video is the input of our proposed model, and the video is differentiated into
a sequence of visual frames. Every frame is fed into CNN for extracting the features.
We have implemented 2D CNN for 2D feature extraction. The 2D CNNs recognize the
segmentation map for a solo frame using 2D convolutional kernels. Predictions for segmen-
tation maps for a complete volume are made by one frame at a time. To create predictions,
the 2D convolutional kernels can use context throughout the frame’s height as well as
width (256 × 256). We have used the pre-trained models VGG-16 [42], InceptionV3 [47],
and Xception [48] for mining the 2D features from each visual frame. All those models
pre-trained on ImageNet [57] dataset contain approximately 1.2 million images of over
1000 classes. The VGG-16 [42] model consists of 16 layers; the first 13 layers are convolu-
tional layers, and then the three dense layers are for classifying images. The InceptionV3
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model consists of 48 layers, and the extended Inception or Xception contains 71 layers.
For transfer learning, the last fully connected layer is removed from the model. The 2D
CNN models are chosen for reducing the training time for the large MSVD [41] and MST-
VTT [35] dataset. Inspired by [11], for the extraction of action features, we have used an
Inflated 3D network (I3D) [50] pre-trained in kinetics dataset. The 3D CNNs predict the
segmentation maps for the adjacent frames using 3D convolutional kernels. The prediction
of the 3D convolutional kernels can use the 2D convolutional kernels incorporated with an
additional dimension (256 × 256 × 8). Another factor of 3D CNN is to consider the training
pace. It consumes more time and requires expensive equipment. Therefore, we have used
UCF-101 [49], a small dataset for motion feature extraction, and used Faster R-CNN [51]
for facial recognition in some cases. At that time, the features are concatenated and fed into
an attention-based bi-LSTM encoder.
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Figure 1. A comprehensive framework of our proposed video description generation model. Here,
(1) the input of the model is video. (2) 2D and I3D CNN are used for feature extraction from
the input visual frames. (3) The model contains attention-based bi-directional LSTM as an encoder.
(4) A forward pass LSTM is used for sequential sentence generation. (5) Lastly, the sentence generation
module is used for captioning the video.

3.2. Encoder-Decoder with Bi-LSTM and Sequential LSTM

LSTM [52] is a distinct version from RNN. LSTMs are expressly intended to keep away
from the long-term dependency issue. LSTM consists of several gates, such as the input
gate, forget gate, output gate, and a constant memory cell. The LSTM based sequential
model is followed by those equations where it, ft, and ot represent the input gate, forget
gate, and output gate, respectively, in Equations (1)–(3).

it = σ (Wi [ht−1, xt] + bi) (1)

ft = σ
(

W f [ht−1, xt] + b f

)
(2)

ot = σ (Wo [ht−1, xt] + bo) (3)

gt = tanh
(
Wg [ht−1, xt] + bg

)
(4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh (ct) (6)
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If the input sequence (x1, . . . , xt), is given to the LSTM, it computes the hidden
control unit (h1, . . . , ht), the cell memory sequence (c1, . . . , ct), and b denotes the bias
vector. Here, � represents the element-wise multiplication, and tanh is the non-linear
hyperbolic function.

However, the sequential model of LSTM only focuses on present sequences in the
temporal order. In our proposed model, we have used bi-LSTM [53] as an encoder, which
not only considers the present state but also considers the future state. It improves the
standard LSTM network by including another layer. The two layers are opposite in direction
and can predict information both from the previous and the forthcoming by applying
forward and backward pass. Here, Figure 2 illustrates the traditional LSTM [52] and
bi-LSTM [53], and Equation (7) is the equation of bi-LSTM.

hi =

[→
hi ⊕

←
hi

]
(7)
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Here, ⊕ represents the element-wise summation to chain the onward and backward
pass LSTM.
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The decoder consists of the sequential LSTM [52], which takes input from the encoder.
The output yt and hidden state ht update based on its earlier position yt−1 and ht−1 based
on time step t. If the encoder embedding represents V as a context vector, then the decoder’s
equation as Equation (8). [

yt
ht

]
= Dec (ht−1, yt−1, V) (8)

We propose an attention-based bi-LSTM [53] as an encoder in our framework. In the
next subsection, we have discussed the attention mechanism of our encoder system.

