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Abstract: In Internet of Things (IoT) scenarios, it is challenging to deploy Machine Learning (ML)
algorithms on low-cost Field Programmable Gate Arrays (FPGAs) in a real-time, cost-efficient, and
high-performance way. This paper introduces Machine Learning on FPGA (MLoF), a series of ML IP
cores implemented on the low-cost FPGA platforms, aiming at helping more IoT developers to achieve
comprehensive performance in various tasks. With Verilog, we deploy and accelerate Artificial
Neural Networks (ANNs), Decision Trees (DTs), K-Nearest Neighbors (k-NNs), and Support Vector
Machines (SVMs) on 10 different FPGA development boards from seven producers. Additionally, we
analyze and evaluate our design with six datasets, and compare the best-performing FPGAs with
traditional SoC-based systems including NVIDIA Jetson Nano, Raspberry Pi 3B+, and STM32L476
Nucle. The results show that Lattice’s ICE40UP5 achieves the best overall performance with low
power consumption, on which MLoF averagely reduces power by 891% and increases performance
by 9 times. Moreover, its cost, power, Latency Production (CPLP) outperforms SoC-based systems by
25 times, which demonstrates the significance of MLoF in endpoint deployment of ML algorithms.
Furthermore, we make all of the code open-source in order to promote future research.

Keywords: Internet of Things; machine learning; embedded system; FPGA; hardware accelerator

1. Introduction

Machine Learning (ML) algorithms are effective and efficient in processing Internet of
Things (IoT) endpoint data with well robustness [1]. As data volumes grow, IoT endpoint
ML implementations have become increasingly important. Compared to the traditional
cloud-based approaches, they can compute in real-time and reduce the communication
overhead [2]. There are some researches deploying ML algorithms on System on Chip (SoC)
based endpoint devices in industry and academia. For example, the TensorFlow Lite [3],
X-CUBE-AI [4], and the Cortex Microcontroller Software Standard Neural Network (CMSIS-
NN) [5] are three frameworks proposed by Google, STM, and ARM for pre-trained models
in embedded systems. However, these solutions cannot achieve a balance among power
consumption, cost-efficiency, and high-performance simultaneously for IoT endpoint ML
implementations.

Field Programmable Gate Array (FPGA) devices have an inherently parallel archi-
tecture that makes them suitable for ML applications [6]. Moreover, some FPGAs have
substantially close costs and leakage power compared to those of Microcontroller Unit
(MCU). Therefore, FPGA can be an ideal target platform for IoT endpoint ML implementa-
tions. Nowadays, some researches and supports have been done for the deployment of
ML algorithms on FPGAs. For instance, the ongoing AITIA, led by the Technical Univer-
sity of Dresden, KUL, IMEC, VUB, etc. [7], is a preliminary project that investigated the
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feasibility of ML implementations on FPGAs. On the other hand, in the industry, Xilinx
and Intel have supported portions of the machine learning based Intellectual Property (IP)
cores [8–11]. Unfortunately, these solutions are based on high-end FPGAs and require
highly professional standards. It is difficult for many small and medium-sized corporations
and individual developers to deploy their hardware platforms. Therefore, an ML library
that can run on any FPGA platform is needed [12], especially those low-cost FPGAs. Low-
cost FPGAs do not mean they have the lowest absolute value among all FPGAs, instead,
they refer to the lowest-priced FPGA series in the most representative manufacturers.
Meanwhile, the lack of comprehensive comparisons makes it difficult to demonstrate the
benefits of FPGA ML implementations over conventional SoC-based solutions.

Therefore, we introduce Machine Learning on FPGA (MLoF) with a series of IP cores
dedicated to low-cost FPGAs. The MLoF IP-cores are developed in Verilog Hardware
Description Language (HDL) and can be used to implement popular machine learning
algorithms on FPGAs, including Support Vector Machines (SVMs), K-Nearest Neighbors
(k-NNs), Decision Trees (DTs), and Artificial Neural Networks (ANNs). The performance
of seven FPGA producers (Anlogic *2, Gowin *1, Intel *2, Lattice *2, Microsemi *1, Pango
*1, and Xilinx *1) is thoroughly evaluated using low-cost platforms. As far as we know,
MLoF is the first case to implement machine learning algorithms on nearly every low-
cost FPGA platform. Compared with the typical way of implementing machine learning
algorithms on embedded systems, including NVIDIA Jetson Nano, Raspberry Pi 3B+,
and STM32L476 Nucle, the advantage of MLoF is that it balances the cost, performance,
and power consumption. Moreover, these IP cores are open-source, assisting developers
and researchers in more efficient implementation of machine learning algorithms on their
endpoint devices.

The contributions of this paper are as follows:

(1) To the best knowledge of the authors, this is the first time that four ML hardware
accelerator IP-cores are generated using Verilog HDL, including SVM, k-NN, DTs
and ANNs. The source code of all IP-cores is fully disclosed at github.com/verimake-
team/MLonFPGA;

(2) The proposed IP-cores are deployed and validated on 10 mainstream low-cost and
low-power FPGAs from seven producers to show its broad compatibility;

(3) Our designs are comprehensively evaluated on FPGA boards and embedded system
platforms. The results prove that low-cost FPGAs are ideal platforms for IoT endpoint
ML implementations;

The rest of this paper is organized as follows: Section 2 reviews prior work on the
hardware implementations of machine learning algorithms. Section 3 introduces details
of the proposed MLoF IP series. Section 4 provides a comparison of various FPGA devel-
opment platforms. Section 5 contains experiments and analyses. Section 6 concludes the
research results and future works.

2. Related Work

For decades, the implementations of machine learning algorithms on low-cost embed-
ded systems have been vigorously investigated. Due to the limited computing resources
on embedded systems, these approaches tend to lack outstanding performance. However,
FPGA is an effective solution for machine learning algorithms [13]. Saqib et al. [14] pro-
posed a decision tree hardware architecture based on FPGA. It improves data throughput
and resource utilization efficiency by utilizing parallel binary decision trees and a pipeline.
A 3.5× computing speed is achieved while only 2952 Look-up Tables (LUTs) of resources
are consumed via an 8-parallelism 4-stage pipeline. Nasrin Attaran et al. [15] proposed a
binary classification architecture based on SVM and k-NN. Over 10× computing speed and
200× power-delay are obtained as compared with ARM A53. Gracieth et al. [16] proposed
a 4-stage, low-power SVM pipeline architecture capable of achieving 98% of accuracy on
over 30 classification tasks. It consumes only 1315 LUTs of resources and operates at a
system frequency of 50 MHz. The aforementioned works introduce the deployment of ML
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algorithms on FPGA platforms, but there are still deficiencies: 1. None of the works inte-
grate the mainstream ML algorithms for FPGA deployment; 2. None of the works compare
the final results horizontally with other embedded platforms of various IoT terminals.

Due to the high inherent parallelism in FPGAs, more advanced machine learning
algorithms, such as neural networks, are widely studied. Roukhami M et al. [17] proposed
a Deep Neural Network (DNN) based architecture for classification tasks on low-power
FPGA platforms. They thoroughly compared the performance with STM32 ARM MCU
and designed a general communication interface for accelerators, such as SPI and UART.
The entire acceleration process consumes only 25.459 mW of power with a latency of 1.99 s.
Chao Wang et al. [18] proposed a Deep Learning Accelerating Unit (DLAU) that accelerates
neural networks, e.g., DNN and CNN. Additionally, they developed an AXI-Lite interface
for the acceleration unit to enhance its versatility. In general, the DLAU outperforms
Cortex-A7 by 67%. Fen Ge et al. [19] developed a resource-constrained CNN accelerator
for IoT endpoint SoCs that does not require any DSP resources. With a total resource
overhead of 4901 LUTs, the data throughput reaches 6.54 GOP (Giga Operation per second).
The above works present neural network-based FPGA deployments, but none of them is
designed for low-cost FPGAs, which are oftentimes the most prevalent platforms used for
IoT endpoints.

Although the previous works succeed in increasing the capability of endpoint com-
puting by implementing only one or two machine learning algorithms on FPGAs, further
analyses and comprehensive comparisons across low-cost FPGA platforms, as well as the
integration of more commonly used machine learning algorithms are still required.

3. Machine Learning Algorithms Implementation on Low-Cost FPGAs

Normally, the post-process of IoT data mainly focuses on two tasks: Classifications
and regressions [20]. By exploiting the parallelism and low power consumption of FPGAs,
MLoF offers a superior solution for these workloads. Drawn from past designs, MLoF is
designed with lower computation resources, and it includes a variety of common machine
learning algorithms, namely ANN, DT, k-NN, and SVM. Details will be further presented
in this section.

As shown in Figure 1, the system has consisted of the training and the MLoF modules
as most machine learning models are used for inferencing and evaluating within IoT devices
without requiring extensive training [21], all of the model training process is completed
through PC. First, the IoT dataset is gained from the endpoints and will be sent to the
training module. Then, an ML library (e.g., Scikit-Learn and TensorFlow Lite) [22] and an
ML algorithm should be chosen as the first level of parameters. Thereafter, a set range of
hyperparameters (the same set as in the MLoF module) are used to constrain the PC training
process, as FPGA has limited local resources. Since hyperparameters are key features in
ML algorithms [23–25], users could set them to different values to find the best sets for
training according to Table 1. Next, with all the labeled data and hyperparameters, the best
model and the best parameters (including the updated hyperparameters) are generated
and sent to the MLoF module. After receiving and storing the parameters into ROM or
external Flash, the algorithm is deployed on an FPGA. The language of FPGA is mainly
Verilog HDL, thus the algorithms can literally be deployed on any known FPGA platform.
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Figure 1. Block diagram of the MLoF system architecture.

