
Citation: Ding, E.; Chu, X.; Liu, Z.;

Zhang, K.; Yu, Q. A Novel

Hierarchical Adaptive Feature Fusion

Method for Meta-Learning. Appl. Sci.

2022, 12, 5458. https://doi.org/

10.3390/app12115458

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 22 April 2022

Accepted: 25 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Novel Hierarchical Adaptive Feature Fusion Method for
Meta-Learning
Enjie Ding 1,2, Xu Chu 1,2 , Zhongyu Liu 3, Kai Zhang 1,2,* and Qiankun Yu 1

1 School of Information and Control Engineering, China University of Mining and Technology,
Xuzhou 221008, China; enjied@cumt.edu.cn (E.D.); TS20060026A31@cumt.edu.cn (X.C.);
yqk382@163.com (Q.Y.)

2 IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221008, China
3 School of Information Engineering, Xuzhou University of Technology, Xuzhou 221000, China;

TB17060009B4@cumt.edu.cn
* Correspondence: kaizhang@cumt.edu.cn

Abstract: Meta-learning aims to teach the machine how to learn. Embedding model-based meta-
learning performs well in solving the few-shot problem. The methods use an embedding model,
usually a convolutional neural network, to extract features from samples and use a classifier to
measure the features extracted from a particular stage of the embedding model. However, the feature
of the embedding model at the low stage contains richer visual information, while the feature at the
high stage contains richer semantic information. Existing methods fail to consider the impact of the
information carried by the features at different stages on the performance of the classifier. Therefore,
we propose a meta-learning method based on adaptive feature fusion and weight optimization. The
main innovations of the method are as follows: firstly, a feature fusion strategy is used to fuse the
feature of each stage of the embedding model based on certain weights, effectively utilizing the
information carried by different stage features. Secondly, the particle swarm optimization algorithm
was used to optimize the weight of feature fusion, and determine each stage feature’s weight in the
process of feature fusion. Compared to current mainstream baseline methods on multiple few-shot
image recognition benchmarks, the method performs better.

Keywords: meta-learning; feature fusion; embedding model; particle swarm optimization

1. Introduction

Over the past several years, deep learning has made a significant breakthrough in
computer vision [1,2]. However, traditional supervised learning relies on many annotated
samples, and acquiring and annotating samples is time-consuming [3]. In the field of
typical industrial object detection, where the probability of anomalous events is low, the
acquisition of samples is more difficult, but the accuracy of recognition is still required to
be high. Therefore, the study of few-shot learning [4] becomes particularly important.

Meta-learning [5,6] is used to solve the few-shot problem, eliminating the disadvantage
caused by the limited sample size. Meta-learning uses prior knowledge to achieve rapid
learning of new tasks and to make the model learn. There are three types of meta-learning
methods: metric-based meta-learning [7–12], external memory-based meta-learning [13–16],
and initialization method with strong generalization [17–20]. Compared to the former, the
latter two have various model parameters, the training is more complex, and the design of
some tasks limits the overall learning ability of the model. As a result, the focus of this study
is on metric-based meta-learning.

Metric-based meta-learning can measure features using a distance metric formula [7–
10] or machine learning model [21–23]. Compared with the distance metric formula, the
machine learning model has stronger generalization performance. Embedding model-based
meta-learning is the current well-performing meta-learning method, which can essentially be

Appl. Sci. 2022, 12, 5458. https://doi.org/10.3390/app12115458 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115458
https://doi.org/10.3390/app12115458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0907-9603
https://doi.org/10.3390/app12115458
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115458?type=check_update&version=3

Appl. Sci. 2022, 12, 5458 2 of 18

categorized as measuring sample features with a machine learning model. The main process
of embedding model-based meta-learning is described as: the sample is mapped into the
feature space using the embedding model, and then a particular stage of the embedding model
is used to extract the feature to the classifier, allowing the classifier to quickly adapt to the new
task and determine the feature distribution. However, the output feature of convolutional
neural networks (CNNs) at different layers have their characteristics [24,25]. The feature near
the top layer contains richer semantic information, while the bottom feature near the original
sample input contains richer visual information. The visualization method of class activation
map (CAM) [26] is adopted to present the output features of an image at different stages
of the embedding model in the form of heat map, as shown in Figure 1. The different heat
regions indicate the degree to which the neurons at a particular stage of the embedding model
respond to different features. It can be concluded that there are differences in the output
features of different stages of the embedding model.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 18