3.3. Attention Mechanism

Nowadays, attention-based neural networks have shown tremendous achievement
in query answering, machine paraphrases, speech acknowledgment, and image/video
description generation. Various attention mechanisms have been proposed previously;
among them, we have considered the soft attention model inspired by [25] to obtain a
dynamic weighted sum of the extracted features from the video frames. Instead of utilizing
a frame as an input to the LSTM, we used weighted image characteristics that compensated
for attention in soft attention. By multiplying the related segmentation map with a low
weight, soft attention discredits unimportant parts of the frame. Therefore, high attention
zones retain their original worth, whereas low attention areas approach zero. As a result,
the LSTM can generate more accurate predictions.

If we consider that the feature vector F consists of (F1, . . . , Fn) features, we can denote
Fi as Fi ∈ (F1, . . . , Fn) and the importance score st

i =
(
st

1, . . . , st
n
)T .

st
i = Ws tanh

(
W f Fi + Whht−1 + bs

)
(9)

αt
i =

exp
(
st

i
)

∑n
i=1 exp

(
st

i
) (10)

F′t =
n

∑
i=1

αt
i Fi (11)

Here, Ws, W f , and Wh are the weight vectors for training and the bias vector bs.
However, αt

i is the attention at time t. The previous state of the hidden stage (ht−1) and
the i-th features of the video frames proceed the standardized weight score st

i . Then, the
features of the visual frames feed into the bi-LSTM encoder at time t. Finally, the weighted
sum of the frame features is calculated through Equation (11). Figure 3 illustrates the
bi-LSTM [53] with an attention mechanism for generating meaningful sentences from the
visual frame.

3.4. Sentence Generation

The main purpose of the proposed model is to produce sentences from visual input.
Previous video description generation approaches generally share a regular visual model
and language model, which may prompt extreme information loss. Moreover, most of the
time, they neglect the temporal structure of sentences. For that reason, the result of the
generated sentence may not be accurate due to duplicating the input. So, we generated
sentences from a sequential LSTM model [52] by binding with visual representation and we
generated the word recurrently at every time. So, for generating the sentence, we produced
the words recurrently for the i-th sentence formulated as Equation (12).

Prob(dn
t
∣∣s1:i−1, dn

t−1, Ft; θ) (12)

where Ft is the feature vector, dt−1 denotes the last words in the i-th sentence, s1:i−1 de-
notes prior sentences, and θ denotes all the parameters for generating the sentence. The
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cost function of the generating sentence is a negative logarithm and is formulated as
Equation (13).

Losssen = −
N

∑
t=1

log(Prob(dn
t |s1:n−1, dn

t−1, Ft; θ)) (13)

Here, N means all the words in a sentence. By reducing the “Losssen”, the circumstan-
tial connection amongst the words in the sentence can be generated clear and even. Inspired
by [16], from Equation (13) for our model, we can obtain optimal θ by the Equation (14).

θ∗ = argmax
N

∑
t=1

log(Prob(dn
t |s1:n−1, dn

t−1, Ft; θ)) (14)

Here, the θ∗ updates θ by the optimizer in the whole training process. Backpropagation
is used for the loss, and the individual LSTM part figures out how to determine a hidden
state ht from the input arrangement. At that point, we execute the So f tmax capacity to
acquire the possibility of apportionment over the words in the entire vocabulary.
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For sentence generation, we used the starting token as <start> to start the sentence
and the ending token <end> to stop the sentence, as illustrated in Figure 1. In the next
section, we have discussed our model’s experimental procedure and analyzed the result
produced by our model.

4. Experiment

This section describes the various datasets, evaluation metrics, implementation details,
experimental results, and previous methods of our proposed method in detail.

4.1. Datasets

The proposed model has been evaluated on the most popular two datasets, Microsoft
Research Video Description (MSVD) [41] and Microsoft Research Video to Text (MSR-
VTT) [35].

(i) MSVD [41]: The dataset encloses 1970 YouTube video cuts. The dataset holds approx-
imately 80 k sentences with a vocabulary size of 13,010. The absolute term of this
dataset is about 5.3 h. The dataset was split into 1200 recordings for training clips,
100 recordings for validation clips, and the rest for testing.
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(ii) MSR-VTT [35]: The dataset is one of the large video datasets, comprises 10 k video
cuts alongside an all-out season of 41.2 h. It has 20 unique classes similar to sports,
music, gaming, and so forth—the typical length of those clips is around 20 s with a
colossal vocabulary of 29,316. The dataset has 6513 training clips, 2990 validation
clips, and 497 testing clips.

