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Featured Application: The developed surrogate model-based parameter tuning method of the
simulated annealing algorithm is suitable for solving not only numerical simulation optimiza-
tion problems but also other computationally intensive model-driven optimizations.

Abstract: A design engineer has to deal with increasingly complex design tasks on a daily basis, for
which the available design time is shrinking. Market competitiveness can be improved by using
optimization if the design process can be automated. If there is limited information about the behavior
of the objective function, global search methods such as simulated annealing (SA) should be used.
This algorithm requires the selection of a number of parameters based on the task. A procedure for
reducing the time spent on tuning the SA algorithm for computationally expensive, simulation-driven
optimization tasks was developed. The applicability of the method was demonstrated by solving
a shape optimization problem of a rubber bumper built into air spring structures of lorries. Due to
the time-consuming objective function call, a support vector regression (SVR) surrogate model was
used to test the performance of the optimization algorithm. To perform the SVR training, samples
were taken using the maximin Latin hypercube design. The SA algorithm with an adaptive search
space and different cooling schedules was implemented. Subsequently, the SA parameters were
fine-tuned using the trained SVR surrogate model. An optimal design was found using the adapted
SA algorithm with negligible error from a technical aspect.

Keywords: finite element analysis; hyperelastic material model; support vector regression; engineering
optimization; simulated annealing; parameter tuning

1. Introduction

Based on customer requirements, a design engineer has to deal with increasingly
complex design tasks on a daily basis, for which the available design time is shrinking. If
the design process can be automated, market competitiveness can be improved by using
optimization rather than a “what if”-based design process. This iteration-based process
can be performed before the product is manufactured thanks to the numerical simulation
methods, which shorten design time and reduce engineering work and cost. Finite element
simulation-driven design processes could take anywhere from one minute to days to
calculate, so task-specific engineering optimization methods are still being researched.

In this paper, the applicability of the method to be developed is demonstrated by
solving a shape optimization problem of a rubber bumper built into air spring structures of
lorries. One of the most important technical requirements for the investigated product is the
force–displacement characteristics for a compressive load. By modifying the geometrical
dimensions of the product, design engineers can achieve the desired working character-
istics. This process is known as shape optimization. Owing to the continuum mechanics
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background and hyperelastic material model available [1–3], trials can be carried out by
applying finite element analysis. The rubber product can be simulated with a simplified
model due to the axisymmetric geometric and boundary conditions, so the running time is
not significant despite the nonlinear simulation.

Design optimization uses a mathematical formulation of a design problem to support
the selection of the optimal design [4]. For the selection, the objective function is used,
which is a scalar value formulated from a set of design responses; thus, it has different
behaviors for a variety of problems. Several local and global search methods can be used
if the computational cost of the optimization algorithm allows it to run on the model [5].
Because the gradient of the objective function calculated by finite element simulation is not
given in the analytical form, but with approximate differences, gradient-based methods
such as nonlinear programming by quadratic Lagrangian [6], mixed-integer sequential
quadratic programming [7] or robust optimization [8] can be used to efficiently find the
single global optimum. Direct methods, such as Powell’s method [9] and the Nelder–
Mead simplex method [10,11], can approach the local minimum by using the value of the
objective function. If limited information is available about the objective function behavior,
it is recommended to use global optimal search methods. These include nature-inspired
metaheuristic search methods such as the genetic algorithm [12], differential evolution [13]
or simulated annealing (SA) which guarantees approaching the global optimum with the
right settings. On the other hand, these algorithms require the selection of a number of
parameters based on the task.

2. Literature Review

Several researchers have performed finite element simulation to successfully design
rubber products, out of which [14–19] are the least efficient “trial and error” procedures.
The combination of the finite element analysis with optimum search methods is more
effective. A differential, evolution algorithm-based shape optimization of a rubber bushing
was investigated by Kaya [20]. An engine mount using a parameter optimization method
was designed by Kim [21], and Fletcher’s method applying the concept of quadratic conver-
gence was used as the optimization algorithm. In MATLAB, environment particle swarm
and gravitational search optimization methods were hybridized to solve a multiobjec-
tive optimization task for a volumetric compression restrainer device under earthquake
excitation [22]. The shape optimization of fabric rubber seal used in aircraft doors was
investigated in [23]. For the optimization task, a high number of design variables, several
geometric and functional optimization constraints and a weighted multiobjective function
were defined. For the pre-processing of the Abaqus finite element model, a developed
Python script, for the search of the adaptive simulated annealing algorithm found in the
Isight software and for the post-processing MATLAB software, was used. Despite the
complex task, the search algorithm and the developed method proved to be effective for
finding a better design.

If the calculation of the objective function is computationally expensive, it is preferable
to use a surrogate model-based optimization method [24]. The aim is to explore the relation
between the independent variables (input variables) and one or more dependent variables
(response variables) with a lower calculation time. Different kinds of calculation efficient
metamodels are known, such as the Kriging method, radial basis function, multivariable
adaptive spline regression, neural networks, support vector regression (SVR) [25] or the re-
sponse surface methodology (RSM), which is an integration of statistical and mathematical
techniques [26]. The response surface generated by the genetic aggregation algorithm is the
weighted combination of one or several metamodels out of full second-order polynomials,
non-parametric regression, Kriging, and moving least squares; thus, it is a calculation
demand solution [27–29]. Nevertheless, deep learning techniques require a huge amount
of data and computational capacity; thus, they are not advised for simulation-based opti-
mization tasks. The design of experiments (DOE) statistical technique is useful to obtain
an optimal response [30]. DOE aims to determine how many and what kind of experi-



Appl. Sci. 2022, 12, 5451 3 of 22

ments have to be carried out optimally to obtain as much information as possible at the
lowest cost [31]. Several experiment designs exist based on statistical criteria, such as
the general full or fractional factorial design, central composite design (CCD) [26], the
random and Latin hypercube design (LHD), Box–Behnken design [32], Taguchi design and
other procedures (Montgomery, 2017) [33]. The selection of an LHD that maximizes the
minimum distance among the points and was named the maximin LHD was introduced
in [34]. Based on our previous research the response surface prediction precision fitted
to the maximin Latin hypercube sampling method equals the tested CCD methods with
identical sampling [35].