based meta-learning is the current well-performing meta-learning method, which can es-

sentially be categorized as measuring sample features with a machine learning model. The

main process of embedding model-based meta-learning is described as: the sample is

mapped into the feature space using the embedding model, and then a particular stage of

the embedding model is used to extract the feature to the classifier, allowing the classifier

to quickly adapt to the new task and determine the feature distribution. However, the

output feature of convolutional neural networks (CNNs) at different layers have their

characteristics [24,25]. The feature near the top layer contains richer semantic information,

while the bottom feature near the original sample input contains richer visual information.

The visualization method of class activation map (CAM) [26] is adopted to present the

output features of an image at different stages of the embedding model in the form of heat

map, as shown in Figure 1. The different heat regions indicate the degree to which the

neurons at a particular stage of the embedding model respond to different features. It can

be concluded that there are differences in the output features of different stages of the

embedding model.

Figure 1. Comparison of heat maps for different stage features. The feature maps of the input images

at each stage of the network are visualized, and the responses of neurons at different stages to dif-

ferent features are compared.

In view of the differences between the output features at different stages of the em-

bedding model and the different impact of the information carried by different features

on the performance of the classifier, in this work, we propose a meta-learning method

based on adaptive feature fusion and weight optimization to mine and effectively utilize

the information of different stages. The first stage involves combining all meta-training

tasks into a single task, training the embedding model on this combined dataset, and out-

putting features from each stage of the embedding model. In the second stage, the impact

of different stages’ output features on classifier performance is investigated and the out-

put features of the embedding model’s different stages are fused to obtain the feature ex-

pression with good performance. The optimization algorithm is used to determine the

optimal fusion weight on the meta-evaluation set. We use the meta-evaluation function as

a fitness function to evaluate each group of weights in the algorithm, and the optimal

fusion weight is then used for meta-testing. The difference between the meta-evaluation

function and the evaluation function is that the evaluation function targets all samples

from each batch in the experiment, whereas the meta-evaluation function targets the

query samples from each batch. The support samples from each batch are used to train

the classifier and are not involved in the meta-evaluation.

The main contributions of this study are as follows:

 We propose a meta-learning method based on adaptive feature fusion and weight

optimization. The adaptive feature fusion method is used to train and test classifiers

by fusing features from each stage of the embedding model, and the feature fusion

weight is optimized by combining the classifier’s prediction results.

 In terms of the feature fusion method, we propose a novel feature splicing strategy:

the output features of each stage are pooled and flattened, and then unified in a cer-

tain dimension. Feature splicing is carried out in this dimension. In the splicing pro-

cess, the weight of each stage feature is different.

Figure 1. Comparison of heat maps for different stage features. The feature maps of the input
images at each stage of the network are visualized, and the responses of neurons at different stages to
different features are compared.

In view of the differences between the output features at different stages of the em-
bedding model and the different impact of the information carried by different features
on the performance of the classifier, in this work, we propose a meta-learning method
based on adaptive feature fusion and weight optimization to mine and effectively utilize
the information of different stages. The first stage involves combining all meta-training
tasks into a single task, training the embedding model on this combined dataset, and
outputting features from each stage of the embedding model. In the second stage, the
impact of different stages’ output features on classifier performance is investigated and the
output features of the embedding model’s different stages are fused to obtain the feature
expression with good performance. The optimization algorithm is used to determine the
optimal fusion weight on the meta-evaluation set. We use the meta-evaluation function as a
fitness function to evaluate each group of weights in the algorithm, and the optimal fusion
weight is then used for meta-testing. The difference between the meta-evaluation function
and the evaluation function is that the evaluation function targets all samples from each
batch in the experiment, whereas the meta-evaluation function targets the query samples
from each batch. The support samples from each batch are used to train the classifier and
are not involved in the meta-evaluation.

The main contributions of this study are as follows:

• We propose a meta-learning method based on adaptive feature fusion and weight
optimization. The adaptive feature fusion method is used to train and test classifiers
by fusing features from each stage of the embedding model, and the feature fusion
weight is optimized by combining the classifier’s prediction results.

• In terms of the feature fusion method, we propose a novel feature splicing strategy:
the output features of each stage are pooled and flattened, and then unified in a certain
dimension. Feature splicing is carried out in this dimension. In the splicing process,
the weight of each stage feature is different.