Table 1. Configurable parameters.

ANN DT k-NN SVM

Data width (max = 13);
Number of inputs
(max = 16); Data width (max = 13); Data width (max = 13); Data width (max = 13);

Number of hidden
layers (max = 4);

Number of depth
(max = 6);

Number of inputs
(max = 16);

Number of inputs
(max = 16);

Number of neurons in
each hidden layer
(max = 8);

Number of leaf nodes
(max = 64);

Number of neighbors
(max = 16);

Number of targets
(max = 16)

Number of targets
(max = 16);

Number of targets
(max = 16)

Number of targets
(max = 16)

Activation functions

In this paper, we selected six datasets, the four most representative ML algorithms, and
deployed them on 10 low-cost FPGAs, with a total of 240 combinations. The experiments
and evaluations are described in detail in Section 5.

3.1. Artificial Neural Networks (ANN)
3.1.1. Overall Structure of ANN

The implementation of ANN, for example, with eight inputs and two hidden layers
(eight neurons within each layer) is shown in Figure 2a. This ANN model includes a
Memory Unit (Mem), a Finite State Machine (FSM), eight Multiplying Accumulator (MAC)
computing units, Multiplexers (MUX), an Activation Function Unit (AF), and a Buffer Unit
(BUFFER). The Memory Unit (Mem) stores the weights and biases after training. The FSM
manages the computation order and the data stream. The MAC units are designed with
multipliers, adders, and buffers for multiplying and adding operations within each neuron.
Here, we implement eight MAC blocks to process in parallel the multiplication of the eight
neurons. Initially, features are serially entered for registration. Then, the MAC is used to
sequentially process the ANN from the first input feature to the eighth feature on the first
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hidden layer (Figure 2b). Next, the second hidden layer is sequentially processed from the
first hidden neuron to the eighth neuron. Finally, we process the output by the activation
function. As demonstrated in Figure 3, the multiplexers (MUX) allocate the data stream.
The AF computes the activation functions, which will be discussed in Section 3.1.2. The
buffer stores data computed from each neuron.

Figure 2. ANN algorithm implementation. (a) Block diagram of ANN. (b) Scheduling of the
ANN processing.

Figure 3. Block diagram of MAC.

The entire procedure for performing a hardware-based ANN architecture is described
below. First, eight features are serially inputted to an ANN model. Each feature is entered
into eight MAC units simultaneously and multiplications for eight neurons in the first layer
are then completed. An inner buffer is used to store the multiplication results. Next, all
eight results are added to a user-specified activation function. The output is further stored
in the buffer unit as the input of the next hidden layer. Finally, the results are exported
from the output layer following the second hidden layer.

3.1.2. Activation Function

The activation function is required within each neuron, which introduces non-linearity
into the ANN, resulting in better abstract capability. Three typical activation functions
include the Rectified Linear Unit (ReLU), the Hyperbolic Tangent Function (Tanh), and
the Sigmoid Function [26]. All of three activation functions listed above are developed in
hardware, and details are described as follows.

Rectified Linear Unit (ReLU)

The mathematical representation of the ReLU is described as Equation (1):

ReLU(x) =
{

x, x > 0
0, x ≤ 0

(1)
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The hardware implementation is shown in Figure 4 with a comparator and a multi-
plexer [27]:

Figure 4. Block diagram of ReLU.

Hyperbolic Tangent Function (Tanh)

The mathematical representation of the Tanh function is described as Equation (2):

Tanh(x) =
ex − e−x

ex + e−x (2)

This cannot be achieved directly in the hardware using HDL. Therefore, we fit this
functionality separately with five sub-intervals [28]. We divide the interval of [0, +∞] into
five sub-intervals: [0, 1], (1, 2], (2, 3], (3, 4], (4, +∞). Table 2 contains the heuristic functions
used to fit the Tanh function for each sub-interval. The performance of each sub-interval is
shown in Figure 5 with an error kept within an acceptable range. The sub-intervals enable
the Tanh function to be implemented using only adders and multipliers.

Table 2. Fitting function at different intervals.

Numerical Interval Function Absolute Error

[0, 1] y = −0.3275x2 + 1.0977x − 0.0038 0.0038
(1, 2] y = −0.1690x2 + 0.7021x + 0.2324 0.0039
(2, 3] y = −0.0282x2 + 0.1703x + 0.7370 0.0055
(3, 4] y = −0.0039x2 + 0.0313x + 0.9363 0.0101

(4, +∞ ) 1 /

Sigmoid Function

The mathematical representation of the Sigmoid function is described as Equation (3):

Sigmoid(x) =
1

1 + e−x (3)
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Similar to the Tanh function, the Sigmoid function cannot be implemented directly
in the hardware using HDL, as well. The Sigmoid function is equivalent to the tanh
function [29] when the transformation in Equation (4) is applied:

Sigmoid(x) =
Tanh

(x/
2
)
+ 1

2
(4)

This transformation can be implemented easily on the hardware using a shift operation
and an adder based on the tanh function.

Figure 5. The images of the fitting effect of these functions. (a) Numerical interval [0, 1]. (b) Numerical
interval (1, 2]. (c) Numerical interval (2, 3]. (d) Numerical interval (3, 4].

3.2. Decision Tree (DT)

Figure 6 illustrates the implementation of DT with multiple inputs, a depth of four,
and a maximum of eight nodes on each layer. The DT consists of a Memory Unit (Rom),
a Finite State Machine (FSM), eight compare units, and a dispatcher. The memory unit is
used to store nodes’ parameters from PC training. The FSM is used to determine which
input node to use next based on the output. The compare unit serves as the selecting node.
The distributor is used to distribute the input to each node.

3.3. The k-Nearest Neighbors (k-NN)
3.3.1. Overall Structure of k-NN

The k-NN method is used to classify the samples based on their distances. In this case,
we use the squared Euclidean distance as defined in Equation (5). The structure of k-NN is
demonstrated in Figure 7 with an example of eight inputs and a k-value of 6. It consists of
a Memory Unit (Mem), a Finite State Machine (FSM), a subtractor, a multiplier, a buffer, an
adder, and a Sorting Network and Label Finder (SNLF) module.

d =
8

∑
i=1

(xi − yi)
2 (5)
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Figure 6. DT algorithm implementation. (a) The sample decision tree. (b) Block diagram of DT.
(c) Scheduling of the DT processing.

Figure 7. The k-NN algorithm implementation. (a) Block diagram of k-NN. (b) Scheduling of the
k-NN processing.

3.3.2. Structure of Sort Network and Label Finder Module

The Sorting Network and Label Finder (SNLF) is a key module that completes the
sorting operation of distance and then outputs the classification or prediction results. It
balances the pipeline and parallel execution with a ping-pong operation. As shown in
Figure 8, this module consists of three parts, MUX, comparators, and cache registers. The
mux was used to control di transmit in different clock cycles. The comparator was used
for comparison with the new di and for storing dis in cache registers. There were 12 cache
registers (Ox and Ex) used for storing di, as shown in Figure 7b. Specifically, Ox registers
were used to store the six smallest dis in ‘odd’ clock cycles. Ex registers were used to store
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the six smallest dis in ‘even’ clock cycles. The ping-pong cache was used to rank the di in
different clock cycles for the SNLF. From those dis, six could be identified to be the smallest.
Initially, we set the register’s value to the maximum. The di value was compared with each
Ox’s value when the clock cycle was jth (j = 3,5 . . . ) period. If the di value was bigger than
each Ox’s values in the next period, it would be dropped. Otherwise, the di value was
inserted into Ox and the biggest value in six Ox’s would be dropped. Similarly, the Ex’s
values were updated in (j + 1)th (j + 1 = 4,6 . . . ) period. The cycles were repeated until all
of the 600 training samples had been calculated with input features. Finally, we compare
all the 12 registers to get the smallest six values. The result was voted from the smallest six
value of registers.

Figure 8. Block diagram of SNLF.

3.4. Support Vector Machine (SVM)

The SVM (with eight inputs) is composed of Memory Units (Mem), the Finite State
Machine (FSM), multipliers, adders, and multiplexers. The pre-trained support vectors are
stored in the memory unit. The FSM controls the order of output data and the running
process. The FSM controlling process is mainly used in multi-class classification, where the
support vector and bias are updated recursively within the structure shown in Figure 9.
Multipliers and adders complete the support vector calculation in Equation (6), and the
multiplexer is used for the sign function.

f (x) = sign

(
8

∑
i=1

(Si·Feature) + B

)
(6)

Figure 9. SVM algorithm implementation. (a) Block diagram of SVM. (b) Scheduling of the SVM processing.

4. Comparison of Development Platforms

The specifications of 10 different FPGA platforms from seven different producers are
thoroughly analyzed. The key features of these FPGA cores are listed in Table 3. It is worth
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noting that Intel MAX and Xilinx Artix-7 FPGA have the richest LUTs and DSPs, which
are beneficial for the parallel implementation of multi-input machine learning algorithms.
Additionally, on-chip Random Access Memory (RAM) resources are important. Otherwise,
a large amount of pre-trained data must be pre-fetched from memory to the cache and
limited LUTs resources cannot be used as buffers to cache data during the calculation.
Pango PGL12G, Lattice MachXO2, and Anlogic EG4S20 all have limited RAM capacitances.
Anlogic EG4S20 has an internal SDRAM module that satisfies the need for additional
caching. In addition, static power consumption is a critical metric for endpoint platforms,
and Anlogic FPGAs, Intel Cyclone 10LP, and Microchip M2S010 perform well in this regard.
Moreover, two Lattice FPGA platforms consume the least static power, which is quite
competitive for endpoint implementations. Finally, both Anlogic EF2M45 and Microchip
MS010 are equipped with an internal Cortex-M3 core, which significantly improves their
general performance in terms of driving external devices and communication.