Metamodel-based design optimization was used for rubber product design using
finite element simulation in some papers. The orthogonal experiment table was adopted
to train the error backpropagation neural network model, which defines the nonlinear
global mapping relationship between the geometric parameters of the rubber mount and
its primary stiffness in the three principal directions [36]. The shape optimization task
of rubber bumpers was investigated, where learning points were analyzed with finite
element simulation. The SVR model was used to determine the given values of the objective
functions of further constructions. Through a screening search algorithm, the optimal shape
was determined [37]. Dynamic simulations and the Taguchi method using an orthogonal
table were used to optimize a rotary control head rubber core sealing’s performance and
fatigue life [38]. Support vector regression and random forest light-weight surrogate models
were tuned to predict rubber suspension bushing stiffnesses for different load cases. The
training dataset was selected using the DOE method based on 1D kernel density estimations,
and the stiffnesses were calculated with finite element simulations [39]. Laboratory tests
were performed with different axial loads on rubber bushes used in dynamic vibration
absorbers and showed good agreement with the finite element analysis results. Thus, these
methods were used to obtain a large number of samples for which the neural network
surrogate model was trained in MATLAB to approximate the behavior of rubber bushes [40].
The cross-section of an automotive door sealing to reach a better door closing performance
was optimized in [41]. The relation between the cross-section parameters and compression
load deflection property was approximated with a neural network surrogate model. The
efficiency of the genetic algorithm and particle swarm optimization methods was compared
with the average of 50 runs. The different parameters of the genetic algorithm were tested
on the neural network model. The found metamodel based optimum shape was compared
with the finite element simulation results and showed a 7.9% relative error. Mankovits
and Huri found the support vector regression model with cubic kernel function suitable to
predict the new geometric construction of rubber bumpers [42,43].

Limited information is known in advance about the objective functions determined for
the industry-related shape optimization tasks, so this paper uses simulated annealing for the
search process. Another advantage of simulated annealing is that the search can be restarted
from a new candidate point if there is an analysis running issue, which is common due to
large deformations. Numerous new variants of the SA algorithm have been implemented
in the last years to optimize engineering design problems [44–47]. In [48], two-dimensional
structures subject to quasi-static loads were investigated using ANSYS, and the globally
optimum shapes were obtained by the simulated annealing search algorithm. In [49], the
shape optimization of a steel shear key using SA and Abaqus was run to enhance its cycle
fatigue performance. Based on the aforementioned articles, the algorithms were able to find
a good environment of the global optimum effectively if the algorithm parameters were
preselected with a trial-and-error method that requires much human interaction. If there
is sufficient time to run a simulated annealing algorithm, it will perform well with a slow
cooling function and a high initial temperature, as shown by Anily and Federgruen [50].
However, a good solution has to be found by the searching algorithm in a short time when
the cost function is calculated by expensive computer simulations. Therefore, numerous
papers work on the parameter tuning of the simulated annealing algorithm considering
the computational efficiency and accuracy [51,52]. The required number of function calls
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and the convergence speed of the algorithm highly depend on the treatment strategy of
the temperature parameter, the effect of which has been examined in numerous research
papers [53–55]. The values of annealing parameters for a given cooling strategy provide an
additional option to reduce the computational cost of the algorithm as investigated in [56].
In [57] the annealing parameters were tuned analytically, while in [58] automatic parameter
tuning using a genetic algorithm was studied. The appropriate choice of step size and
initial temperature parameters was investigated for a wind turbine placement optimization
task in [59]. Using the adaptive step size against the constant, the results were significantly
improved. The adaptive simulated annealing algorithm developed by Ingber [60] uses
an increasing number of parameters whose tuning process drastically enhances the com-
plexity of the algorithm.

The accuracy of finite element simulations with a large deformation and hyperelastic
material models is within the error limit of 5–10% accepted in engineering practice. The
relative error can easily become unacceptable if additional uncertainty is expected in
the design process, such as in the case of surrogate model-based optimization processes.
Therefore, if enough time and computational capacity are available, the search procedure
can run directly on the finite element model. The optimization methods used in the
aforementioned articles were able to find a good solution from a technical aspect, but
it has not been proved that the optimum found is the global one. None of the articles
discussed how to automate the parameter tuning of algorithms while keeping accuracy and
computational cost in mind. Therefore, the present work aims to develop a method suitable
for such problems, specifically automating the algorithm tuning process for numerical
simulation-driven design tasks. It also aims to shorten the time spent for testing and
training the algorithm while increasing its robustness and eliminating the need for human
interactions. A basic requirement for the algorithm is to approach the global optimum
with enough precision to avoid increasing the modelling error. Another requirement is to
estimate the number of iterations of the search algorithm so that computational resources
and the time required for the optimization may be scheduled in advance.

The novel approach is to perform the adaptation of the simulated annealing parame-
ters while running on a surrogate model, which replaces the time-demanding numerical
simulation-driven design process. The paper first introduces the developed method and
the considerations that are necessary for the numerical simulation of the rubber product. In
addition, because the task of the two-variable shape optimization of a rubber bumper is
presented with the optimum known in advance, it can be used as a numerical optimization
test function to evaluate the efficiency of the developed method. Using the optimal space-
filling method, four datasets were prepared with different sample numbers to train the
support vector regression surrogate model using the cubic kernel function. As an optimum
search algorithm, a simulated annealing method with various cooling strategies was imple-
mented in the MATLAB environment. The operation and robustness of the SA algorithm
were tested by solving optimization test functions using the empirically obtained discrete
parameter domain from the literature. Subsequently, the tuning of the SA parameters was
performed by running the trained SVR surrogate model. Finally, the SA algorithm was
used to perform the direct optimization of the finite element-based shape optimization
problem with the previously determined parameter settings. Evaluating the results, the
presented novel method proved to be accurate and efficient for the shape optimization
of rubber bumpers. Due to its plannability and shorter design time, the method aids
market competitiveness.

3. Model
3.1. Finite Element Simulation of the Rubber Bumper Working Characteristics

The investigated rubber bumper is used in the air springs of lorries, where after
a certain decrease in height it works together with the air spring as a secondary spring.
Due to its operational and manufacturing requirements, the height of the product is
h = 40 [mm] and the draft angle of the side is α = 3◦, which can be seen in Figure 1.
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During its operation, the rubber bumper is subjected to a uniaxial compression between
steel plates (Figure 2), up to a maximum of 30% of its height.
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Different force–displacement curves, which characterize the technical behavior of
the product, can be seen in Figure 3. In this particular case, the spring characteristics are
optimized with the change of the outer diameter d1 and the inner hole diameter d2 variables
of the cross-section; see in Figure 1.