• For the optimization of the feature fusion weights, we combine the optimization al-
gorithm with meta-learning and propose the use of a particle swarm optimization

Appl. Sci. 2022, 12, 5458 3 of 18

algorithm [27,28] to optimize the weights of the features at each stage of the embed-
ding model. In addition, we use the parallel structure of the computer to optimize
the feature fusion weights of multiple groups simultaneously to improve the algo-
rithm’s efficiency.

In this paper, the proposed method is compared with the current state-of-the-art meta-
learning methods. The experimental results show that the proposed method is effective
and reliable.

2. Related Works

Meta-learning is the use of prior knowledge. Human beings can distinguish a category
of objects only after seeing a few pictures. The focus of meta-learning research is how to
equip the computer with such an ability. According to the utilization of prior knowledge,
meta-learning can be divided into three directions, as shown below:

2.1. Metric-Based Meta-Learning

Metric-based meta-learning takes training data as prior knowledge. Koch et al. [7]
used the Siamese network. After feature extraction, the confidence interval of each pair is
predicted through the distance between testing and training samples, and the classifica-
tion of the testing sample is judged. Prototypical Networks [8] determine the prototype
representations of each class using the training sample and then calculates the distance
between the testing sample and the prototype representations. In contrast to the first two,
Relation Networks [9] introduce an attention mechanism, splicing feature extracted from
both the support and query samples for discrimination and calculation of relational scores.
Vinyals et al. [10] uses an attention mechanism, extracting features from support and query
samples and calculating attention from each sample. GEFS [23] trains a well-performing
embedding model on the meta-training set and then uses a machine learning model to
metric the features extracted from the last stage of the embedding model.

2.2. External Memory-Based Meta-Learning

Meta-learning based on external memory introduces external memory through a new
approach. The external memory was modified through a training sample, which was
subsequently utilized as prior knowledge during the test. Santoro et al. [13] proposed
a meta-learning algorithm for few-shot learning: for the model requiring strong gener-
alization performance, the deep network model will result in the over-fitting of some
tasks. Therefore, the external memory space is used to record information to complete
the few-shot learning task combined with the neural network’s long-term memory ability.
Meta-networks [14] used meta-learning to solve few-shot tasks and proposed MetaNet,
composed of a basic and a meta-learner with extra memory. The training process of the
network includes obtaining meta-information, fast weight generation, and slow weight op-
timization, learning a cross-task meta-level knowledge, and realizing fast parameterization
of generalization tasks.

2.3. Initialization Method Based on Strong Generalization

The initialization method based on generalization introduces prior knowledge during
model initialization. Model-Agnostic Meta-Learning (MAML) [17] aims to find a set of
initialization parameters of the model that will allow the model to obtain good results by
learning from a small number of samples. The main idea of MAML is to separate the task
data used in optimizing network parameters from optimizing loss function to improve
generalization performance. Reptile [20] is similar to MAML in that it optimizes in the
direction of relatively superior tasks, while Reptile descends in the optimal direction of each
task one by one and finally approximates to the position of relatively superior tasks. MAML
is a meta-learning branch with great potential, and other methods such as Auto-Meta [29],
MetaNAS [30], DEML [31] have emerged as a result of it.

Appl. Sci. 2022, 12, 5458 4 of 18

3. Method

This section reviews the relevant preliminary knowledge of meta-learning and em-
bedding model-based meta-learning before introducing our method. The method mainly
includes feature fusion, weight optimization, and classifier training and testing. More on
this below.

3.1. Meta-Learning Knowledge

The meta-learning datasets are divided into meta-training, meta-evaluation, and
meta-testing sets. The image types of each set are mutually exclusive. A meta-training
set is defined as M = {(Dtrain

i , Dtest
i)}I

i=1, and meta-evaluation set and meta-testing

set are defined as C = {(Dtrain
j , Dtest

j)} J

j=1
and D =

{(
Dtrain

k , Dtest
k
)} K

k=1 respectively.