4.2. Evaluation Metrics

Such as conventional machine interpretation, the produced expressive sentences for
the correlative video can be estimated by looking at many reference sentences [46]. As
of late, some regular measurements in machine interpretation likewise are utilized for
assessing visual subtitling, i.e., Bi-Lingual Evaluation Understudy (BLEU) [37], Metric for
Evaluation of Translation with Explicit Ordering (METEOR) [38], Consensus-Based Image
Description Evaluation (CIDEr) [39], and Recall Oriented Understudy of Gisting Evaluation
(ROUGE) [40].

(i) BLEU [37]: It is one of the most notable measurements for assessing machine-produced
sentences. It can be ready to figure out the correspondence between machine-created
sentences and ground truth sentences. This measurement can give the best outcome
regarding short sentences. The metrics BLEU (N = 1, 2, 3, 4) typically evaluate N-gram
matches’ precision in a sentence.

(ii) METEOR [38]: It is one of the most utilized measurements for valuation machine-
produced sentences. It has unigram-based accuracy and review rates. It has the
highlights of equivalent coordinating, stemming, and definite word coordinating. The
metrics are more robust than other metrics in terms of the human verdict.

(iii) CIDEr [39]: This measurement is primarily utilized for image subtitling. Video is only
a picture containing different ceaseless pictures. It can be ready for an agreement
between machine-created sentences and human-explained sentences.

(iv) ROUGE [40]: ROUGE is another measurement for valuation. It has highlights of n-
gram events. It has four distinct kinds of measurements, where ROUGE-L is generally
utilized for visual inscription assessment.

4.3. Implementation Details

(i) Hardware setup: The experiments have been performed on our local personal com-
puter, which contains an AMD Ryzen 3600x, 6-Core processor (3.80 GHz–4.4 GHz)
with 16 GB of DDR4 RAM (3200 MHz). For faster computation, a single Nvidia RTX
3070 GPU (5888 CUDA-Cores) with 8 GB of video memory was also used.

(ii) Preprocessing: For video preprocessing and 2D global temporal feature extraction,
the model was tested similarly by dividing 25 frames for every video. A VGG-16
model [42] pre-trained on the ImageNet dataset [57] was used for separating visual
appearance highlights. We resized the frames to 224 × 224 resolution. The VGG-16
model selected an arrangement of 4096-dimensional element vectors delivered by the
completely associated with the fully connected fc7 layer. For the InceptionV3 [47] and
Xception [48], the pre-trained model, we resized the frames to 299 × 299 resolution.
Moreover, to extract the motion, we used an Inflated 3D network (I3D) pre-trained in
kinetics [50] dataset. Then, the classifier layer was tweaked from all the models. The
model was very efficient for action identification. We used faster R-CNN [51] for local
features such as face detection. In addition, for the sentence portion, we have used
word tokenizer NLTK [54] based tool and set the vocabulary of every dataset in the
lower-case and removed the punctuations from the sentence. The total vocabulary
size of the two datasets is approximately 42 k.

(iii) Experimental Setup: We have proposed an attention-based bidirectional-LSTM model [53]
for video captioning. The model can predict both the past and future words and
combine them to generate a meaningful sentence. Both forward and in reverse data
can be handled to catch relevant data. The attention-based two-layered LSTM [53] has
512 hidden nodes in each layer. The visual substance is separated from the various
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proposed CNN models [42,47,48] and the primary layer, along with an attention
mechanism to feed the decoder. Moreover, the decoder with sequential LSTM [42] and
the attention layer also consists of 512 hidden nodes in each layer. The regularization
dropout layer is used in our proposed model. We set the dropout 0.5 at both the
encoder and decoder levels. We used the ADAM optimizer to generate the loss
function. We defined the starting learning rate 10−5 to neglect the gradient burst. In
addition, we included a beam search algorithm with size 5 to produce the textual
description. Then, we trained our model with a batch size of 64.

In the training stage, to manage sentences with fluctuating spans, we included the
<start> and <end> tags to begin and end the sentence. Inspired by [15], we trained our
model over 500 epochs and monitor the valuation metrics. If the valuation metrics did not
progress in the validation set, we stopped the training in 25 epochs. Lastly, we used the
Tensorflow [55] and Keras [56] libraries to implement our model.

