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Abstract: NFinFET transistors with various fin widths (110 nm, 115 nm, and 120 nm) are put into
measurements, and the data are collected. By using the modified model, the measure data is fitted.
Several parameters in the formula of modified model are determined to make both the measured
data and the fitting data almost as close as possible. Those parameters are listed and analyzed,
including kN (proportional to channel width and gate oxide capacitor, and inversely proportional to
the channel length) λ (the inverse of Early Voltage), and sometimes Vth (Threshold Voltage). By kN,
the appropriate process control can be high lighted, the corresponding channel concentration can be
calculated and thus many implicit physical quantities may be exploited.

Keywords: FinFET; early voltage; channel length and width

1. Introduction

Source-Drain leakage current, known as one of the short channel effects, is successfully
suppressed on FinFET transistors. The structure of FinFET looks like an emerging 3-
dimensional “I” character with Source and Drain as the two ends and the channel in
between. The applied bias on Gate poly-silicon crossing over the channel depletes the
whole slim channel and builds up a barrier in between Source and Drain, which thus
blocks or prevents the possibility of leakage current. The process is achieved because of the
good conformality (step coverage) of chemical vapor deposition by flowing SiH4 (silane) at
chosen flow rate under certain pressure at an appropriate temperature in kinetic regime for
a good deposition rate [1–5].

Furthermore, the electrical performance of FinFET transistors may be also enhanced
either by high dielectric constant gate oxide or by high mobility channel. On one hand, the
capacitance of the gate capacitor is to be raised if the dielectric of the gate oxide, mainly
silicon dioxide, can be replaced with Hf-mixed tantalum oxide whose dielectric constant
is about 5 times of that of N-mixed silicon dioxide. For instance, 90 nm-process devices
can be equivalently reduced to 14 nm-process devices, which is quite encouraging once the
process is production-worthy. On the other hand, the mobility of silicon channel may be
promoted by even 2.5 to 4 times as SiGe is technically and sophisticatedly introduced stack
by stack. The above advanced techniques and other options are definitely promising and
achievable, making FinFET continuously popular as currently [6–12].

However, the electrical performances, mainly manifested in current-versus-voltage
characteristic curves (I–V curves), are thus put to be parameter-extracted in the model,
which takes advantage of sophisticated equivalent circuits for academic and industrial uses.
Nevertheless, the measured I–V curves are speculated to be also fitted by the “modified”
conventional formula [13–18].

In this study, the “modified” conventional I–V characteristic curve formula naively
generates fitting data to fit as measured (IDS, VDS) and (IDS, VGS) data by choosing appro-
priate parameter values, such as the threshold voltage (Vth), lambda (λ) which is inversely
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proportional to the absolute value of Early Voltage (VA), and kN which is proportional to
the total width of the channel and inversely proportional to the channel length.

2. Preparation and Measurements
2.1. Preparation

The epi-silicon layer is deliberately ionic dry etched with various 3-dimensional sizes,
such as 110 nm, 115 nm, and 120 nm wide and corresponding 9 times high fin channel. On
both ends of the channel are Source and Drain, looking like a letter “I”. The epi-silicon
fin channel is grown with ultra thin gate oxide and covered with arsenic heavily doped
poly-silicon.

2.2. Fitting IDS-VDS and IDS-VGS

The two-regime modified conventional formulas for FinFET transistors are expressed
in the following:

IDS(Triode) = kN [(VGS −Vth)VDS −VDS
2/2](1 + λVDS) (1)

IDS(Saturation) =
kN
2
(VGS −Vth)

2(1 + λVDS) (2)

where

kN =
CoxWe f f µ

Lo
, λ =

1
|VA|

, and α(gate leakage coefficient).

where VA is Early Voltage, Cox is gate oxide capacitance, and Weff = 19Wo.
Equation (1) works as VDS is less than (VGS − Vth) while Equation (2) works as VDS is

larger than (VGS − Vth). And those parameters are predominantly determined to minimize
the deviation (delta, δ) as follows in Equation (3):

δ =

√√√√√ N
∑

i=1
(I f itting − Imeasured)i

2

N
(3)

3. Results and Discussion

The minimum deviation (delta, δ in Equation (3) is used to determine the chosen
parameters. For example, the measured characteristic curve on the device denoted by
W120L240 (fin width = 120 nm, channel length = 240 nm) at VG = 1.0 V may be well fitted
by choosing the three parameters Vth = 0.101 V, kN = 1.09 × 10−4 A/V2, and lambda = 0.139
in Equations (1) and (2) as shown in Figure 1a–c, where the minimum deviation value is
found to be 3.79569 × 10−7 A.