Table 3. The resource of 10 different FPGAs.

Producer Device LUTs DSPs RAM Static Current
(mA at 12 V, 25 ◦C) Distinction

Anlogic
EF2M45 4480 15 700 Kb 5 Inside Cortex-M3 unit

EG4S20 19,600 29 156.8 Kb 5 Inside SDRAM unit

Gowin GW2A 20,736 48 828 Kb 35 /

Intel
Cyclone10LP10CL 6272 30 270 Kb 5 Low-power design

MAX10M50DAF 49,760 144 1638 Kb 35 /

Lattice
ICE40UP5 5280 8 128 Kb 0.075 Ultra low-power

design

MachXO2 6864 / 92 Kb 0.08 Low-power design

Microchip M2S010 12,084 22 512 Kb 6.9 Inside Cortex-M3 unit

Pango PGL12G 12,480 20 85 Kb 13 /

Xilinx Artix-7 33,280 240 1800 Kb 14 /

On-board resources, external interfaces, and prices are the three main discriminative
FPGA features that the developers pay most attention to. Therefore, in Table 4, we present
the features of 10 FPGAs from seven producers.

Table 4. The specification of 10 different FPGA boards.

Producer Device Manufacturer Board Name Memory Interface Price

Anlogic

EF2M45 Nanjing
Renmian

Integrated
Circuit

Sparkroad-M / / $25.9

EG4S20 Sparkroad SPI Flash,
microSD

ADC, VGA,
DVP Arduino,
Raspberry Pi

$49.9

Gowin GW2A MYMINIEYE Combat DDR3, SPI
Flash, microSD

RJ45, HDMI,
MIPI $169

Intel

Cyclone10LP10CL QMTECH Starter Kit SDRAM, SPI
Flash ADC, MIPI $49.9

MAX10M50DAF Terasic DE10-Lite SDRAM, VGA,
Accelerometer $85

Lattice
ICE40UP5 TinyFPGA TinyFPGA BX SPI Flash / $38

MachXO2 STEPFPGA STEP-MXO2 / / $29.9
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Table 4. Cont.

Producer Device Manufacturer Board Name Memory Interface Price

Microchip M2S010 Trenz electronic SMF2000 SDRAM, SPI
Flash / $59.9

Pango PGL12G ALINX
PGL12G

Development
Board

SDRAM, SPI
Flash

ADC, HDMI,
MIPI $52

Xilinx Artix-7 QMTECH
Artix-7

Development
Board

SDRAM, SPI
Flash ADC, MIPI $79.9

All seven producers develop their own Electronic Design Automation (EDA) software,
among which Lattice develops a completely different EDA software for different devices.
In addition, the final resource consumption is determined by synthesis tools. Most of the
seven producers use either their own synthesis tools or Synplify [30], but the latter requires
an individual supporting license. Table 5 summarizes the relative information of seven
producers. It is worth noting that Lattice’s iCEcube2 and Lattice Diamond are for ICE40UP5
and MachXO2 development respectively, and thus they cannot share the same EDA.

Table 5. The specification of EDA software.

Producer EDA Software Synthesis Tool Availability

Anlogic Tang Dynasty TD Integrated Synthesis Commercial
Gowin GOWIN EDA GowinSynthesis/Synplify Commercial

Intel Quartus Prime Quartus Integrated
Synthesis Free License/Commercial

Lattice
iCEcube2 Synplify Pro Free License/Commercial

Lattice Diamond Lattice Synthesis Engine Free License/Commercial
Microchip Libero SoC Synplify Pro ME Commercial

Pango Pango Design Suite ADS/Synplify Commercial

Xilinx Vivado Xilinx Synthesis
Technology Free License/Commercial

5. Experimental Analysis and Result

To evaluate the performance of these IPs, we select six typical IoT endpoint datasets for
different parameter combinations and tests. As shown in Table 6, the datasets include binary
classifications, multi-classifications, and regressions. The Gutter Oil dataset proposed
by VeriMake Innovation Lab aims to detect gutter oils [31], and contains six input oil
features, including the pH value, refractive index, peroxide value, conductivity, pH value
differences under different temperatures, and conductivity value difference under different
temperatures. This dataset can serve both in a dichotomous and a polytomous way. The
Smart Grid dataset for conducting research on electrical grid stability is from Karlsruher
Institut für Technologie, Germany [32,33]. This is a dichotomous dataset with 13 input
features used to determine whether the grid is stable under different loads. The Wine
Quality dataset is proposed by the University of Minho [34] for classifying wine quality.
This is a polytomous dataset, with 11 input dimensions (e.g., humidity, light, etc.), rating
wines on a scale of 0 to 10. The rain dataset by the Bureau of Meteorology, Australia, is based
on datasets of different weather stations for recording and forecasting the weather [35].
This is a dataset for regression prediction, using eight input parameters, such as wind,
humidity, and light intensity to predict the probability of rain. Power Consumption is an
open-source dataset created by the University of California, Irvine. It tracks the total energy
consumption of various devices within families [36].
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Table 6. Dataset specifications.

Dataset Number of Input Features Type

Gutter Oil 6 Binary classification
Smart Grid 13 Binary classification
Gutter Oil 6 Multiclass classification 6

Wine Quality 11 Multiclass classification 11
Rain 8 Regression

Power Consumption 7 Regression

We use a desktop PC with a 2.59 GHz Core i7 processor to train various models on the
six datasets and export the best parameters with the best scores obtained during training.
For binary classifications and multiclass classifications, the scores represent the classifica-
tion accuracies. For linear regressions, the scores represent R2 [37]. Then, these trained
parameters are fed to our machine learning IPs and implemented on 10 different FPGA
boards using EDAs from seven different candidate producers. Each EDA is configured to
operate in the balanced mode with identical constraints. As shown in Table 5, part of the
EDAs is integrated with synthesis tools, such as Gowin and Pango. However, as Synplify
requires an individual supporting license, in this paper, only their self-developed synthesis
tools (GowinSynthesis, ADS) are used for analyzing FPGA implementations. The analysis
of FPGA implementations is not limited to the computing performance, but encompasses
all aspects of the hardware. While Power Latency Production (PLP) [38] is a common
metric for evaluating the results of FPGA implementations, it does not consider the cost,
which is a critical factor in IoT endpoint device development. As a result, we introduce the
Cost Power Latency Production (CPLP) as an additional metric for evaluating the results.

In addition, we realize the same machine learning algorithms and parameters to the
Nvidia Jetson Nano 2, the Raspberry Pi 3B+, and STM32L476 Nucleo, respectively [39], al-
lowing for more comprehensive comparisons of the implementations within different FPGAs.

5.1. ANN
5.1.1. ANN Parameter Analysis

We intend to find the best user-defined ANN parameters in six datasets, including the
number of hidden layers, neurons within each layer, and activation functions. Different
combinations of these parameters are used to train our ANN model on the desktop PC
and their corresponding results are shown in Appendix A, Table A1. There are only minor
differences among all the combinations. We chose to apply parameters with the best score
from the software to our hardware implementation. The hyperparameter values associated
with the best scores for these datasets processed using the ANN algorithm are shown in
Table 7.

Table 7. The highest-scoring parameters of ANN obtained in different datasets.

Dataset Score ANN
Architectures

Activation
Function

Binary
classification

Gutter Oil 97.14% [4,4,4] Sigmoid

Smart Grid 98.73% [4,4,4] Tanh

Multiclass
classification

Gutter Oil 97.09% [8,8,8] Tanh

Wine Quality 73.01% [8,8,8,8] Sigmoid

Regression
Rain 0.8583 (R2) [8,8,8,8] ReLU

Power
Consumption 0.9979 (R2) [8,8] Sigmoid
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5.1.2. Implementation and Analysis of ANN Hardware

Based on the ANN architectures in Table 7, we use the corresponding EDA (with the
Balanced Optimization Mode in Synthesis Settings) to implement ANN on 10 different
FPGA boards. The results are summarized in Appendix A, Table A2. In terms of com-
puting performance (latency), Intel MAX10M50DAF outperforms the others in five out of
six datasets, while PGL12G outperforms the competition in the Rain task. The performance
differences in time delay between 10 FPGAs are all at the millisecond level, which can
almost be ignored. For the comprehensive comparisons, Lattice’s ICE40UP5 has achieved
first place in most application scenarios for its extremely low power consumption and
cost-effectiveness among most of the datasets (five out of six). One exception is that in
the Wine Quality task scenario, it was not implemented on ICE40UP5 due to the resource
constraint. In addition, the device that performed the best on the Wine Quality task was
Lattice MachXO2. The FPGA deployment results with the best comprehensive performance
under each task are shown in Table 8.

Table 8. ANN deployment results on the best CPLP-performing FPGAs.