The exact mixture of the styrene-butadiene rubber material of the investigated bumper
is an industrial secret. Compression tests according to ISO 7743:2017 standard were per-
formed up to 35% strain on the base material to determine the stress–strain curve. It showed
an incompressible nonlinear isotropic behavior, which can be modelled accurately with
hyperelastic constitutive models such as the two-term Mooney–Rivlin [61], of which the
strain energy function is

WMR = c10
(

I1 − 3
)
+ c01

(
I2 − 3

)
+ κ(J − 1)2, (1)

where I1 and I2 are the first and second strain invariants of the right Cauchy–Green
tensor; J is the Jacobian; and c10, c01 and κ are material constants. In Table 1, these material
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parameters were determined using the curve-fitting process, and the goodness of the fitted
material model was compared with laboratory measurements [62,63].
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Table 1. Defined attributes for the finite element discretization.

Element Type Axisymmetric

element order, shape linear four-node quadrilateral
element size 1 [mm]

material model two-term Mooney–Rivlin
κ, bulk modulus 1000 [MPa]

c10, material parameter 1.288 [MPa]
c01, material parameter 1.137 [MPa]

The geometry and boundary conditions of the investigated rubber specimen are
axisymmetric, thereby the geometry was discretized using the axisymmetric element type
with attributes that can be seen in Table 1. Frictional contact pairs were defined between the
rubber bumper and flat steel plates with self contact between the bore’s elements, where
the µs = 0.6 coefficient of static friction was selected according to [64]. The lower steel plate
displacement in the z-axis direction was constrained; furthermore, the upper steel plate has
a 12 (mm) prescribed displacement in the negative z-axis direction.

The NX Nastran Advanced Nonlinear Static solver was used to deal with the non-
linearities derived from the material, contacts and large geometric changes. The finite
element analysis was solved in 100 equally distributed substeps, and every 10th substep
was created as the output. As a result, Figure 3 shows the load-displacement characteristics
of the investigated product, while the operation of the constructed model and contacts can
be observed through the deformation image seen in Figure 2.

3.2. Two-Dimensional Shape Optimization Problem

The current investigation aimed to achieve the optimal working characteristics by
changing the shape of the product. The geometry of the product tested can be seen in
Figure 1. Let Ω be the set of the d vector of design variables, which is considered to be
a continuous domain. Let the objective function be E(Ω)FEA : Rn → R , the function which
forms real numbers from set Ω ⊆ Rn, and the relation can be determined by a finite element
analysis of the rubber bumper compression test. The objective function is described as
the difference between the initial and optimal working characteristics; see Figure 3. The
aim is to decrease the value of the objective function during optimization by changing
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d = (d1, d2). This means that the task of optimization is to find the minimum value of the
objective function and determine a vector dopt describing the optimal shape

E
(
dopt

)
FEA = min

d∈Ω
E(d)FEA (2)

subject to
70 ≤ d1 ≤ 130 [mm]
10 ≤ d2 ≤ 60 [mm]

x1 − d2/2 ≥ 15 where x1 = d1/2− tan(α)h
(3)

and x1 is the coordinate of point P, as seen in Figure 1. The equations describe the geometric
optimization constraints and thus define the feasible region.

The difference between the initial and optimal working characteristics can be deter-
mined by calculating the sum of squared differences in the given points of the two working
characteristics:

E(d)FEA =
100

∑
i=10

(
Fi,dopt − Fi,d

)2
(4)

where i ∈ {10 : 10 : 100}, E(d)FEA is the error value in an investigated design point, and
Fi,dopt is the optimal while Fi,d is the investigated working characteristic-analysed compres-
sive force value in the ith substep. Fi,d is determined by evaluating the reaction force on
the steel plate. Table 2 contains the calculated objective function value for the initial shape
dinitial = (75, 20) [mm].

Table 2. Calculated cost function value in different design points.

d1 [mm] d2 [mm] E(d)FEA [kN2]

Optimum Shape, dopt 108 33 0
Initial Shape, dinitial 75 20 9666

The optimal characteristics were determined from the dopt = (108, 33) [mm] geometric
shape known in advance, although this information will be only used for the conclu-
sions. The introduced shape optimization problem will be used as a simulation-based
optimization test function.

3.3. Test Dataset and the Objective Function Behavior

With the increment of 5 [mm] along with the design variables, 128 design points
(DP) were selected from Ω. With the use of the introduced finite element model of the
rubber bumper, it is possible to calculate the E(d)FEA values for each sample point of
the designs. To accelerate the finite element model pre- and post-processing, the param-
eterization of these processes is necessary. The automation of the whole process was
feasible with the use of Femap Application Programming Interface (API). This is an object-
oriented code written in the Visual Basic for Applications (VBA) language. This provided
an opportunity to programmatically call the Femap functions for the finite element model
pre- and postprocessing from Microsoft Visual Studio (VS) through the Component Object
Model or Object Linking and Embedding (COM/OLE) interface. Using a Transmission
Control Protocol (TCP), two-way communication was created between MATLAB and vs. to
exchange data directly on a PC. As a result, it is feasible to control Femap functions via vs.
from a MATLAB script containing the implementation of the sampling process, the later
optimization task, and the search algorithm.

To generate the test dataset, the objective function value E(d)FEA was determined
automatically for each number of samples. These data will be used later as an unknown
sample to evaluate the performance of the fitted surrogate models. The objective function
values are plotted above the test dataset, which is shaped like a valley (Figure 4). This
behavior shows that convergence to the global optimum is not a trivial task.
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4. Methods
4.1. Simulated Annealing Algorithm

Simulated annealing (SA) is a probabilistic metaheuristic search method for global
optimization problems. It is mostly used for discrete optimization problems, although if an
approximation of the optimum is good enough it can be used efficiently for continuous
variables. The algorithm imitates the treatment strategy in metallurgy, of which the simi-
larity and the name have been implemented by Kirkpatrick, Gelattt and Vecchi to solve
combinatorial optimization problems [65]. There are numerous examples in the literature
that summarize the theories of simulated annealing algorithms [66–69]. They contain four
main components: the generation of the next candidate point, the acceptance function P,
the cooling schedule S and the stopping/convergence criterion C.

The algorithm uses the Metropolis criterion [70] to interpret the probability of accept-
ing the cost-increasing function value, and this is where it differs from the hill climbing
algorithm. Using the energy difference ∆E = E(dnew )− E(dk), the probability of making
the transition to the new candidate design depends on the acceptance probability function
Pt calculated at Tt temperature:

Pt(dk, dnew, Tt) =

{
1, i f ∆E < 0

exp
(
−∆E

Tt

)
, i f ∆E ≥ 0

(5)

At a lower energy state, the transition into the new candidate point will be accepted;
otherwise, Pt is its probability. At the beginning of the search, Tt is high enough to allow
the algorithm to make a transition out of any metastable state, although only the minimum
energy state is accepted at a low value of the temperature [65].