5. Experimental Results and Comparison

For our Att-BiL-SL model, we considered the most popular freely available MSVD [41]
and MSR-VTT [35] datasets and evaluated the generated captions with automatic machine
translator evaluation metrics. BLEU [37], METEOR [38], ROUGE-L [40], and CIDEr [39]
are very communal assessment measurements on image and video depictions. The fore-
most three were primarily planned to assess machine interpretation at the soonest, and
CIDEr was proposed to assess the image portrayal with adequate reference sentences. The
METEOR could catch the semantic viewpoint since it recognizes all potential matches by
extricating precise matches, stem matches, reword matches, and equivalent matches by
utilizing the WordNet database and computing sentence level likeness scores per match-
ing loads. To quantitatively assess the presentation of our methodology, we received all
the metrics in light of their powerful execution. Here, Table 1 reports the performance
measurements of our proposed model.

Table 1. The performance evaluation of our model in MSVD and MSR-VTT datasets. Here, the V,
IV3, X, and I3D denote the VGG-16 net, InceptionV3 net, Xception net, and Inflated 3D network,
respectively. Text with bold marks denote the best results in evaluation metrics (percentile score).

Model
MSVD MSR-VTT

B-4 M C R-L B-4 M C R-L

Att-BiL-SL (V + I3D) 48.3 32.5 85.3 68.8 39.0 27.8 46.2 57.8
Att-BiL-SL (IV3 + I3D) 49.1 33.2 86.4 70.3 40.8 28.3 48.0 59.8
Att-BiL-SL (X + I3D) 51.2 35.7 86.9 72.1 41.2 28.7 49.3 60.4

Table 1 shows the various scores that we evaluated by applying various evaluation
metrics. The evaluation metrics are BLUE@4 (B-4), METEOR (M), CIDEr, and ROGUE-L
(R-L). The proposed model considered the two most popular datasets, such as MSVD and
MSR-VTT, that are publicly available. According to the MSVD dataset, the model with
Xception + Inflated 3D scored 51.2% in B-4, 35.7% in M, 86.9% in C, and 72.1% in R-L,
which is the best possible result of our entire proposed model. In the MSR-VTT dataset, our
model with Xception + Inflated 3D scored 41.2% in B-4, 28.7% in M, 49.3% in C, and 60.4%
in R-L. We found the best results from the Xception + Inflated 3D attention-based Bi-LSTM
and Sequential LSTM CNN model in both datasets. The pictorial view of the outcomes of
our proposed method is illustrated in Figures 4 and 5.

Our proposed model shows promising results in all automatic machine translator
evaluation metrics. The model trained in three different CNN models for feature extraction
and all of them performed very significantly. All the CNN models passed through the
same attention-based Bi-LSTM and Sequential LSTM (Att-BiL-SL) encoder-decoder model.
Our Att-BiL-SL with VGG net [42] beat many previous baseline methods in two popular
datasets. The InceptionV3 net [47] also outperformed in most cases, but the Xception net
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model [48] beat most of the previous video captioning models. Here, Figure 4 illustrates
the qualitative sentence generation of our Att-BiL-SL method. We compared the qualitative
results with the human-annotated ground truth sentences. Although our model generated
some relevant but incorrect sentences in some cases, the method has shown the incorrect
sentence generations. Figure 5 illustrates the relevant but incorrect and incorrect sentence
generations of our method compared with ground truth sentences.
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incorrect sentence generation of our model. The generated sentences are also compared with ground
truth sentences.

5.1. Quantitative Performance Comparison with Baseline Methods

This subsection discusses our method’s performance and relates the result with previ-
ous baseline methods (compared with the best score). Tables 2 and 3 report the judgment
between our method and previous baseline methods. We have chosen these baseline mod-
els because all of them use the same dataset and evaluation metrics for generating video
captions. Here B-4, M, C, and R-L mean BLEU@4 [37], METEOR [38], CIDEr [39], and
ROGUE-L [40] metrics individually.
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Table 2. Evaluation results of our method and previous methods for the video description generation
on MSVD dataset. Here, “-” indicates the metric is not considered. All the numerical terms are in
percentile format. Texts with bold marks are the best scores.