Dataset Device Score LUTs DSPs Latency/us Power/mW PLP CPLP

Binary
classification

Gutter Oil ICE40UP5 97.14% 1898 8 11.12 140 1556.10 59,131.80
Smart Grid ICE40UP5 98.73% 1855 8 11.12 140 1556.10 59,131.80

Multiclass
classification

Gutter Oil ICE40UP5 97.09% 3887 8 11 140 1540 58,520
Wine Quality MachXO2 73.01% 6114 / 12.73 192 2444.54 73,091.87

Regression Rain ICE40UP5 0.8583 (R2) 3553 8 8.73 135 1178.69 44,790.03
Power

Consumption ICE40UP5 0.9979 (R2) 3653 8 11.98 140 1676.50 63,707

5.2. DT
5.2.1. Analysis of DT Parameters

For PC simulations, 12 different combinations of the maximum depth and the maxi-
mum number of leaf nodes are chosen. The results are shown in Appendix A, Table A3.
Different DT structures produce nearly identical results. Adding the maximum depth and
the maximum number of leaf nodes has no significant improvement on the score. Here, we
chose the best results from various combinations for hardware deployment, and the results
with the best scores for the six datasets are shown in Table 9.

Table 9. The highest-scoring parameters of DT obtained in different datasets.

Dataset Score Max Depth Max Leaf Nodes

Binary
classification

Gutter Oil 96.18% 5 16
Smart Grid 97.98% 4 8

Multiclass
classification

Gutter Oil 96.85% 6 32
Wine Quality 83.69% 4 16

Regression Rain 0.8481 (R2) 4 8
Power Consumption 0.9976 (R2) 6 64

5.2.2. Implementation and Analysis of DT Hardware

Based on the DT architectures in Appendix A, Table A4, we use the appropriate
EDA (with the Balanced Optimization Mode in Synthesis Settings) to implement DT on
10 different FPGA boards. In terms of computing performance, Intel MAX10M50DAF
outperforms the competition in all six datasets. While in terms of comprehensiveness,
Lattice’s ICE40UP5 came to first place again in most application scenarios for its extremely
low power consumption and cost-effectiveness. The FPGA DT deployment results with the
best comprehensive performance under each task are shown in Table 10.
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Table 10. DT deployment results on the best CPLP-performing FPGAs.

Dataset Device Score LUTs DSPs Latency/us Power/mW PLP CPLP

Binary
classification

Gutter Oil ICE40UP5 96.18% 451 0 7.92 133.90 1060.76 3882.38
Smart Grid ICE40UP5 97.98% 285 0 5.87 122 716.14 2873.01

Multiclass
classification

Gutter Oil ICE40UP5 96.85% 715 0 7.92 135 1069.47 3876.36
Wine Quality ICE40UP5 83.69% 305 0 5.60 121 677 2740.86

Regression Rain ICE40UP5 0.8481 (R2) 303 0 5.80 121 701.80 2838.75
Power

Consumption ICE40UP5 0.9976 (R2) 765 0 9.65 128 1235.46 4723.10

5.3. K-NN
5.3.1. Analysis of k-NN Parameters

In our k-NN model, the parameter k is user-defined. We experiment with various
k values when training our model on the PC, and the results are shown in Appendix A,
Table A5. The increment of k has no significant effect on the score. In fact, on the contrary,
it might decrease them. We deploy the architecture that is optimal in terms of k value for
hardware deployment. The hyperparameter values associated with the best scores for these
datasets processed using the k-NN algorithm are shown in Table 11.

Table 11. The highest-scoring parameters of k-NN obtained in different datasets.

Dataset Score k Values

Binary classification Gutter Oil 99.36% 2
Smart Grid 79.39% 16

Multiclass
classification

Gutter Oil 99.36% 2
Wine Quality 81.23% 8

Regression Rain 0.8527 (R2) 16
Power Consumption 0.9960 (R2) 2

5.3.2. Implementation and Analysis of k-NN

According to the k parameters analyzed in Section 5.3.1, we implement our model
on 10 FPGA boards (with the Balanced Optimization Mode in Synthesis Settings). The
corresponding results are shown in Appendix A, Table A6. Gowin’s GW2A has the best
computing performance in all of the task scenarios. By relying on extremely low power
consumption and cost-effectiveness, Lattice’s ICE40UP5 achieves the best comprehensive
performance across all datasets.

Additionally, two things are worth noting: Anlogic’s EF2M45 and Lattice’s MachXO2
are unable to deploy k-NN in multiple mission scenarios due to resource constraints.
Pango’s PGL12G is also incapable of deploying k-NN. In addition, the reason is that the
synthesis tool is unable to correctly recognize the current k-NN design, and therefore
ignores the key path. This does not occur when using alternative development tools. The
FPGA k-NN deployment results with the best comprehensive performance under each task
are shown in Table 12.

Table 12. The k-NN deployment results on the best CPLP-performing FPGAs.

Dataset Device Score LUTs DSPs Latency/us Power/mW PLP CPLP

Binary clas-
sification

Gutter Oil ICE40UP5 99.36% 979 6 7.81 134 1046.54 39,768.52
Smart Grid ICE40UP5 79.39% 4949 8 9.32 135.79 1265.58 48,092.09

Multiclass
classifica-

tion

Gutter Oil ICE40UP5 99.36% 1077 6 7.81 135 1054.35 40,065.30
Wine Quality MachXO2 81.23% 4348 / 7.18 186 1335.67 39,936.41

Regression Rain Cyclone10LP10CL 0.8527 (R2) 5397 8 11.89 305.54 3633.79 181,325.98
Power

Consumption ICE40UP5 0.9960 (R2) 1159 7 9.36 12.71 118.97 4520.69
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5.4. SVM

In the experiment, the linear SVM is chosen for training, and the results are shown
in Table 13. Due to the function similarity between the linear SVM and ANN, their
simulation scores are very similar. The SVM deployment results on 10 FPGA boards with
the best comprehensive performance under each task are shown in Table 14. The remaining
implementation results are provided in the Appendix A, Table A7.

Table 13. The highest-scoring of SVM obtained in different datasets.

Dataset Score

Binary classification Gutter Oil 96.02%
Smart Grid 98.35%

Multiclass classification
Gutter Oil 96.33%

Wine Quality 72.68%

Regression Rain 0.7932 (R2)
Power Consumption 0.9979 (R2)

Table 14. SVM deployment results on the best CPLP-performing FPGAs.

Dataset Device Score LUTs DSPs Latency Power PLP CPLP

Binary
classification

Gutter Oil ICE40UP5 96.02% 765 8 15.56 151 2349.41 89,277.54
Smart Grid ICE40UP5 98.35% 955 8 15.90 154.98 2464.17 93,638.31

Multiclass
classification

Gutter Oil ICE40UP5 96.33% 765 8 14.90 152.99 2279.20 86,609.61
Wine Quality ICE40UP5 72.68% 976 8 15.56 155.14 2413.89 91,727.65

Regression Rain ICE40UP5 0.7932 (R2) 527 8 13.51 147.76 1996.77 75,877.43
Power

Consumption ICE40UP5 0.9979 (R2) 516 8 13.47 148 1994.00 75,772.15

5.5. Comparisons with Embedded Platforms

To provide a more accurate assessment of our implementation, we also compare MLoF
with three representative embedded platforms, namely Nvidia Jetson Nano, Raspberry
Pi3 B+, and STM32L476 Nucleo. The specification of each platform is listed in Table 15.
Jetson Nano is powered by a Cortex-A57 core running at 1.43 GHz and a 128-core Nvidia
Maxwell-based GPU [40], while Raspberry features a Cortex-A53 core running at 1.2 GHz.
STM32L476 Nucleo is a typical IoT development platform with a Cortex-M4 core running
at 80 MHz [41]. Compared with Table 4, the prices of these three representative embedded
development platforms are similar to the FPGAs, which indicates that all of them are
comparable in terms of other indexes. Given the proper cost of FPGAs, they can be
considered as competitive substitutes for past typical platforms.

Table 15. The specification of three representative embedded development platforms.

Platform Processor Clock Price

Nvidia Jetson Nano Cortex-A57 1.43 GHz $89.00
Raspberry Pi3 B+ Cortex-A53 1.2 GHz $54.99

STM32L476 Nucleo Cortex-M4 80 MHz $31.99

Based on the simulation results of previous desktop PCs, the Receiver Operating
Characteristic (ROC) curve and Precision-Recall (PR) curve shown in Figure 10, we select
the models with the highest score in each of the six task scenarios for deployment of the
embedded platform [42]. The corresponding deployment models and architectures for each
task are listed in Table 16. PyCuda is used for GPU parallel acceleration with fixed weight
parameters on Jetson Nano. Moreover, we use the same Python code to implement it on
the Raspberry Pi, as well.
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Figure 10. Comparison of the receiver operating characteristic curve and precision-recall curve for
the six typical IoT endpoint datasets with different algorithms. (a) Receiver Operating Characteristic
curve for Gutter Oil binary classification; (b) Receiver Operating Characteristic curve for Smart
Grid binary classification; (c) Receiver Operating Characteristic curve for Gutter Oil multiclass
classification; (d) Receiver Operating Characteristic curve for Smart Grid multiclass classification;
(e) Precision-Recall curve for Gutter Oil binary classification; (f) Precision-Recall curve for Smart Grid
binary classification; (g) Precision-Recall curve for Gutter Oil multiclass classification; (h) Precision-
Recall curve for Smart Grid multiclass classification.

Table 16. The highest-scoring model obtained in different datasets.

Dataset Model Score Architecture

Binary
classification

Gutter Oil k-NN 99.36% K = 2
Smart Grid ANN 98.73% [4,4,4], Tanh

Multiclass
classification

Gutter Oil k-NN 99.36% K = 2

Wine Quality DT 83.69% Max depth = 4,
Max node = 16

Regression Rain ANN 0.8583 (R2) [8,8,8], ReLU
Power Consumption SVM 0.9979 (R2) N/A

Table 17 compares the performance of our FPGA and three embedded platform
implementations. Jetson Nano takes the lead in terms of computing performance. On
the other hand, Nucleo consumes the lowest power. While the power consumption of
FPGA decreased by an average of 891%, and its performance improved by an average of
9 times compared to typical IoT endpoint platforms. Moreover, FPGAs outperform all
other platforms in terms of Energy Efficiency (PLP) and Cost Efficiency (CPLP).
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Table 17. Breakdown of platform implemented results.