4.2. Cooling Schedule

The major component of the algorithm is the cooling schedule S(T0, Λ, N), which is
defined by the selection of the initial temperature T0, the cooling function Λ(t) and the
value of N of trials per temperature. The selection of the cooling speed and the number of
N depend on each other; thus the latter parameter was selected empirically:

N = N0·n (6)
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4.2.1. Initial Value of the Temperature Parameter

Let χ(Tt) denote the acceptance rate at a temperature Tt which is defined by

χ(Tt) =
number of accepted transitions
number of proposed transitions

. (7)

As a general rule, when Tt has a high value, all transitions are accepted using the Metropolis
criterion; thus χ(Tt) is close to 1. The selected initial value of temperature T0 must be high
enough to allow greater freedom in exploring the search space and to avoid sticking into
the local minima. However, the too-high value of T0 results in more function calls. There
are several ways of determining the T0 initial value of the temperature parameter, which
must perform the requirement that virtually (χ(T0) ≥ 0.8) all the proposed transitions
should be accepted [65,71,72].

Let mt denote the number of trials at a Tt temperature value, and mt = m1 + m2.
The values of m1 and m2 correspond to the number of cost-decreasing and cost-increasing
transitions, respectively, obtained. Furthermore, let ∆E+ be the average value of the cost-
increasing energy differences over the m2 transitions. Then, the acceptance ratio χ(Tt) can
be approximated as

χ(Tt) ≈
m1 + m2exp

(
−∆E+

Tt

)
m1 + m2

. (8)

Thus, the initial value of the temperature T0 can be calculated by the equation presented by
Aarts and Van Leerhoven [73]

T0 ≈
∆E+

ln
(

m2
m2χ0−m1(1−χ0)

) (9)

where χ0 = 0.85 is a commonly used value for the initial acceptance ratio. The domain of
the logarithmic function is the set of positive real numbers; hence the T0 can be calculated
if the m0 trials fulfil the following requirement:

m2 > m0(1− χ0). (10)

4.2.2. Cooling Functions

The convergence speed of the algorithm highly depends on the cooling function Λ(t)
of the T temperature parameter, the effect of which was investigated in numerous research
papers [53–55]. The algorithm requires generating a sequence of decreasing values of
temperature T = {T0, . . . , Tt, . . . , Tmin}, which could be finite if the value of Tmin is given.

There are numerous temperature decreasing functions such as the exponential multi-
plication cooling, which was first proposed by Kirkpatrick, Gelatt and Vecchi [65]:

Tt = T0α1
t (11)

where α1 is the cooling speed parameter, which is a positive constant factor that lies
between 0.8 and 0.99 [74]. A linear cooling function used by Randelman and Grest where
Tt is reduced with ∆T every N trials [75]:

Tt = T0 − t∆T, and Tt ≥ Tmin. (12)

A fast simulated annealing method was introduced by Szu where the cooling schedule
is inversely proportional to time [76]

Tt =
T0

1 + t
. (13)
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4.3. Generation of the Next Candidate Using Adaptive Step Size Control

To generate the αm step of the next candidate, normally distributed random numbers
with zero mean and ρi,t standard deviation are selected in all directions of the design
variables. Selecting a too-small value for the step size ρi,t the search can be stuck in local
optima, while for too-large values the optimum can only be crudely approached. The initial
step size ρi,0 was selected empirically based on the domain of the i-th design variable:

ρi,0 =
(di,max − di,min)

2
, i = 1, . . . , n. (14)

The chance of the algorithm to find a better function value without narrowing the
search space converges to zero. A 1/5 success rule was used by Schwefel to modify the
step size of evolution-based searching strategies [77]. After every N iteration, the search
space was narrowed or increased based on the calculated value of the χ10N , which denotes
the acceptance ratio for the last 10N iterations:

χ10N =
t

∑
t−9

χ(Tt)

10
. (15)

Schewels’ rule was further investigated in [78], and a third case was defined where
the step size was not modified:

ρt+1 =


min(ρ0, ρt/β), i f χ10N > 1− q

ρt, i f q ≤ χ10N ≤ 1− q
βρt, i f χ10N < q

(16)

where q < 0.5 is the success rate, and 0 < β < 1 is the step size adaptation factor.

4.4. Stopping and Convergence Criteria

The current section aims to define convergence criteria that is suitable for stopping the
search sufficiently close to the optimum without knowing its values. Let E(dk) be the k-th
function value accepted by the Metropolis criterion, and its relative change compared to
the (k− 1)-th accepted step is

REE(dk)
=
|E(dk)− E(dk−1)|
|E(dk−1)|

. (17)

The step can be relatively small at any stage of the search process thanks to the
stochastically generated new candidate, and thus the convergence condition can be met.
The early stop can be avoided by averaging the absolute relative errors RE for the steps
accepted in the last mC iteration. Let ε = (εd, εE) be the vector of the convergence tolerances
with εd representing the design variables limit, while εE represents the objective function
limit. Thus, the condition for fulfilling the convergence criterion is

cc1 = 1, if REE(dk)
< εE. (18)

Let dk be the vector of the k-th accepted design variables, and its element relative
change compared to the (k− 1)-th accepted step is

REdi,k
=

∣∣di,k − di,k−1
∣∣∣∣di,k−1

∣∣ , i = 1, . . . , n (19)

Thus the condition for fulfilling the convergence criterion is

cc2 = 1, if REdi,k
< εd,i for every i = 1, . . . , n. (20)
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In the last case, when the maximum iteration number mmax is reached, the process
will be terminated by the stopping criterion

sc = 1, if m ≥ mmax = 3000·n. (21)

Let C(cc1, cc2, sc) denote the stopping/convergence criterion, which is activated if any
of the previously mentioned conditions are met:

C(cc1, cc2, sc) = 1, if cc1 = 1 || cc2 = 1 || sc = 1. (22)

4.5. Pseudocode of the Simulated Annealing Algorithm

The simulated annealing algorithm with an adaptive step size control and different
cooling strategies was implemented in a MATLAB environment using Algorithm 1, which
was developed based on the aforementioned articles and Equations (5)–(22).