Therefore by using the same skill, all the parameters in Equations (1) and (2) are
determined to fit the measured characteristic curves except the ones in Figure 2a,b. where
the two transistors, denoted by W110L100 (Fin width = 110 nm, Channel length = 100 nm)
and W110L120 (Fin width = 110 nm, Channel length = 120 nm), do not look like FET and
are not worth fitting. All the other fitting results are shown in Figures 2c, 3a–c and 4a–c.
The final minimum delta’s at various VG’s. range from 3.25 × 10−8 Ampere to 1.36 × 10−6

Ampere, which are engineering acceptable.



Appl. Sci. 2022, 12, 462 3 of 10Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Three parameters (Vth, Kn, lambda) at VG = 1.0 V on W120L240 (fin width = 120 nm, and 
channel length = 240 nm) are determined through minimum deviation technique with the mini-
mum deviation = 3.79569 × 10−7 A at (a) Vth = 0.101 V as in deviation versus Vth, (b) kN = 1.09 × 10−4 
A/V2 as in deviation verses kN, and (c) lambda = 0.139 as in deviation versus lambda. 
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Figure 1. Three parameters (Vth, Kn, lambda) at VG = 1.0 V on W120L240 (fin width = 120 nm, and
channel length = 240 nm) are determined through minimum deviation technique with the minimum
deviation = 3.79569 × 10−7 A at (a) Vth = 0.101 V as in deviation versus Vth, (b) kN = 1.09 × 10−4

A/V2 as in deviation verses kN, and (c) lambda = 0.139 as in deviation versus lambda.
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Figure 2. IDS-VDS characteristic curves and the corresponding fitting, including (a) W110L100, (b) 
W110L120, (c) W110L160. 
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Figure 2. IDS-VDS characteristic curves and the corresponding fitting, including (a) W110L100,
(b) W110L120, (c) W110L160.
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Figure 3. IDS-VDS characteristic curves and the corresponding fitting, including (a) W115L120,
(b) W115L160, (c) W115L240.
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Figure 4. IDS-VDS characteristic curves and the corresponding fitting, including (a) W120L110,
(b) W120L160, and (c) W120L240.

In addition, all determined kN’s may be specifically listed as in Tables 1–3 at different
sizes and at different VG’s [12]. In the modified conventional formula in Equations (1)
and (2), kN is supposed to be inversely proportional to the channel length. And kN is also
proportional to the channel width (Wchannel) and, thus the width of the fin (Wfin), because
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Wchannel = (9 + 9 + 1) Wfin = 19Wfin. If kN is plotted against Wfin or 1/Lchannel, straight lines
are then expected. Unfortunately, most of them fail the testing except on the devices with
fin width = 120 nm at VG = 1.0 V partly as found in Figure 5. Of course, at VG = 0.0 V, the
transistors, which are still on and may have pretty low threshold voltage or even negative
one, are not discussed in this paper. So the applied voltages to Gates depleting the fin
channels and making the devices less leaky draw much attention. In Figure 4a, the straight
line proves the feasibility at VG = 1.0 V with fin width = 120 nm, while the other two
graphs, Figure 4b,c do not. The non-straight lines might be due to either over-depletion or
under-depletion. Over-depletion means that the depletion regions from both sides of the
fin overlap resulting to disturbing the blocking function. On the other hand, the depletion
regions do not completely cover all the fin for under-depletion and the leakage current
gets apparent.

Table 1. kN values with Fin Width = 120 nm.

Gate Bias W120L240_fit w120L160_fit W120L100_fit

VG = 1.00 V 1.09000 × 10−4 1.25000 × 10−4 1.43000 × 10−4

VG = 0.75 V 1.27000 × 10−4 1.30000 × 10−4 1.40000 × 10−4

VG = 0.50 V 1.48000 × 10−4 1.48000 × 10−4 1.46000 × 10−4

VG = 0.25 V 2.10000 × 10−4 2.10000 × 10−4 1.27000 × 10−4

VG = 0.00 V 8.70000 × 10−4 8.80000 × 10−5 3.10000 × 10−4

Table 2. kN values with Fin Width = 115 nm.