Dataset and Type of Module The Best of FPGA Jetson Nano Raspberry Nucleo

Binary
classification

Gutter Oil
(k-NN)

Accuracy 99.36% 99.36% 99.36% 99.36%
Latency 7.81 us 5.90 us 10.51 us 180.00 us
Power 134 mW 2120 mW 1480 mW 102 mW

PLP 1046.54 12,508 15,554.8 18,360
CPLP 39,768.52 1,113,212 855,358.5 587,336.4

Smart Grid
(ANN)

Accuracy 98.73% 98.73% 98.73% 98.73%
Latency 11.12 us 5.97 us 18.77 us 300.00 us
Power 140 mW 2110 mW 1470 mW 101 mW

PLP 1556.8 12,596.7 27,591.9 30,300
CPLP 59,158.4 1,121,106 1,517,279 969,297

Multiclass
classification

Gutter Oil
(k-NN)

Accuracy 99.36% 99.36% 99.36% 99.36%
Latency 7.81 us 5.44 us 10.25 us 180.00 us
Power 135 mW 2120 mW 1470 mW 102 mW

PLP 1054.35 11,532.8 15,067.5 18,360
CPLP 40,065.3 1,026,419 828,561.8 587,336.4

Wine
Quality

(DT)

Accuracy 83.69% 83.69% 83.69% 83.69%
Latency 5.60 us 1.37 us 5.82 us 84.00 us
Power 121 mW 2060 mW 1350 mW 101 mW

PLP 677.6 2822.2 7857 8484
CPLP 25,748.8 251,175.8 432,056.4 271,403.2

Regression

Rain
(ANN)

R2 0.8583 0.8583 0.8583 0.8583
Latency 8.73 us 7.81 us 35.77 us 261.00 us
Power 135 mW 2140 mW 1480 mW 102 mW

PLP 1178.55 16,713.4 52,939.6 26,622
CPLP 44,784.9 1,487,493 2,911,149 851,637.8

Power Con-
sumption

(SVM)

R2 0.9979 0.9979 0.9979 0.9979
Latency 13.47 us 7.94 us 43.73 us 364.00 us
Power 148 mW 2610 mW 1530 mW 103 mW

PLP 1993.56 20,723.4 66,906.9 37,492
CPLP 75,755.28 1,844,383 3,679,210 1,199,369

To demonstrate the benefits of FPGA implementation in IoT endpoint scenarios, we
compare embedded and FPGA platforms using six datasets in terms of performance
(latency), power consumption, PLP, and CPLP, as shown in Figure 11 with the ordinate-axis
in logarithmic scale. Jetson Nano exceeds the others in performance, but the second-
best FPGA is not far behind, only 38% lower in average, 100% ahead of Raspberry, and
2300% ahead of Nucleo. In terms of power consumption, Nucleo is quite competitive
as a low-power MCU with 102 mW on average, 30 mW lower than FPGA. These two
platforms advanced well beyond Jetson Nano and Raspberry. It can be clearly seen that
in comparison to other platforms, FPGAs require significantly less PLP and CPLP on the
ordinate-axis in logarithmic scale. The smallest PLP and CPLP are critical for IoT endpoint
development and implementation, as response time, power consumption, and cost are all
critical factors in IoT endpoint tasks. Furthermore, the FPGA PLP is 17× better than the
average for embedded platforms and the FPGA CPLP is 25× better than the average for
embedded platforms.
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6. Conclusions

In this paper, the Machine Learning on FPGA (MLoF), a series of ML hardware
accelerator IP cores for IoT endpoint devices was introduced to offer high-performance,
low-cost, and low-power.

MLoF completes the process of making inferences on FPGAs based on the optimal
parameter results from PC training. It implements four typical machine learning algorithms
(ANN, DT, k-NN, and SVM) with Verilog HDL on 10 FPGA development boards from
seven different manufacturers. The usage of LUTs, Power, Latency, Cost, PLP, as well
as CPLP are used in comparisons and analyses of the MLoF deployment results with six
typical IoT datasets. At the same time, we analyzed the synthesis results of different EDA
tools under the same hardware design. Finally, we compared the best FPGA deployment
results with typical IoT endpoint platforms (Jetson Nano, Raspberry, STM32L476). The
results indicate that the FPGA PLP outperforms the IoT platforms by an average of 17×
due to their superior parallelism capability. Meanwhile, FPGAs have 25× better CPLP
compared to the IoT platforms. To our knowledge, this is the first paper that conducts
hardware deployment, platform comparisons, and deployment result analysis. At the same
time, it is also the first set of IP on open-source FPGA machine learning algorithms, and
has been verified on low-cost FPGA platforms.

MLoF still has room for further improvements: 1. The adaptability of MLoF could be
enhanced, thus more complex algorithms (kNN with k > 16) could also be deployed on
low-cost FPGAs with few resources, such as MachXO2; 2. More options for user parameters
configuration could be added, including more ML algorithms, larger data bit width, and
more hyperparameters; 3. Usability could be improved by further providing a script file or
a user interface, to help the users generate the desired ML algorithm IP core more easily.
These existing shortcomings of MLoF point out the direction of our future work.
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Appendix A

Table A1. The score for different ANN architectures and activation functions.

Activation
Function

Dataset
The Score for ANN Architecture

1.4 1.8 2.4 2.8 3.4 3.8 4.4 4.8

ReLU

Gutter Oil 95.76 96.08 95.97 96.61 95.55 96.92 96.71 96.82
Smart Grid 98.17 98.25 98.41 97.92 98.3 97.83 98.16 98.41
Gutter Oil 95.28 96.55 96.46 96.28 96.28 96.97 93.1 96.19

Wine Quality 70.84 71.58 63.01 71.45 70.22 71.36 70.7 72.29
Rain 78.85 85.18 85.06 83.66 78.85 85.36 85.55 85.83

Power Consumption 0.9976 0.9967 0.9894 0.997 0.9973 0.9964 0.9973 0.9973

Tanh

Gutter Oil 96.19 96.4 95.87 96.4 96.92 95.87 96.5 96.29
Smart Grid 98.25 98.52 98.68 98.3 98.73 98.41 98.32 98.16
Gutter Oil 95.73 96.46 96.37 96.82 96.37 96.91 96.53 96.55

Wine Quality 71.85 70.44 71.76 72.95 72.02 72.29 72.46 72.94
Rain 78.85 83.62 78.85 78.85 78.85 78.85 78.84 78.85

Power Consumption 0.9948 0.995 0.9959 0.9965 0.9945 0.9956 0.9904 0.9958

https://github.com/verimake-team/MLonFPGA
https://github.com/verimake-team/MLonFPGA
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Table A1. Cont.

Activation
Function

Dataset
The Score for ANN Architecture

1.4 1.8 2.4 2.8 3.4 3.8 4.4 4.8

Sigmoid

Gutter Oil 96.29 96.4 96.19 96.4 97.14 97.14 97.03 96.92
Smart Grid 98.07 98.07 98.52 98.03 98.64 98.26 97.87 97.56
Gutter Oil 95.55 95.5 96.27 96.73 96.1 97.09 96.83 97

Wine Quality 72.07 72.64 72.86 72.95 72.15 72.81 73 73.01
Rain 78.85 85.14 85.12 85.17 78.85 85.46 78.85 84.37

Power Consumption 0.9953 0.9966 0.9951 0.9979 0.9954 0.9956 0.9958 0.9964

Table A2. ANN deployment results on the low-cost FPGAs.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Gutter Oil

EF2M45 1445 15 11.76 492.48 5789.10 149,937.75
EG4S20 1165 25 11.40 371.82 4238.32 211,492.13
GW2A 1833 12 11.45 451.47 5167.12 873,243.27

Cyclone10LP10CL 1795 15 10.55 271.38 2863.87 142,907.27
MAX10M50DAF 1400 25 10.17 312.53 3177.18 270,060.30

ICE40UP5 1898 8 11.12 140 1556.10 59,131.80
MachXO2 2717 / 11.48 190.98 2192.07 65,542.85
M2S010 1398 22 11.63 292.47 3402.01 203,780.46
PGL12G 1780 7 11.65 585.22 6820.15 354,648
Artix-7 916 10 10.75 589 6331.75 505,906.83

Smart Grid

EF2M45 1371 15 15.59 494.18 7704.24 199,539.69
EG4S20 1091 25 11.40 381.85 4353.48 217,238.81
GW2A 1779 12 12.30 419.11 5155.09 871,210.19

Cyclone10LP10CL 1530 15 10.62 267.11 2837.24 141,578.40
MAX10M50DAF 1335 21 9.58 311.08 2978.90 253,206.68

ICE40UP5 1855 8 11.12 140 1556.10 59,131.80
MachXO2 2696 / 11.48 191 2192.30 65,549.71
M2S010 1263 22 11.79 300.44 3542.49 212,195.03
PGL12G 1116 10 11.61 586 6802.87 353,749.45
Artix-7 919 10 10.90 588 6409.20 512,095.08

Gutter Oil

EF2M45 2651 15 12.44 542.82 6752.71 174,895.08
EG4S20 1766 29 11.13 481.85 5360.60 267,494.11
GW2A 3235 8 12.32 579.51 7136.70 1,206,102.74