Algorithm 1: Simulated annealing algorithm with adaptive step size control

1. (Initialization)
Select an initial construction d0 ∈ Ω; an initial temperature T0; a number of trials per
temperature N; a cooling function Λ(t); an initial step size ρ0; a step size adaptation
factor β; the parameters of the convergence criterion mC and ε = (εd, εE)
Set the counter of the objective function call m = 0, the accepted moves k = 0 and the
cooling cycle t = 1
Set the variables of dk = d0, dopt = d0 ρt = ρ0, T = T0

2. (Generate a New Candidate)
do generate a random step am(ρt) ∈ Rn; dm+1 = dk + am
while dm+1 ∈ Ω
dnew = dm+1; (m = m + 1)

3. (Metropolis Criterion)
calculate ∆E = E(dnew )− E(dk)
if ∆E < 0

dk+1 = dnew ; (k = k + 1)
if dnew < dopt, dopt = dnew

else generate a uniformly distributed random number (r) in the interval (0, 1)
if r < Pt = exp(−∆E/Tt); dk+1 = dnew, (k = k + 1)

end
4. (Cooling Schedule, Step Size Adaptation)

if m%N = 0
Tt → Tt+1 , call the cooling function Λ(t); Calculate χ10N ; then , ρt → ρt+1 , call
the adaptive step size control; (t = t + 1)

end
5. (Stopping and Convergence Criteria)

if m > mC
if C(cc1, cc2, sc) = 1, check for stopping/convergence criterion

stop the search with results dopt, E
(
dopt

)
, m

else go to step 2
end

end

4.6. Optimization Problem for the Parameter Adaptation of the Simulated Annealing Algorithm

The current investigation aims to tune the simulated annealing algorithm, which can
efficiently find the global optimum. Let the objective function be E(p)SA : Rn → R , which
is a measure of the cost and precision of the algorithm:

E(p)SA = w1E(p)SA, succ + w2E(p)SA, cost, (23)

where E(p)SA, succ is the success of the found optimum, E(p)SA, cost is the computational
cost, while w1 and w2 are weighting factors. In this particular case, w1 = 10 and w2 = 1.
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The E(p)SA,succ depends on the fopt,SA found by the algorithm and the specified in advance
flimit objective function value:

E(p)SA, succ =

{
0 , if fopt,SA < flimit
1 , if fopt,SA ≥ flimit

(24)

The algorithm can only converge after the mC iteration, in which case the E(p)SA, cost = 0,
whereas the E(p)SA, cost = 1 if it stops at the maximum iteration mmax, in other cases taking
a proportional value

E(p)SA, cost =
m−mc

mmax −mc
. (25)

Due to the stochastic search, running the algorithm with the same parameters results
in a deviation in the number of iterations and the found optimum, as well as the value of
the E(p)SA objective function. Therefore, the parameters of the algorithm were chosen from
the literature’s empirically obtained discrete parameter domain. Out of all the possible
parameter combinations, the goal is to find the one that performs the best. Let Ψ be the set
of p = (p1, p2, p3) vectors of the SA algorithm variable parameters, which is considered to
be a discrete domain. The task of optimization is to find the minimum value of the objective
function and determine a vector popt describing the optimal parameter setting

E
(

popt

)
SA

= min
p∈Ψ

E(p)SA (26)

subject to
p1 = β ∈ {0.625 : 0.075 : 0.925}

p2 = Λ ∈ {1, 2, 3}
p3 = α1 ∈ {0.7 : 0.05 : 0.95} || α2 ∈ {1, 4, 8, 16, 32, 64}

E
(

popt

)
SA
≤ ESA,limit = 1

(27)

where β is the step size adaptation factor, α1 is the cooling speed parameter, α2 is the linear
cooling speed parameter, ESA,limit is the worst acceptable objective function value and Λ is
the cooling function:

Λ =


1, where Tt = T0α1

t

2, where Tt = max(T0 − t∆T, Tmin)
3, where Tt = T0/(1 + t)

(28)

where T0 is the initial temperature, Tmin = 0.001 and ∆T is the amount of temperature reduction:

∆T = α2∆Tmin = α2
(T0 − Tmin)N

mmax
, where 1 ≤ α2. (29)

4.7. Introduction of the Surrogate Model-Based Parameter Tuning of Optimization Algorithm
Method for Computationally Intensive Engineering Simulations

The current investigation aims to develop a novel method for the adaptation of
simulated annealing parameters, which occurs in computationally intensive simulation-
based optimization tasks. The optimization task seen in Section 4.6 takes 65 runs, which
itself is a calculation- and time-demanding task thanks to the finite element analysis.
Because of the metaheuristics of the algorithm, the value of the objective function E(p)SA
can only be evaluated by taking the mean value of multiple calculations, meaning the task
takes an unreasonable amount of time. The main idea of the research is to test the algorithm
while running on a surrogate model, which is replacing the time-demanding simulation
process. With the tuned parameter setting popt, it is assumed that the simulated annealing
algorithm can approach the optimum of the shape optimization problem with a predictable
function call. The flowchart of the developed surrogate model-based parameter tuning
process of the optimization algorithm can be seen in Figure 5.
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5. Results and Discussion
5.1. Design of Experiment to Generate Train Data Set

The precision of the surrogate model approaching the objective function to be applied
largely depends on the number of design points and the distribution in the design area.
Three-level sampling is required to describe the nonlinear behavior of the rubber material
and the objective function. Sampling methods such as face-centered composite design
or the three-level full factorial design are not usable in this particular task because of the
optimization constrain between the design variables. When the numerical simulation
contains few design variables, the Latin hypercube method is a good solution. By using
this method, the number of the samples can be freely chosen, and the experiment level is
identical to the number of samples. There are several sampling methods available within
this particular method; in the current case, the maximin Latin hypercube was selected [34].



Appl. Sci. 2022, 12, 5451 14 of 22

Taking the lower and upper limits of the design variables into account, 15, 30, 45 and
60 samples were selected. Afterwards, points are deleted that do not match the geometrical
constrain set by (3). Thus, the training data sets contain 13, 27, 40 and 54 samples, the
distribution of which can be seen in Figure 6.
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5.2. Train Support Vector Regression Model

The objective of the surrogate modelling technique is to discover a function E(d)SVR ≈ E(d)FEA
that best predicts the value of E(d)FEA associated with each value of d. The investigated
shape optimization task is a nonlinear regression problem for which supervised machine
learning methods could provide an efficient way to handle it. For data regression, support
vector regression (ε-SVR) was introduced in [25], which uses the so-called kernel trick [79]
to transform the original nonlinear input data to a higher-dimensional kernel space, where
the relation between the inputs and response can be linearly estimated. The goodness of
the prediction highly hinges on the kernel function type, which was investigated by us
in [32], and the cubic kernel function proved to be the best choice.