Methods B-4 M C R-L

HATT [9] 52.9 33.8 73.8 -
ICA-LSTM [10] 51.3 35.1 82.9 -

SF-SSAG-LSTM [12] 51.2 35.4 74.9 -
LSTM-GAN [13] 42.9 30.4 - -
DenseLSTM [17] 50.4 32.9 72.6 -
CAM-RNN [20] 42.4 33.4 54.3 69.4

VRE [23] 51.7 34.3 86.7 71.9
MR-HRNN [25] 50.5 32.7 69.6 -
STA-FG-RC [32] 52.7 34.5 - -

Ours [Att-BiL-SL (V + I3D)] 48.3 32.5 85.3 68.8
Ours [Att-BiL-SL (IV3 + I3D)] 49.1 33.2 86.4 70.3
Ours [Att-BiL-SL (X + I3D)] 51.2 35.7 86.9 72.1

Table 3. Evaluation results of our method and previous methods for the video description generation
on the MSR-VTT dataset. Here, “-” indicates the metric is not considered. All the numerical terms are
in percentile format. Texts with bold marks are the best scores.

Methods B-4 M C R-L

HATT [9] 41.2 28.5 44.7 60.7
ICA-LSTM [10] 41.2 27.7 43.9 -

SF-SSAG-LSTM [12] 40.8 28.7 46.8 61.5
LSTM-GAN [13] 36.0 26.1 - -
DenseLSTM [17] 38.1 26.6 42.8 -
CAM-RNN [20] 37.7 27.9 38.8 58.8

VRE [23] 43.2 28.0 48.3 62.0
MR-HRNN [25] 36.2 25.6 33.5 -
STA-FG-RC [32] 40.8 27.4 - -

Ours [Att-BiL-SL (V + I3D)] 39.0 27.8 46.2 57.8
Ours [Att-BiL-SL (IV3 + I3D)] 40.8 28.3 48.0 59.8
Ours [Att-BiL-SL (X + I3D)] 41.2 28.7 49.3 60.4

(i) HATT [9]: The method introduced a two-level LSTM branch as a hierarchical order
and dealt with low and high-level attention. The method semantically enriched for its
fused multiple modalities for caption generation, but the period of feature extraction
was very extraordinary. The method also considered the two public datasets to
measure the performance. However, the model scored 52.9% in B-4 metrics. Our
model, Att-BiL-SL (compared with the best score), attained a better result than HATT,
with 1.9% and 13.1% increases on M and C, respectively, on the MSVD dataset. In
terms of the MSR-VTT dataset, our model increased the performance by 0.2% and
13.1% in M and C metrics, respectively.

(ii) ICA-LSTM [10]: The model consisted of multiple LSTM [52] for video captioning
and used dual-stage loss functionality. The method was also trained in various CNN
models. Our model again accomplished a better outcome than ICA-LSTM, with 0.6%
and 4% upsurges on M and C in the MSVD dataset. However, our model increased by
1% and 4% on M and C in the MSR-VTT dataset.

(iii) SF-SSAG-LSTM [12]: The method introduced augmented audio features and semantic
filtration. The model generated a single-line video caption. The performance of our
method upsurged 0.3% and 12% on M and C metrics in the MSVD dataset and 0.4%
and 2.5% on M and C in the MSR-VTT dataset.

(iv) LSTM-GAN [13]: The model introduced a generative adversarial network and atten-
tion mechanism for video captioning. Compared to this model, our method performed
better than LSTM-GAN, with performance gains of 8.3% and 5.3% on B-4 and M met-
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rics in the MSVD dataset. However, the performance increased by 5.2% and 2.6% in
the MSR-VTT dataset.

(v) DenseLSTM [17]: Attention-based dense LSTM was considered for video captioning.
The model had a backward cell connected with a forward cell. The exhibition of this
model did not beat our proposed model. Our model increased by 0.8%, 2.8%, and
14.3% in B-4, M, and R-L measurements on the MSVD dataset. Likewise, it increased
3.1%, 2.1%, and 6.5% on the MSR-VTT dataset.

(vi) CAM-RNN [20]: CAM encoded the visual and literary highlights, and RNN kept up
the decoder state to create video captioning. Our model, Att-BiL-SL (contrasted and
the best score), achieved a better outcome than CAM-RNN, with 8.8%, 2.3%, 32.6%,
and 2.7% increments in B-4, M, C, and R-L, separately (MSVD). Our model built the
exhibition with 6.5%, 0.8%, 10.5%, and 1.6% on B-4, M, C, and R-L measurements
(MSR-VTT), separately.