Cyclone10LP10CL 3069 15 10.36 272 2818.46 140,641.35
MAX10M50DAF 2198 25 9.69 317 3072.05 261,124

ICE40UP5 3887 8 11 140 1540 58,520
MachXO2 5763 / 12.05 191 2301.17 68,804.92
M2S010 2022 22 12 305 3658.78 219,160.92
PGL12G 2546 7 11.97 585 7002.45 364,127.40
Artix-7 2269 14 11 591 6501 519,429.90

Wine Quality

EF2M45 3139 15 16.37 622.83 10,195.78 264,070.60
EG4S20 2231 29 12.31 491.84 6053.59 302,074.21
GW2A 3696 16 14.27 682.89 9741.40 1,646,296.15

Cyclone10LP10CL 3815 15 11.80 279 3290.81 164,211.17
MAX10M50DAF 2895 33 9.66 322 3109.88 264,339.46

ICE40UP5 / / / / / /
MachXO2 6114 / 12.73 192 2444.54 73,091.87
M2S010 2560 22 13.99 302.21 4226.41 253,161.77
PGL12G 2929 7 15.61 586 9146.87 475,637.45
Artix-7 2320 14 12.47 588 7332.36 585,855.56
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Table A2. Cont.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Rain

EF2M45 1426 15 11.84 542.85 6428.45 166,496.94
EG4S20 1354 16 10.77 431.85 4650.61 232,065.65
GW2A 3245 8 11.45 579.73 6634.96 1,121,308.93

Cyclone10LP10CL 2263 15 9.39 273 2562.38 127,862.66
MAX10M50DAF 2292 16 8.12 313 2542.50 216,112.42

ICE40UP5 3553 8 8.73 135 1178.69 44,790.03
MachXO2 4392 / 9.14 189 1728.03 51,668.01
M2S010 2196 16 9.12 311 2836.63 169,914.20
PGL12G 2055 7 4.72 584 2754.73 143,245.86
Artix-7 1794 8 9.25 595 5503.75 439,749.63

Power Con-
sumption

EF2M45 2548 15 16.61 555.51 9227.56 238,993.80
EG4S20 1614 29 14.61 454.12 6632.39 330,956.43
GW2A 3245 8 14.45 561.69 8117 1,371,772.43

Cyclone10LP10CL 2741 15 12.48 293 3657.23 182,495.58
MAX10M50DAF 1832 33 11.67 344 4014.14 341,201.56

ICE40UP5 3653 8 11.98 140 1676.50 63,707
MachXO2 5621 / 12.80 209 2675.41 79,994.73
M2S010 2323 22 12.21 322 3931.30 235,484.75
PGL12G 2298 10 15.89 586 9309.78 484,108.66
Artix-7 1110 14 12.12 588 7126.56 569,412.14

Table A3. The score for different DT architectures.

Number of
Depths Dataset

Number of Leaf Nodes

8 16 32 64

4

Gutter Oil 96.09 96.09 / /
Smart Grid 97.98 97.98 / /
Gutter Oil 96.46 96.46 / /

Wine Quality 81.98 83.69 / /
Rain 0.8481 0.848 / /

Power
Consumption 0.98 0.992 / /

5

Gutter Oil 96.09 96.18 96.18 /
Smart Grid 97.98 97.98 97.98 /
Gutter Oil 96.46 96.63 96.7 /

Wine Quality 81.98 83.21 83.51 /
Rain 0.8481 0.8451 0.8404 /

Power
Consumption 0.98 0.9928 0.9963 /

6

Gutter Oil 96.09 96.18 96.18 96.18
Smart Grid 97.98 97.98 97.98 97.98
Gutter Oil 96.46 96.63 96.85 96.85

Wine Quality 81.98 82.5 83.51 83.25
Rain 0.8481 0.8447 0.8366 0.839

Power
Consumption 0.98 0.9928 0.9966 0.9976
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Table A4. DT deployment results on the low-cost FPGAs.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Gutter Oil

EF2M45 681 / 12.28 416.85 5120.52 132,621.57
EG4S20 661 / 11.52 325.63 3751.54 187,201.70
GW2A 417 0 8.62 409.26 3528.20 596,265.12

Cyclone10LP10CL 360 0 6.33 263 1664 83,033.65
MAX10M50DAF 363 0 5.70 302 1722 146,370.34

ICE40UP5 451 0 7.92 133.90 1060.76 40,309.02
MachXO2 494 / 8.86 184.71 1635.83 48,911.23
M2S010 396 0 9.87 279 2752.34 164,864.87
PGL12G 271 0 9.77 548 5356.15 278,519.90
Artix-7 264 0 9.40 587 5517.80 440,872.22

Smart Grid

EF2M45 272 0 7.95 387.38 3081.21 79,803.41
EG4S20 272 0 7.62 281.08 2142.35 106,903.45
GW2A 313 0 7.86 400.69 3150.21 532,385.33

Cyclone10LP10CL 284 0 5.93 261 1546.95 77,192.66
MAX10M50DAF 287 0 5.38 301 1620.28 137,724.06

ICE40UP5 285 0 5.87 122 716.14 27,213.32
MachXO2 285 / 5.95 184 1095.17 32,745.52
M2S010 291 0 6.38 293 1868.75 111,938.36
PGL12G 307 0 6.33 543 3436.65 178,705.64
Artix-7 188 0 8.02 588 4715.76 376,789.22

Gutter Oil

EF2M45 1412 0 18.90 446.36 8436.73 218,511.20
EG4S20 1463 0 17.63 374.87 6608.87 329,782.61
GW2A 693 0 10.17 437.50 4450.69 752,166.19

Cyclone10LP10CL 636 0 8.06 264 2128.10 106,192.39
MAX10M50DAF 648 0 7.11 303 2153.72 183,066.54

ICE40UP5 715 0 7.92 135 1069.47 40,639.86
MachXO2 774 / 8.86 187 1656.07 49,516.55
M2S010 685 0 9.35 316 2955.86 177,056.25
PGL12G 679 0 12.82 553 7088.35 368,594.41
Artix-7 655 0 10.20 590 6018 480,838.20

Wine Quality

EF2M45 266 0 8.26 387.38 3199.73 82,873.11
EG4S20 266 0 8.39 286.44 2403.78 119,948.59
GW2A 311 0 7.94 401.59 3187.39 538,668.59

Cyclone10LP10CL 284 0 5.77 261.42 1507.09 75,203.61
MAX10M50DAF 287 0 5.54 301.81 1670.82 142,019.71

ICE40UP5 305 0 5.60 121 677.6 25,748.8
MachXO2 304 / 5.54 179 991.66 29,650.63
M2S010 301 0 6.72 291.47 1958.41 117,308.58
PGL12G 316 0 7.22 443.83 3204.90 166,654.61
Artix-7 177 0 8.20 488 4001.60 319,727.84

Rain

EF2M45 269 0 7.65 382.18 2925.24 75,763.62
EG4S20 269 0 7.79 281.84 2196.36 109,598.15
GW2A 315 0 7.94 400.68 3180.23 537,458.69

Cyclone10LP10CL 280 0 5.77 261.29 1508.69 75,283.55
MAX10M50DAF 283 0 5.09 301.38 1533.12 130,315.21

ICE40UP5 303 0 5.80 121 701.80 26,668.40
MachXO2 301 / 5.94 174 1033.21 30,893.04
M2S010 306 0 6.57 289.28 1900.28 113,826.79
PGL12G 312 0 7.23 443.86 3210 166,919.77
Artix-7 178 0 7.42 487 3613.54 288,721.85
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Table A4. Cont.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Power Con-
sumption

EF2M45 1437 0 19.76 436.51 8625.48 223,399.86
EG4S20 1424 0 17.51 365.56 6399.56 319,338.21
GW2A 679 0 10.24 439.19 4495.09 759,670.07

Cyclone10LP10CL 655 0 8.52 264.80 2256.10 112,579.19
MAX10M50DAF 665 0 6.87 303.44 2083.72 177,116.41

ICE40UP5 765 0 9.65 128 1235.46 46,947.33
MachXO2 783 / 9.96 194 1932.82 57,791.38
M2S010 709 0 10.47 313.76 3286.36 196,853.21
PGL12G 668 0 15.50 454.35 7044.24 366,300.60
Artix-7 716 0 8.35 492 4108.20 328,245.18

Table A5. The score for different k-NN architectures.