With the use of the training dataset sampled by maximin LHD and the Regression
Learner application built into MATLAB, it is possible to tune automatically the hyperpa-
rameters of the ε-SVR model. For small datasets, the usage of the k-fold cross-validation
method is recommended to analyze the model fitting error. The investigation of Kohavi
suggests that k = 10 is the optimal value for a general task [80]. The tuning process of
the ε-SVR model was performed for the different sets of training samples, and the root
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mean square error (RMSE) was calculated for the test dataset (128 DP) seen in Table 3. The
results showed that the training dataset with the increasing number of samples improved
the accuracy of the SVR model. However, after the 45/40 training dataset, there was no
further improvement in the accuracy. Therefore, the SVR models tuned with 40 samples
and the cubic kernel function will be used in the later processes.

Table 3. Comparison of the performance of the support vector regression models with cubic kernel
functions for different sets of samples using the root mean square error.

Kernel
Function

Cross-
Validation

RMSE

S 15/13 S 30/27 S 45/40 S 60/54

Cubic SVM 10-fold 1927.45 1630.38 1411.24 1478.19

The predicted response E(d)SVR of the cubic SVR model is plotted against the true
response E(d)FEA; see Figure 7a. A perfect regression model has a predicted response
equal to the true response, so all the points lie on the diagonal line. The vertical distance
from the line to any point is the error of the prediction for that point. The selected SVR
model predictions are scattered near the diagonal line, which means that the SVR model
accurately predicts the nonlinear objective function values.
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Using the trained cubic SVR model, predictions were made for each combination of
integer values of design variables. Predicted objective function values are illustrated above
the design space according to Figure 4. As a result, it seemed suitable for approaching the
values of the nonlinear objective function. The SVR model isoline visualization, which
shows valley-shaped behavior similar to the original function, can be seen in Figure 7b.

5.3. Testing the Tuning Process of the Simulated Annealing Algorithm for Mathematical Test Functions

Multimodal and valley characteristics are common properties of the objective function
prescribed for the optimization task. Thus, the Rosenbrock, six-hump camel, McCormick
and Michalewicz optimization problems were selected according to Table 4 to test the
algorithm and its parameter optimization tasks.

The optimization task (objective function, design parameters, design variables and
design constraints) and the simulated annealing algorithm were implemented in MATLAB
script. To increase the robustness of the SA method, the algorithm was run numerous
times using 100 pieces of randomly selected initial designs, and so the average value of
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the E(p)SA was determined. Table 5 shows the empirically selected parameters of the
algorithm based on the reviewed literature. Using the selected initial designs and (9), the
average value of the initial temperature was calculated analytically. The step size ρ was
adaptive during the search process following the method seen in (16), while the initial
value ρ0 was determined using (14). The cooling function and the step size adaptation
factor β have the most impact on the computational cost and accuracy of the algorithm, so
these parameters are the variables of the optimization task (26)–(29).

Table 4. Mathematical optimization test functions.

Test Function Variable Domain xopt fopt flimit

Rosenbrock x1 ∈ [−5, 10] x2 ∈ [−5, 10] (1, 1) 0 0.01
Michalewicz x1 ∈ [0, π] x2 ∈ [0, π] (2.20, 1.57) −1.8013 −1.8

Six-hump camel x1 ∈ [−3, 3] x2 ∈ [−2, 2] (0.0898,−0.7126)
(−0.0898, 0.7126)

−1.0316 −1.03

McCormick x1 ∈ [−1.5, 4] x2 ∈ [−3, 4] (−0.54719,−1.54719) −1.9133 −1.91

Table 5. Parameters of the simulated annealing algorithm for the different test functions.

Test Function
Initial Temperature Step Size Adaptation Convergence

m0 χ(T0) ρ0 N q ε mC mmax

Rosenbrock 100 0.85 [7.5, 7.5] 20 0.2 [0.1, 0.1, 0.001] 100 6000
Michalewicz 100 0.85 [π/2, π/2] 20 0.2 [0.1, 0.1, 0.001] 100 6000

Six-hump camel 100 0.85 [3, 2] 20 0.2 [0.1, 0.1, 0.001] 100 6000
McCormick 100 0.85 [3.25, 3.5] 20 0.2 [0.1, 0.1, 0.001] 100 6000

The simulated annealing algorithm was run for a finite number of discrete parameter
combinations on different test functions. The best-performing parameters were selected
from the results, shown in Table 6. Using these parameters, the test was performed
20 times to analyze the repeatability of the E

(
popt

)
SA

average objective function value. For
all mathematical test functions, the exponential cooling function with a fast cooling speed
proved to be the best option. Unlike the other test functions, in the case of the Rosenbrock,
the slow search space narrowing seemed to be effective. The deviation of the E

(
popt

)
SA

,
which is derived from the success deviation, shows how difficult is for the algorithm to
approach the Rosenbrock’s optimum. Despite this, the found fopt for the Rosenbrock is
more than 95% accurate. However, despite the stochastic behavior, the parameter tuning
method worked well based on the repeatability of the E

(
popt

)
SA

for the other test functions.
This proves that the developed convergence criterion is correct.

Table 6. Optimal parameter settings for different mathematical test functions.

Test
Function

¯
E(popt)SA

Repeatability S(T0,Λ,N), Annealing Schedule β, Step Size
Adaptation

FactorMean SD Λ, Cooling
Function

α1,
Cooling sp.

α2, Linear
Cooling sp.

T0, Initial
Temp.

Rosenbrock 0.74659 0.9291 0.27690 1 0.70 - 436,335 0.925
Michalewicz 0.07565 0.0752 0.00023 1 0.70 - 1.065 0.625
Six-hump

camel 0.14214 0.1426 0.00045 1 0.70 - 72.731 0.625

McCormick 0.12670 0.1274 0.00040 1 0.70 - 26.894 0.625

5.4. Tuning Simulated Annealing Algorithm for Shape Optimization

To terminate the SA algorithm with a high probability near the global optimum,
the cooling strategy must be chosen case-by-case for the shape optimization task. While
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the accuracy of the optimum approach is affected by the step size adaptation factor, β.
This parameter also greatly affects the number of function evaluations of the algorithm,
which results in an increased length for the simulation-based design process. Thus, the
determination of the optimal parameters was performed by running the trained SVR
surrogate model, following the method used on the test functions. The dimensional
tolerances of the rubber product were ±0.1 [mm]; thus, the flimit value was determined
(see Table 7) on the following discrete domain:

flimit = min
d∈Ω

E(d)SVR, (30)

subject to
d1 ∈ {70 : 0.1 : 130} [mm]
d2 ∈ {10 : 0.1 : 60} [mm]

x1 − d2/2 ≥ 15 where x1 = d1/2− d3 tan(d4)
(31)

Table 7. The found optimum of the fitted SVR metamodel for the discrete variable domain.