(vii) VRE [23]: The proposed method with refocused RNN with spatial-visual features
was introduced for better video captioning. The method outperformed on B-4 and
R-L metrics with 43.2% and 62.0% in the MSR-VTT dataset. Contrasted with this
model, our strategy performed better than VRE, with execution increases of 1.4%,
0.2%, and 0.2% on M, C, and R-L measurements in the MSVD dataset. Nonetheless,
the presentation incremented by 0.7%, and 1%, on M and C in the MSR-VTT dataset.

(viii) MR-HRNN [25]: The proposed structure ready to perceive human-related activities
with objects during sports. The structure also introduced a pose attribute detection
module and a description generation module. In the MSVD dataset, our model
expanded the exhibition by 0.7%, 3%, and 17.3% on B-4, M, and C measurements. In
the MSR-VTT dataset, the exhibition expanded by 5%, 3.1%, and 15.8% on B-4, M, and
C, individually.

(ix) STA-FG-RC [32]: The method with semantic, temporal attention for a video descrip-
tion in textual formation. The model can expressly join with the high-level visual
idea to create temporal attention. Our method performed better than STA-FG-RC,
with performance gains of 1.2% on M metrics in the MSVD dataset. However, the
performance increased by 0.4% and 1.3% in the MSR-VTT dataset.

Our model, Att-BiL-SL (X + I3D), scored 51.2%, 35.7%, 86.9%, and 72.1% on B-4, M,
C, and R-L, respectively, in the MSVD dataset. Moreover, the model scored 41.2%, 28.7%,
49.3%, and 60.4% in the MSR-VTT dataset.

6. Quantitative Analysis and Discussion

Throughout recent times, numerous research and techniques for generating video
captions have been conducted and proposed. It can be said by analyzing previous research
and their frameworks that some of these methods still have a gap in algorithmic level and
deployment. In Section 5.1, the improvements of our model were shown and those were
compared to ground truth human annotation sentences in different evaluation metrics.
Unfortunately, there is no assurance that higher metrics scores will result in better-generated
captions. Furthermore, the comparison with existing baseline studies in Tables 2 and 3
do not directly reflect the perfections of the created video captions of our model. Hence,
we illustrated our qualitative sentence generation outcomes as shown in Figure 4. We can
easily observe that our proposed approach can create more accurate and detailed captions
incorporated with human annotation sentences. Most of the time, the sentences generated
by the machine are not well furnished. Compared to human annotation sentences, there are
many gaps between the machine-generated sentences. Sometimes, the generated sentences
are not able to be understood as shown in Figure 5. For example, the ground truth sentence
is “A man is showing his gymnastic skills,” but the machine-generated sentence is “A black
dog is walking,” which may confuse a user. If this feature was included in robotics, there
would be a high chance of failure because human annotation sentences are very concise
in terms of machine language. However, due to continuous improvement, it would have
been predicted that the machine sentences must be improved in the near future.
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Our model did not consider any audio features of the visual scene except video frames.
However, the most important thing is that a video generally contains audio features. The
audio might be useful in gathering backend evidence for every occurrence from the visual
frames. Although audio feature can be helpful for gathering semantic information, it can
also predict the next word generation for the machine. Furthermore, it may boost the
performance of the method. Furthermore, due to time reliability and resource constraints,
we have only investigated two datasets for our proposed model. Taking into account a
variety of huge datasets with a significant number of human annotation sentences, it may
help our model reach the highest benchmark score in evaluation metrics.

7. Conclusions

In this paper, we proposed a novel attention-based bi-LSTM and sequential LSTM
(Att-BiL-SL) encoder-decoder model for video description generation in textual formation.
We introduced a two-layer attentional bi-directional LSTM as an encoder and sequential
LSTM as a decoder for sentence generation. From the performance analysis, it can be
seen that the model of this study can deal with the global and local features of the visual
frames. The model has been trained in different CNN models, and model evaluation has
been performed considering standard performance matrices. It has been found that this
model shows extraordinary results on two of the most popular public datasets. According
to the results, our method has shown outstanding results in various automatic machine
evaluation metrics compared to other existing methods. The model can also handle the
high-level features for flawless sentence generation from the video. Finally, the suggested
model is adaptable to different video modeling approaches.

This literary change lessens the size of video information and empowers us to navigate
and explore data quickly. In the future, we can integrate the audio feature to enrich the
generated sentences more semantically. Moreover, we may extend our approach to generate
video from textual descriptions.
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