The tuple (Dtrain
i , Dtest

i) describes a training task and a testing task. Training examples
Dtrain= {(xt, yt)} T

t=1 and testing examples Dtest= {(xq, yq)} Q
q=1 are sampled from the

same distribution.
Firstly, the embedding model is trained. The meta-training set combines all individual

tasks together and defines as:

Dcombine =
{

Dtrain
1 , Dtrain

2 Dtrain
I

}
(1)

An effective embedding model φ is defined as:

φ = argmin
φ

Lce(Dcombine; φ) (2)

Lce represents the cross-entropy loss function (Figure 2). The cross-entropy loss func-
tion is a loss function for classification problems and is generally used in conjunction with
the sofmax function. We use p(x) to denote the true distribution of the input samples and
q(x) to denote the distribution predicted by the model, the cross-entropy loss function can
be expressed as:

H(p, q) = DKL(p||q) + H(p(x)) (3)

DKL(p || q) =
count

∑
i=1

p(xi) log(p(xi)/q(xi)) (4)

H(p(x)) = −
count

∑
i=1

p(xi) log(p(xi)) (5)

where count denotes the number of categories. DKL(p||q) denotes the Kullback–Leibler
divergence, which measures the difference between p(x) and q(x). H(p(x)) denotes the
information entropy. Since the input samples and their labels are deterministic, the informa-
tion entropy is a constant, so minimizing the Kullback–Leibler divergence can be translated
into minimizing the cross-entropy loss function. Therefore, the cross-entropy loss function
is often used as a loss function in machine learning

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18

3. Method

This section reviews the relevant preliminary knowledge of meta-learning and embed-

ding model-based meta-learning before introducing our method. The method mainly includes

feature fusion, weight optimization, and classifier training and testing. More on this below.

3.1. Meta-Learning Knowledge

The meta-learning datasets are divided into meta-training, meta-evaluation, and

meta-testing sets. The image types of each set are mutually exclusive. A meta-training set

is defined as
=1

{()}=
train test I

i i i
M D D， , and meta-evaluation set and meta-testing set are defined

as
=1

{()}=
train test J

j j j
C D D， and

=1
{()}=

train test K

k k k
D D D， respectively. The tuple ()train test

i iD D， describes

a training task and a testing task. Training examples =
=1

{()},
train

t t

T

t
D yx and testing examples

=1
={()},

test Q

q q q
D yx are sampled from the same distribution.

Firstly, the embedding model is trained. The meta-training set combines all individ-

ual tasks together and defines as:

1 2= { , }train train train
I

combineD D D D (1)

An effective embedding model  is defined as:

= (;)ce combine
L Darg min


  (2)

ceL represents the cross-entropy loss function (Figure 2). The cross-entropy loss function

is a loss function for classification problems and is generally used in conjunction with the sof-

max function. We use P(x) to denote the true distribution of the input samples and Q(x) to

denote the distribution predicted by the model, the cross-entropy loss function can be ex-

pressed as:

(,) (||) ((x))
KL

H p q D p q H p (3)

1

(||)= (x) log((x) (x))
count

KL i i i
i=

D p q p p q / (4)

1

((x))= (x) log((x))
count

i i
i

H p p p


  (5)

where count denotes the number of categories. (||)
KL

D p q denotes the Kullback–Leibler

divergence, which measures the difference between P(x) and Q(x). ((x))H p denotes the

information entropy. Since the input samples and their labels are deterministic, the infor-

mation entropy is a constant, so minimizing the Kullback–Leibler divergence can be trans-

lated into minimizing the cross-entropy loss function. Therefore, the cross-entropy loss

function is often used as a loss function in machine learning.

ceL

Figure 2. Schematic diagram of the training embedding model. Training the embedding model 

using the merged meta-training set.
ce

L represents the cross-entropy loss function.

Figure 2. Schematic diagram of the training embedding model. Training the embedding model φ

using the merged meta-training set. Lce represents the cross-entropy loss function.

Appl. Sci. 2022, 12, 5458 5 of 18

Then, a classifier A is given by y∗ = fθ(x∗), x∗ represents the feature extracted by
φ. For a task (Dtrain

j , Dtest
j), train the classifier on Dtrain

j and test the classifier on Dtest
j .

A can be represented as a multinomial logistic regression classifier, and its parameter
θ = {W, b} includes weight term W and deviation term b, which can be expressed by the
following formula:

θ = arg min
{W,b}

T

∑
t=1

Lce
t (W fφ(xt) + b, yt) + R(W, b) (6)

where R is the regularization term.