Dataset
k Values (Number of Neighbors)

2 4 8 16

Gutter Oil 99.36 99.09 98.73 98.46
Smart Grid 75.78 77.3 78.38 79.39
Gutter Oil 99.36 99.07 98.73 98.46

Wine Quality 77.93 77.41 81.23 74.9
Rain 0.8366 0.8466 0.8494 0.8527

Power Consumption 0.996 0.9954 0.9944 0.9915

Table A6. The k-NN deployment results on the low-cost FPGAs.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Gutter Oil

EF2M45 1251 15 17.26 446.36 7703.32 199,515.87
EG4S20 942 18 16.08 315.81 5077.64 253,374.31
GW2A 991 6 5.18 397.25 2059.34 348,029.14

Cyclone10LP10CL 984 6 10.63 282.49 3001.74 149,786.76
MAX10M50DAF 985 6 9.33 335.91 3135.05 266,479.08

ICE40UP5 979 6 7.81 134 1046.54 39,768.52
MachXO2 1062 / 8.84 185.47 1638.63 48,994.96
M2S010 990 6 13.32 325.57 4337.50 259,816.40
PGL12G / / / / / /
Artix-7 592 18 11.92 597 7116.24 568,587.58

Smart Grid

EF2M45 / / / / / /
EG4S20 10,757 29 18.07 1371.32 24,783.83 1,236,713.13
GW2A 5708 13 7.84 888.16 6960.47 1,176,319.55

Cyclone10LP10CL 4810 13 11.89 304.67 3621.31 180,703.25
MAX10M50DAF 4847 13 9.90 369.19 3653.14 310,516.48

ICE40UP5 4949 8 9.32 135.79 1265.58 48,092.09
MachXO2 / / / / / /
M2S010 5078 13 13.41 327.23 4386.45 262,748.42
PGL12G / / / / / /
Artix-7 3231 39 12.05 594 7157.70 571,900.23
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Table A6. Cont.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Gutter Oil

EF2M45 1361 15 16.92 452.82 7663.01 198,471.83
EG4S20 1058 18 16.62 331.42 5507.27 274,812.90
GW2A 1047 6 5.18 406.45 2107.04 356,089.22

Cyclone10LP10CL 1076 6 10.63 282.79 3005.77 149,988.17
MAX10M50DAF 1088 6 8.83 335.66 2964.55 251,986.68

ICE40UP5 1077 6 7.81 135 1054.35 40,065.30
MachXO2 1241 / 7.62 185.47 1414.02 42,279.30
M2S010 1117 6 12.94 325.72 4213.81 252,407.44
PGL12G / / / / / /
Artix-7 673 18 11.57 597 6907.29 551,892.47

Wine Quality

EF2M45 / / / / / /
EG4S20 4435 29 18.96 672.69 12,752.20 636,334.94
GW2A 3415 11 6.46 578.87 3739.51 631,977.72

Cyclone10LP10CL 3073 11 11.10 194.79 2162.56 107,911.67
MAX10M50DAF 3067 11 9.27 354 3280.87 278,874.12

ICE40UP5 3848 8 9.13 135 1232.42 46,831.77
MachXO2 4348 / 7.18 186 1335.67 39,936.41
M2S010 3568 11 13.35 235.65 3145.95 188,442.66
PGL12G / / / / / /
Artix-7 2037 33 12.10 511 6183.10 494,029.69

Rain

EF2M45 / / / / / /
EG4S20 11,767 24 18 1491.21 26,843.27 1,339,479.23
GW2A 6297 8 7.76 886.53 6882.98 1,163,223.64

Cyclone10LP10CL 5397 8 11.89 305.54 3633.79 181,325.98
MAX10M50DAF 5412 8 10.09 362.04 3651.17 310,349.74

ICE40UP5 / / / / / /
MachXO2 / / / / / /
M2S010 6218 8 12.94 471.37 6097.62 365,247.23
PGL12G / / / / / /
Artix-7 3754 24 11.50 509 5853.50 467,694.65

Power Con-
sumption

EF2M45 1735 15 17.75 485.83 8625.01 223,387.78
EG4S20 1071 21 15.30 365.83 5598.36 279,358.05
GW2A 1095 7 5.18 321.68 1667.57 281,819.93

Cyclone10LP10CL 1160 7 9.07 288.61 2617.40 130,608.46
MAX10M50DAF 1173 7 10.54 339.08 3573.90 303,781.77

ICE40UP5 1159 7 9.36 127 1188.21 45,152.06
MachXO2 1864 / 8.81 195.09 1719.12 51,401.82
M2S010 1232 7 11.86 212.88 2524.48 151,216.63
PGL12G / / / / / /
Artix-7 734 21 11.95 534 6381.30 509,865.87

Table A7. SVM deployment results on the low-cost FPGAs.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Gutter Oil

EF2M45 829 8 13.81 426.67 5890.66 152,568.13
EG4S20 853 8 13.45 365.11 4909.28 244,973.20
GW2A 671 8 6.51 329.78 2145.52 362,592.23

Cyclone10LP10CL 740 8 10.59 274.36 2906.30 145,024.14
MAX10M50DAF 741 8 10.06 342.58 3447.04 292,998.40

ICE40UP5 765 8 15.56 151 2349.41 89,277.54
MachXO2 2663 / 15.57 217 3378.91 101,029.32
M2S010 766 8 12.66 315.13 3988.89 238,934.52
PGL12G 663 8 11.73 589.16 6910.26 359,333.40
Artix-7 416 8 9.12 590 5380.80 429,925.92
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Table A7. Cont.

Dataset Device LUTs DSPs Latency Power PLP CPLP

Smart Grid

EF2M45 950 8 13.69 456.22 6245.71 161,763.80
EG4S20 1000 8 14.01 355.15 4976.29 248,316.96
GW2A 890 8 6.75 361.03 2437.66 411,964.72

Cyclone10LP10CL 963 8 11.33 307.44 3484.22 173,862.45
MAX10M50DAF 964 8 10.46 364.08 3809.00 323,765.42

ICE40UP5 955 8 15.90 154.98 2464.17 93,638.31
MachXO2 3752 / 15.21 216 3284.71 98,212.89
M2S010 975 8 13.48 325.74 4390.70 263,003.13
PGL12G 775 8 11.22 587.97 6596.44 343,014.64
Artix-7 482 8 8.78 589 5171.42 413,196.46

Gutter Oil

EF2M45 829 8 13.81 426.67 5890.66 152,568.13
EG4S20 853 8 13.45 365.11 4909.28 244,973.20
GW2A 671 8 6.51 329.78 2145.52 362,592.23

Cyclone10LP10CL 740 8 10.59 274.36 2906.30 145,024.14
MAX10M50DAF 741 8 10.06 362.58 3648.28 310,103.80

ICE40UP5 765 8 14.90 152.99 2279.20 86,609.61
MachXO2 2667 / 15.19 217.11 3297.02 98,580.82
M2S010 766 8 12.07 319.07 3851.48 230,703.77
PGL12G 663 8 11.73 569.16 6675.68 347,135.24
Artix-7 416 0 9.12 487 4441.44 354,871.06

Wine Quality

EF2M45 918 8 13.52 444.32 6005.85 155,551.42
EG4S20 994 8 13.72 355.15 4873.65 243,195.38
GW2A 858 8 6.68 354.76 2369.78 400,493.40

Cyclone10LP10CL 932 8 10.96 276.47 3030.39 151,216.34
MAX10M50DAF 933 8 10.52 362.87 3817.76 324,509.20

ICE40UP5 976 8 15.56 155.14 2413.89 91,727.65
MachXO2 3070 / 15.91 217.11 3454.24 103,281.66
M2S010 966 8 12.44 320.80 3990.75 239,046.04
PGL12G 743 8 12.10 569.60 6891.02 358,333.08
Artix-7 465 8 9.20 490 4508.00 360,189.20

Rain

EF2M45 523 8 13.27 400.72 5317.57 137,725.00
EG4S20 533 8 12.95 312.13 4041.45 201,668.17
GW2A 541 8 5.91 316.57 1869.98 316,027.45

Cyclone10LP10CL 502 8 9.83 275.69 2710.86 135,271.90
MAX10M50DAF 503 8 9.95 320.90 3193.92 271,483.00

ICE40UP5 527 8 13.51 147.76 1996.77 75,877.43
MachXO2 864 15.21 217.43 3307.55 98,895.60
M2S010 570 8 11.38 184.51 2100.12 125,797.09
PGL12G 540 8 12.50 567.52 7095.14 368,947.02
Artix-7 344 8 8.92 490 4370.80 349,226.92

Power Con-
sumption

EF2M45 523 8 13.85 397.72 5509.19 142,688.01
EG4S20 533 8 12.66 315.82 3997.32 199,466.32
GW2A 534 8 5.91 314.48 1857.63 313,939.04

Cyclone10LP10CL 504 8 10.02 275.91 2765.72 138,009.52
MAX10M50DAF 507 8 9.59 321.22 3081.14 261,897.09

ICE40UP5 516 8 13.47 148 1994.00 75,772.15
MachXO2 851 / 15.21 216.43 3292.33 98,440.76
M2S010 519 8 12.53 193.70 2427.30 145,395.56
PGL12G 531 8 10.86 467.43 5078.16 264,064.30
Artix-7 342 8 8.66 490 4243.40 339,047.66

References
1. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE Netw. 2018,

32, 96–101. [CrossRef]
2. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638. [CrossRef]

http://doi.org/10.1109/MNET.2018.1700202
http://doi.org/10.3390/s20092638


Appl. Sci. 2022, 12, 89 26 of 27

3. Deploy Machine Learning Models on Mobile and IoT Devices. Available online: https://www.tensorflow.org/lite (accessed on 1
April 2021).

4. STMicroelectronics X-CUBE-AI—AI Expansion Pack for STM32CubeMX. Available online: http://www.st.com/en/embedded-
software/x-cube-ai.html (accessed on 1 April 2021).

5. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601.
6. DiCecco, R.; Lacey, G.; Vasiljevic, J.; Chow, P.; Taylor, G.; Areibi, S. Caffeinated FPGAs: FPGA Framework for Convolutional

Neural Networks. In Proceedings of the IEEE 2016 International Conference on Field-Programmable Technology (FPT), Xi’an,
China, 7–9 December 2016; pp. 265–268.

7. Brandalero, M.; Ali, M.; Le Jeune, L.; Hernandez, H.G.M.; Veleski, M.; da Silva, B.; Lemeire, J.; Van Beeck, K.; Touhafi,
A.; Goedemé, T. AITIA: Embedded AI Techniques for Embedded Industrial Applications. In Proceedings of the IEEE 2020
International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–7.

8. Kathail, V. Xilinx Vitis Unified Software Platform. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, 23–25 February 2020; pp. 173–174.