Gate Bias W115L240_fit W115L160_fit W115L120_fit

VG = 1.00 V 7.60000 × 10−5 8.14000 × 10−5 1.40000 × 10−4

VG = 0.75 V 8.00000 × 10−5 8.65000 × 10−5 1.50000 × 10−4

VG = 0.50 V 8.18000 × 10−5 8.40000 × 10−5 1.70000 × 10−4

VG = 0.25 V 7.00000 × 10−5 9.00000 × 10−5 1.90000 × 10−4

VG = 0.00 V 1.00000 × 10−5 1.00000 × 10−5 1.00000 × 10−5

Table 3. kN values with Fin Length = 160 nm.

Gate Bias w120L160_fit W115L160_fit W110L160_fit

VG = 1.00 V 1.25000 × 10−4 8.14000 × 10−5 1.00000 × 10−4

VG = 0.75 V 1.30000 × 10−4 8.65000 × 10−5 1.03000 × 10−4

VG = 0.50 V 1.48000 × 10−4 8.40000 × 10−5 1.10000 × 10−4

VG = 0.25 V 2.10000 × 10−4 9.00000 × 10−5 1.00000 × 10−4

VG = 0.00 V 8.80000 × 10−5 1.00000 × 10−5 2.50000 × 10−5

The three transistors with 120 nm fin width at VG = 1.0 V provide valuable information,
i.e., the whole fin may be totally depleted without interference from the other side of the
applied bias. One or the other side of the applied Gate bias depleted 60 nm, which is a
half of the fin width, as shown in Figure 6, where the energy band appears with 1.12 eV
energy gap. The so-called p-type channel or substrate is interpreted as boron dopants-in
the silicon lowering the Fermi energy. Once the applied Gate bias bents the intrinsic Fermi
energy down below the Fermi energy, the region becomes strongly inversed to n-type
semi-conductor making the channel conductive. The thickness of the conductive layer may
as well be calculated by solving Maxwell’s Equations as stated in Equations (4) and (5) with
W set to 60 nm. The channel concentration is then estimated to be p = 3.66 × 1023 (m−3),
which is substituted into (KBT) ln(p/ni) to obtain 0.438 eV (energy difference between EF(i)
and EF). Therefore, the strong inversion layer is determined to be 203 angstroms, which
was one half of the parabolic curve (in Equation (4)) in Figure 6, and is surprisingly about
one third of the whole fin width.
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∇ ·
⇀
E = ρ

ε ⇒
dE
dx = − ep

ε
⇒ Ep = − ep

ε (x−W)

⇒ VG =
1
2

ep
ε
(W)2 (4)



Appl. Sci. 2022, 12, 462 9 of 10

⇒ p =
2εVG

eW1/2
2 (5)

where
KB = 1.38× 1023 J/K,
e = 1.69× 10−19 Coul,
ni = 1.45× 1016/m3,
T = 298 K,
ε = 11.9× 8.85× 10−12 F/m
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4. Conclusions

The modified conventional current-voltage formula has demonstrated the fitting
capability of the electrical characteristic curves. Once the parameters are determined
through engineering fitting, those parameters are advisable to understand the implicit
physics underlying the FET transistor. The current-voltage characteristic fitting simply
obeys the modified formula in Equations (1) and (2) and bases on the minimum deviation
without first considering the underlying physics. After all crucial parameters, e.g., kN, Vth,
and lambda, are determined, the analyses were available. In this paper, kN in Equations (1)
and (2) was deliberately examined first, and the thickness of the layer associated with strong
inversion is then successfully solved. At the same time, Vth and lambda offering some
more information about depletion region and leakage current may be actually expected.

Nevertheless, the model, conventionally established much earlier many decades ago,
has been using equivalent circuits to approach to the measured data, and enjoy many
fruitful achievements [17]. But tedious work and convergence still have to be taken into
account.

In a word, fitting skill proposes another possibility to analyze the transistor. Many
approaches, such as lambda corresponding to leakage current, the common threshold
voltage requirement, and the common kN requirement, are to be associated with one
another. Those analyses are quite intriguing and will be discussed in the near future.
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