Objective Function dlimit[mm] flimit[kN2]

Cubic SVR (106.7, 32.2) −840.487

The constant parameters were chosen empirically according to Table 8, and then the
parameters of the simulated annealing algorithm were tuned. Table 9 shows the settings
that performed the best on the SVR surrogate model.

Table 8. Parameters of the simulated annealing algorithm for the shape optimization.

Initial Temperature Step Size Adaptation Convergence

m0 χ(T0) ρ0 N q ε mC mmax

100 0.85 [30, 25] 20 0.2 [0.1, 0.1, 0.001] 100 6000

Table 9. Tuned SA parameters for the SVR surrogate model.

Surrogate
Model

¯
E(popt)SA

Repeatability S(T0,Λ,N), Annealing Schedule β, Step Size
Adaptation

FactorMean SD Λ, Cooling
Function

α1,
Cooling sp.

α2, Linear
Cooling sp.

T0, Initial
Temp.

Cubic SVR 0.07787 0.07811 0.00032 2 - 64 20430 0.625

5.5. Shape Optimization of the Rubber Bumper Using the Tuned Simulated Annealing Algorithm

The current section aims to evaluate the performance of the SA algorithm with the
SVR tuned parameter setting by solving the finite element-based shape optimization
problem directly. The search was repeated 11 times from the initial design dinitial . Table 10
shows the found dopt, SA optimal construction relating to the median E

(
popt

)
SA

value run.
The algorithm approached the known optimal construction dopt within the dimensional
tolerances of the rubber product, meaning that the optimum variables’ value dopt, SA is
accurate from a technical point of view.

Table 10. The optimal design variables found by the simulated annealing algorithm.

Design Point d1[mm] d2[mm] E(d)FEA
[
kN2]

dinitial 75 20 9666.118
dopt 108 33 0

dopt, SA 108.034 33.071 0.00005
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The working characteristic found by the tuned SA algorithm can be seen in Figure 8.
It approaches the desired compressive force values within a 0.1% relative error, as seen
in Table 11.
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Table 11. The working characteristic found by the tuned SA algorithm and its relative error when
compared to the desired characteristic.

Compressive Extension [mm]

1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12

Fi,dopt [N] 4805 10,266 16,424 23,445 31,462 40,627 51,226 63,479 77,933 95,028
Fi,dopt,SA [N] 4805 10,267 16,426 23,447 31,464 40,629 51,228 63,480 77,932 95,024

RE[%] 0.013 0.012 0.010 0.009 0.007 0.006 0.003 0.001 −0.002 −0.005

Figure 9a shows the search path taken by the SA algorithm. Using the initial tempera-
ture value calculated on the SVR model, the Metropolis criterion also accepts cost-increasing
function values at the beginning of the search process.
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On the surrogate model, the number of iterations m was estimated to have less than
5% relative error; see Table 12. Running the finite element model, the average initial
temperature T0 was calculated using (9) and the 100 pieces of randomly selected initial
designs. This process requires the evaluation of 104 objective functions, which would take
days calling the finite element model, while only minutes in the case of the SVR surrogate
model. However, as seen in Table 12, the initial temperature values determined by the run
of the SVR and FEA models differ only slightly.

Table 12. Accuracy of the number of iterations and initial temperature determined by the run of the
SVR model against the FEA.

Objective Function E
(

popt

)
SA

SD of E
(

popt

)
SA

T0 m

Cubic SVR 0.07811 0.00032 20,430 561
Rubber FEA 0.08071 0.00145 20,367 576

RE[%] −3.221 - 0.308 −2.662

6. Conclusions

Foremost, a finite element simulation-based two-dimensional shape optimization
problem was introduced. The objective function was determined as the difference between
the initial and the optimum characteristic and showed a valley-shaped behavior, which
is itself a challenging task for a search algorithm. A simulated annealing algorithm with
an adaptive search space and different cooling schedules was implemented in a MATLAB
environment. Because of the time-consuming objective function call and the stochastic
behavior of the SA algorithm, the parameter tuning process is infeasible with the direct call
of the finite element simulation task. To solve the tuning process, a novel procedure was
introduced using an SVR surrogate model to test the optimization algorithm performance
case-specifically. Sampling took place by means of the maximin Latin hypercube design
method to perform the SVR training, where the dataset of 40 samples proved to be suitable
to surrogate the two-dimensional shape optimization task of the rubber product.

The operation and robustness of the SA algorithm were tested by solving optimization
test functions. The best performing parameters can be selected task-specifically using the
empirically obtained discrete parameter domain from the literature. The optimum value is
unknown by the algorithm, but it was able to approach it during the optimization of the
mathematical test functions and the shape optimization task. This proves that the developed
algorithm and its convergence criterion were correct. The tuned SA algorithm found
an optimal design with negligible error from a technical aspect, thereby not increasing
further the modelling errors due to nonlinear material behavior and large deformation.

Each step of the metamodel-based parameter tuning of the optimization algorithm can
be automated, thus eliminating the need for engineering intervention in simulation-based
design processes. The developed method enables the prediction of the development lead
time in simulation-driven optimization processes. In terms of precision and number of
function runs required for optimum determination, the tuned SA algorithm proved to be
efficient. The determination of the initial temperature on the surrogate model is accurate
and saves a significant amount of time. Regardless of the complexity of the simulation task,
the time required for the developed method is solely determined by the computation time
of the surrogate model. The method aids market competitiveness due to the plannability
and shorter design time.

The newly introduced method opens up a slew of new research possibilities. One area is
the large scale optimization problem for which the SVR surrogate model and SA algorithm
are suitable methods. The surrogate model and optimization algorithm can be freely
chosen in the developed parameter tuning process, allowing for the development of new
methods as well as the assessment of their efficiency. Another extension of the developed
method could be to perform a surrogate model-based parameter tuning of various global
search algorithms to choose the best performer. In the future, the impact of the T0 initial
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temperature of the SA can be investigated. The developed method is suitable for solving
not only numerical simulation optimization problems but also for other computationally
intensive model-driven optimizations.