3.2. Feature Fusion

This section describes the feature fusion method. In convolutional neural networks,
the shallow feature contains a lot of low-level information. It is more concerned with details,
while the deep feature contains a lot of high-level information and is more concerned with
semantics. In Feature Pyramid Network [24], the input image is deeply convolved first,
then the feature output from stages 2 and 4 are added, and the obtained results are fed into
stage 5 to obtain strong semantic information and improve detection performance. In this
work, the adaptive feature fusion method is used to obtain strong expression features to
mine and effectively utilize different stages’ information.

First of all, the meta training set is used for training according to GEFS [23] to obtain a
good embedding model, as depicted in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

Then, a classifier A is given by * *= ()fy  x , *x represents the feature extracted by 

. For a task ,()
train test

j jD D , train the classifier on train

jD and test the classifier on test

jD . A can be

represented as a multinomial logistic regression classifier, and its parameter { , }= W b in-

cludes weight term W and deviation term b, which can be expressed by the following

formula:

{ , }
=1

= (() + ,) + ()ce
t t t

T

t

arg min L f Ry 
W b

, W b W bx (6)

where R is the regularization term.

3.2. Feature Fusion

This section describes the feature fusion method. In convolutional neural networks,

the shallow feature contains a lot of low-level information. It is more concerned with de-

tails, while the deep feature contains a lot of high-level information and is more concerned

with semantics. In Feature Pyramid Network [24], the input image is deeply convolved

first, then the feature output from stages 2 and 4 are added, and the obtained results are

fed into stage 5 to obtain strong semantic information and improve detection perfor-

mance. In this work, the adaptive feature fusion method is used to obtain strong expres-

sion features to mine and effectively utilize different stages’ information.

First of all, the meta training set is used for training according to GEFS [23] to obtain

a good embedding model, as depicted in Figure 3.

Stage1 Stage2 Stage4 Stage4

...

meta-training set

ceL



Figure 3. Schematic diagram of embedding model training in adaptive feature fusion method. Train-

ing the embedding model  using the merged meta-training set. Stage l represents each stage of

the embedded model structure.

After obtaining a good embedding model, the N-way K-shot strategy on the meta-

evaluation set/meta-testing set is used to obtain the support set and the query set. The

embedding model is used to extract the features of the support and query sets. To obtain

good performance feature, features are output and pooled at each stage of the embedding

model. The calculations are as follows:

= (())l l iPooling layerf x (7)

where
l
f represents the output features of each stage after pooling. Pooling () represents

pooling operation, and ()l ilayer x represents the feature extraction operation of the l-th

stage.

The output features of each stage are transformed to the same dimension. The fea-

tures are spliced according to this dimension to achieve a combination of low-level and

high-level information and obtain strong semantic information. The calculations are as

follows:

= ()l lResize f f (8)

Resize () in Equation (8) indicates the dimensional unity of the feature.

Figure 3. Schematic diagram of embedding model training in adaptive feature fusion method.
Training the embedding model φ using the merged meta-training set. Stage l represents each stage of
the embedded model structure.

After obtaining a good embedding model, the N-way K-shot strategy on the meta-
evaluation set/meta-testing set is used to obtain the support set and the query set. The
embedding model is used to extract the features of the support and query sets. To obtain
good performance feature, features are output and pooled at each stage of the embedding
model. The calculations are as follows:

f̃l = Pooling(layerl(xi)) (7)

where f̃l represents the output features of each stage after pooling. Pooling () represents
pooling operation, and layerl(xi) represents the feature extraction operation of the l-th stage.

The output features of each stage are transformed to the same dimension. The features
are spliced according to this dimension to achieve a combination of low-level and high-level
information and obtain strong semantic information. The calculations are as follows:

fl = Resize(̃fl) (8)

Resize () in Equation (8) indicates the dimensional unity of the feature.
Furthermore, the predicted values are obtained and compared using the output feature

of each stage. It is concluded that the features of each stage have different influences on

Appl. Sci. 2022, 12, 5458 6 of 18

meta-learning accuracy. Therefore, during the feature fusion, the features of each stage
have different weights, as shown in Equation (9).

F = Concat(λ1f1, λ2f2, λ3f3, λ4f4) (9)

where λ represents the weight of the output feature with a different stage in feature
fusion. Concat () indicates feature splicing, and F represents the fusion feature with a
different weight.