9. Aydonat, U.; O’Connell, S.; Capalija, D.; Ling, A.C.; Chiu, G.R. An OpenclTM Deep Learning Accelerator on Arria 10. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–25
February 2017; pp. 55–64.

10. Intelligent Automation, Inc. DeepIP-FNN. Available online: https://www.xilinx.com/products/intellectual-property/1-15kaxa2
.html (accessed on 2 May 2021).

11. Intel Intel® FPGA Technology Solutions for Artificial Intelligence (AI). Available online: https://www.intel.com/content/www/
us/en/artificial-intelligence/programmable/solutions.html (accessed on 2 May 2021).

12. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A
Review. IEEE Access 2019, 7, 7823–7859. [CrossRef]

13. Holanda Noronha, D.; Zhao, R.; Goeders, J.; Luk, W.; Wilton, S.J. On-Chip Fpga Debug Instrumentation for Machine Learning
Applications. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, 24–26 February 2019; pp. 110–115.

14. Saqib, F.; Dutta, A.; Plusquellic, J.; Ortiz, P.; Pattichis, M.S. Pipelined Decision Tree Classification Accelerator Implementation in
FPGA (DT-CAIF). IEEE Trans. Comput. 2013, 64, 280–285. [CrossRef]

15. Attaran, N.; Puranik, A.; Brooks, J.; Mohsenin, T. Embedded Low-Power Processor for Personalized Stress Detection. IEEE Trans.
Circuits Syst. II Express Briefs 2018, 65, 2032–2036. [CrossRef]

16. Batista, G.C.; Oliveira, D.L.; Saotome, O.; Silva, W.L. A Low-Power Asynchronous Hardware Implementation of a Novel SVM
Classifier, with an Application in a Speech Recognition System. Microelectron. J. 2020, 105, 104907. [CrossRef]

17. Roukhami, M.; Lazarescu, M.T.; Gregoretti, F.; Lahbib, Y.; Mami, A. Very Low Power Neural Network FPGA Accelerators for
Tag-Less Remote Person Identification Using Capacitive Sensors. IEEE Access 2019, 7, 102217–102231. [CrossRef]

18. Wang, C.; Gong, L.; Yu, Q.; Li, X.; Xie, Y.; Zhou, X. DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2016, 36, 513–517. [CrossRef]

19. Ge, F.; Wu, N.; Xiao, H.; Zhang, Y.; Zhou, F. Compact Convolutional Neural Network Accelerator for Iot Endpoint Soc. Electronics
2019, 8, 497. [CrossRef]

20. Jindal, M.; Gupta, J.; Bhushan, B. Machine Learning Methods for IoT and Their Future Applications. In Proceedings of the IEEE
2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19
October 2019; pp. 430–434.

21. Qian, B.; Su, J.; Wen, Z.; Jha, D.N.; Li, Y.; Guan, Y.; Puthal, D.; James, P.; Yang, R.; Zomaya, A.Y. Orchestrating the Development
Lifecycle of Machine Learning-Based Iot Applications: A Taxonomy and Survey. ACM Comput. Surv. (CSUR) 2020, 53, 1–47.
[CrossRef]

22. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

23. Meshram, V.; Patil, K.; Hanchate, D. Applications of Machine Learning in Agriculture Domain: A State-of-Art Survey. Int. J. Adv.
Sci. Technol. 2020, 29, 5319–5343.

24. Gong, Z.; Zhong, P.; Hu, W. Diversity in Machine Learning. IEEE Access 2019, 7, 64323–64350. [CrossRef]
25. Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing

2020, 415, 295–316. [CrossRef]
26. Venieris, S.I.; Bouganis, C.-S. FpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs. In

Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), Washington, DC, USA, 1–3 May 2016; pp. 40–47.

27. Faraji, S.R.; Abillama, P.; Singh, G.; Bazargan, K. Hbucnna: Hybrid Binary-Unary Convolutional Neural Network Accelerator. In
Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp.
1–5.

28. Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM (JACM) 1970, 17,
589–602. [CrossRef]

https://www.tensorflow.org/lite
http://www.st.com/en/embedded-software/x-cube-ai.html
http://www.st.com/en/embedded-software/x-cube-ai.html
https://www.xilinx.com/products/intellectual-property/1-15kaxa2.html
https://www.xilinx.com/products/intellectual-property/1-15kaxa2.html
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/solutions.html
http://doi.org/10.1109/ACCESS.2018.2890150
http://doi.org/10.1109/TC.2013.204
http://doi.org/10.1109/TCSII.2018.2799821
http://doi.org/10.1016/j.mejo.2020.104907
http://doi.org/10.1109/ACCESS.2019.2931392
http://doi.org/10.1109/TCAD.2016.2587683
http://doi.org/10.3390/electronics8050497
http://doi.org/10.1145/3398020
http://doi.org/10.1109/ACCESS.2019.2917620
http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.1145/321607.321609


Appl. Sci. 2022, 12, 89 27 of 27

29. Chen, H.; Jiang, L.; Yang, H.; Lu, Z.; Fu, Y.; Li, L.; Yu, Z. An Efficient Hardware Architecture with Adjustable Precision and
Extensible Range to Implement Sigmoid and Tanh Functions. Electronics 2020, 9, 1739. [CrossRef]

30. Ramachandran, S. Synthesis of Designs–Synplify Tool. In Digital VLSI Systems Design: A Design Manual for Implementation of
Projects on FPGAs and ASICs Using Verilog; Springer: Berlin/Heidelberg, Germany, 2007; pp. 255–292.

31. Verimake Gutter Oil Dataset. Available online: https://github.com/verimake-team/Gutteroildetector/tree/master/data (ac-
cessed on 2 May 2021).

32. Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M. Taming Instabilities in Power Grid Networks by Decentralized
Control. Eur. Phys. J. Spec. Top. 2016, 225, 569–582. [CrossRef]

33. Arzamasov, V.; Böhm, K.; Jochem, P. Towards Concise Models of Grid Stability. In Proceedings of the 2018 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark,
29–31 October 2018; pp. 1–6.

34. Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; Reis, J. Modeling Wine Preferences by Data Mining from Physicochemical
Properties. Decis. Support Syst. 2009, 47, 547–553. [CrossRef]

35. Climate Data Online-Map Search-Bureau of Meteorology. Available online: http://www.bom.gov.au/climate/data/ (accessed
on 2 May 2021).

36. Individual Household Electric Power Consumption Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/
individual+household+electric+power+consumption (accessed on 2 May 2021).

37. Dellamonica, J.; Lerolle, N.; Sargentini, C.; Beduneau, G.; Di Marco, F.; Mercat, A.; Richard, J.-C.M.; Diehl, J.-L.; Mancebo, J.;
Rouby, J.-J. Accuracy and Precision of End-Expiratory Lung-Volume Measurements by Automated Nitrogen Washout/Washin
Technique in Patients with Acute Respiratory Distress Syndrome. Crit. Care 2011, 15, 1–8. [CrossRef]

38. Hu, Y.; Zhu, Y.; Chen, H.; Graham, R.; Cheng, C.-K. Communication Latency Aware Low Power NoC Synthesis. In Proceedings
of the IEEE 43rd annual Design Automation Conference, San Francisco, CA, USA, 24–28 July 2006; pp. 574–579.

39. Garofalo, A.; Rusci, M.; Conti, F.; Rossi, D.; Benini, L. PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-
Power RISC-V Processors. Philos. Trans. R. Soc. A 2020, 378, 20190155. [CrossRef] [PubMed]

40. Slater, W.S.; Tiwari, N.P.; Lovelly, T.M.; Mee, J.K. Total Ionizing Dose Radiation Testing of NVIDIA Jetson Nano GPUs. In
Proceedings of the 2020 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 22–24 September
2020; pp. 1–3.

41. Lang, R.; Lescisin, M.; Mahmoud, Q.H. Selecting a Development Board for Your Capstone or Course Project. IEEE Potentials 2018,
37, 6–14. [CrossRef]

42. Crocioni, G.; Pau, D.; Delorme, J.-M.; Gruosso, G. Li-Ion Batteries Parameter Estimation with Tiny Neural Networks Embedded
on Intelligent IoT Microcontrollers. IEEE Access 2020, 8, 122135–122146. [CrossRef]

http://doi.org/10.3390/electronics9101739
https://github.com/verimake-team/Gutteroildetector/tree/master/data
http://doi.org/10.1140/epjst/e2015-50136-y
http://doi.org/10.1016/j.dss.2009.05.016
http://www.bom.gov.au/climate/data/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
http://doi.org/10.1186/cc10587
http://doi.org/10.1098/rsta.2019.0155
http://www.ncbi.nlm.nih.gov/pubmed/31865877
http://doi.org/10.1109/MPOT.2017.2716778
http://doi.org/10.1109/ACCESS.2020.3007046

	Introduction 
	Related Work 
	Machine Learning Algorithms Implementation on Low-Cost FPGAs 
	Artificial Neural Networks (ANN) 
	Overall Structure of ANN 
	Activation Function 

	Decision Tree (DT) 
	The k-Nearest Neighbors (k-NN) 
	Overall Structure of k-NN 
	Structure of Sort Network and Label Finder Module 

	Support Vector Machine (SVM) 

	Comparison of Development Platforms 
	Experimental Analysis and Result 
	ANN 
	ANN Parameter Analysis 
	Implementation and Analysis of ANN Hardware 

	DT 
	Analysis of DT Parameters 
	Implementation and Analysis of DT Hardware 

	K-NN 
	Analysis of k-NN Parameters 
	Implementation and Analysis of k-NN 

	SVM 
	Comparisons with Embedded Platforms 

	Conclusions 
	Appendix A
	References