Author Contributions: Conceptualization, D.H. and T.M.; methodology, D.H. and T.M.; software,
D.H.; validation, D.H.; formal analysis, D.H.; investigation, D.H.; resources, D.H. and T.M.; data
curation, D.H.; writing—original draft preparation, D.H.; writing—review and editing, D.H. and
T.M.; visualization, D.H.; supervision, T.M.; project administration, T.M.; funding acquisition, T.M.
All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Thematic Excellence Programme (TKP2020-NKA-04) of
the Ministry for Innovation and Technology in Hungary, within the framework of the (Automotive
Industry) thematic program of the University of Debrecen.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El Yaagoubi, M.; Fulari, G.S.; Aloui, S.; Shetty, R.R. Influence of Permanent Deformation on the Fitting Quality and the Simulation

Prediction of Filled Elastomers. Int. J. Non. Linear. Mech. 2021, 137, 103801. [CrossRef]
2. Nguyen, H.-D.; Huang, S.-C. The Uniaxial Stress–Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the

Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method. Materials
2021, 14, 7534. [CrossRef] [PubMed]

3. Aloui, S.; El Yaagoubi, M. Determining the Compression-Equivalent Deformation of SBR-Based Rubber Material Measured in
Tensile Mode Using the Finite Element Method. Appl. Mech. 2021, 2, 195–208. [CrossRef]

4. Papalambros, P.Y.; Wilde, D.J. Principles of Optimal Design; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107132672.
5. Wheeler, M.J.K.T.A. Algorithms for Optimization; The MIT Press: Cambridge, MA, USA, 2019; ISBN 9780262039420.
6. Schittkowski, K. NLPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems. Ann. Oper. Res. 1986,

5, 485–500. [CrossRef]
7. Exler, O.; Schittkowski, K.; Exler, O.; Schittkowski, K. A Trust Region SQP Algorithm for Mixed-Integer Nonlinear Programming.

Optim. Lett. 2007, 1, 269–280. [CrossRef]
8. Cerone, V.; Fadda, E.; Regruto, D. A Robust Optimization Approach to Kernel-Based Nonparametric Error-in-Variables Identifi-

cation in the Presence of Bounded Noise. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA,
24–27 May 2017; pp. 831–838.

9. Powell, M.J.D. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives.
Comput. J. 1964, 7, 155–162. [CrossRef]

10. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
11. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex Method in Low

Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]
12. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Co., Inc.:

Boston, MA, USA, 1989; ISBN 0201157675.
13. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.

[CrossRef]
14. Gurav, H.D.; Sanap, S.B.; Duggirala, B. Non-Linear Finite Element Analysis of Rubber Bush for 2-Wheeler Rear Shock Absorber

for Prediction of Fatigue Life. Int. J. Adv. Res. Eng. 2015, 2, 2394–2444.
15. Kennison, R. Nonlinear Simulation Helps Design Longer Lasting CV Boots. Simulating Real. MSC Softw. Mag. 2012, 2, 18–19.
16. Premarathna, W.A.A.S.; Jayasinghe, J.A.S.C.; Wijesundara, K.K.; Gamage, P.; Ranatunga, R.R.M.S.K.; Senanayake, C.D. Investiga-

tion of Design and Performance Improvements on Solid Resilient Tires through Numerical Simulation. Eng. Fail. Anal. 2021,
128, 105618. [CrossRef]

17. Zheng, C.; Zheng, X.; Qin, J.; Liu, P.; Aibaibu, A.; Liu, Y. Nonlinear Finite Element Analysis on the Sealing Performance of Rubber
Packer for Hydraulic Fracturing. J. Nat. Gas Sci. Eng. 2021, 85, 103711. [CrossRef]

18. Dong, L.; Tang, Y.; Tang, G.; Li, H.; Wu, K.; Luo, W. Sealing Performance Analysis of Rubber Core of Annular BOP: FEM
Simulation and Optimization to Prevent the SBZ. Petroleum 2021. [CrossRef]

19. Wu, J.; He, Y.; Wu, K.; Dai, M.; Xia, C. The Performance Optimization of the Stripper Rubber for the Rotating Blowout Preventer
Based on Experiments and Simulation. J. Pet. Sci. Eng. 2021, 204, 108623. [CrossRef]

20. Kaya, N. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm. Sci. World J. 2014, 2014, 379196.
[CrossRef]

21. Kim, J.J.; Kim, H.Y. Shape Design of an Engine Mount by a Method of Parameter Optimization. Comput. Struct. 1997, 65, 725–731.
[CrossRef]

22. Hejazi, F.; Farahpour, H.; Ayyash, N.; Chong, T. Development of a Volumetric Compression Restrainer for Structures Subjected to
Vibration. J. Build. Eng. 2022, 46, 103735. [CrossRef]

http://doi.org/10.1016/j.ijnonlinmec.2021.103801
http://doi.org/10.3390/ma14247534
http://www.ncbi.nlm.nih.gov/pubmed/34947125
http://doi.org/10.3390/applmech2010012
http://doi.org/10.1007/BF02739235
http://doi.org/10.1007/s11590-006-0026-1
http://doi.org/10.1093/comjnl/7.2.155
http://doi.org/10.1093/comjnl/7.4.308
http://doi.org/10.1137/S1052623496303470
http://doi.org/10.1109/TEVC.2010.2059031
http://doi.org/10.1016/j.engfailanal.2021.105618
http://doi.org/10.1016/j.jngse.2020.103711
http://doi.org/10.1016/j.petlm.2021.12.001
http://doi.org/10.1016/j.petrol.2021.108623
http://doi.org/10.1155/2014/379196
http://doi.org/10.1016/S0045-7949(95)00118-2
http://doi.org/10.1016/j.jobe.2021.103735


Appl. Sci. 2022, 12, 5451 21 of 22

23. Dong, Y.; Yao, X.; Xu, X. Cross Section Shape Optimization Design of Fabric Rubber Seal. Compos. Struct. 2021, 256, 113047.
[CrossRef]

24. Forrester, A.I.J.; Sóbester, A.; Keane, A.J. Engineering Design via Surrogate Modelling; Wiley: Oxford, UK, 2008; ISBN 9780470060681.
25. Drucker·, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapoik, V. Support Vector Regression Machines. Advances in Neural Information

Processing Systems; MIT Press: Cambridge, MA, USA, 1997; pp. 155–161.
26. Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [CrossRef]
27. Viana, F.A.C.; Haftka, R.T.; Steffen, V. Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor.

Struct. Multidiscip. Optim. 2009, 39, 439–457. [CrossRef]
28. Acar, E. Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures. Struct. Multidiscip. Optim.

2010, 42, 879–896. [CrossRef]
29. Wang, S.; Jian, G.; Xiao, J.; Wen, J.; Zhang, Z. Optimization Investigation on Configuration Parameters of Spiral-Wound Heat

Exchanger Using Genetic Aggregation Response Surface and Multi-Objective Genetic Algorithm. Appl. Therm. Eng. 2017, 119,
603–609. [CrossRef]

30. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Design of Experiments for Fitting Response Surfaces—I. In Response
Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016;
pp. 369–449, ISBN 978-11-189-1601-8.
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