After the feature fusion process is complete, the fused features are fed into the classifier
for prediction:

ypredict = Classi f ier(Flast) (10)

Classifier () represents the classifier. The classifier training process is the same as the
testing process.

The method of feature fusion is shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

Furthermore, the predicted values are obtained and compared using the output fea-

ture of each stage. It is concluded that the features of each stage have different influences

on meta-learning accuracy. Therefore, during the feature fusion, the features of each stage

have different weights, as shown in Equation (9).

1 1 2 2 3 3 4 4= (, , ,)Concat    F f f f f (9)

where  represents the weight of the output feature with a different stage in feature fu-

sion. Concat () indicates feature splicing, and F represents the fusion feature with a dif-

ferent weight.

After the feature fusion process is complete, the fused features are fed into the clas-

sifier for prediction:

= ()predict
lasty Classifier F (10)

Classifier () represents the classifier. The classifier training process is the same as the

testing process.

The method of feature fusion is shown in Figure 4.

11

22

44

44

22

44

88

Stage1 Stage2 Stage3 Stage4

Support

Query

1616

88

44

22
32*32*3

32*32*3

32323

Input

64

160

1616

64

320

640

Pooling

44

11

44

22

160

320

640

S/Q640

S/Q2560

S/Q1280

S/Q1024

64

or

S5504

Q5504

Classifier

train

test

Predict
Outcome

Pooling

Pooling

Pooling

Concat

Concat

...

...

1

2

4

3

Fitness
evaluation

Weight optimization

Evolutionary
iteration

Individual
position and

speed updates

Population
initialization

Fitness
evaluation

Particle Swarm
Optimization algorithm

？ ≡ Keep the best
individual

Update the population

Figure 4. Feature fusion of different stages of the network. In the figure, a × a × b represents the

dimension of the input feature; c × c denotes the feature dimension of each stage; S/Q denotes the

size of support sets or query sets in a run; Pooling represents pooling operation; Concat indicates

feature splicing.

Figure 4. Feature fusion of different stages of the network. In the figure, a × a × b represents the
dimension of the input feature; c × c denotes the feature dimension of each stage; S/Q denotes the
size of support sets or query sets in a run; Pooling represents pooling operation; Concat indicates
feature splicing.

3.3. Weight Optimization

The particle swarm optimization (PSO) [27,28] algorithm is used in weight optimiza-
tion. First, the weight optimization is carried out on the meta-evaluation set, and the
optimal feature fusion weight is found by the optimization algorithm used in meta-testing.
The particle swarm optimization algorithm is discussed in detail below.

PSO is derived from the study of flock predation behavior and has the characteristics
of evolution and swarm intelligence. The algorithm stores the information of the optimal
global position and the known optimal local position, which has a good effect on fast
convergence and avoids premature falling into the optimal local solution. However, it is
easy for the standard particle swarm algorithm to fall into local optimum, and to overcome
this problem, we use an adaptive inertia weight strategy that relates the change in inertia
weight to the change in the particle’s own fitness, and we use the fitness variance to

Appl. Sci. 2022, 12, 5458 7 of 18

determine whether the algorithm falls into local optimum. If the algorithm falls into local
optimum, a disturbance mechanism is used to generate new particles and replace the
particles with the worst fitness in the population when the algorithm stalls, thus allowing
the particles to jump out of the local optimum. Compared to other optimization algorithms,
the particle swarm optimization algorithm has memory, all particles in the algorithm
retain a better solution and the particles are only updated by internal velocity, making
the algorithm easier to implement with fewer parameters. Therefore, this paper uses
the particle swarm optimization algorithm to optimize the feature fusion weights. Our
algorithm framework is shown in Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18

3.3. Weight Optimization

The particle swarm optimization (PSO) [27,28] algorithm is used in weight optimiza-

tion. First, the weight optimization is carried out on the meta-evaluation set, and the op-

timal feature fusion weight is found by the optimization algorithm used in meta-testing.

The particle swarm optimization algorithm is discussed in detail below.

PSO is derived from the study of flock predation behavior and has the characteristics

of evolution and swarm intelligence. The algorithm stores the information of the optimal

global position and the known optimal local position, which has a good effect on fast con-

vergence and avoids premature falling into the optimal local solution. However, it is easy

for the standard particle swarm algorithm to fall into local optimum, and to overcome this

problem, we use an adaptive inertia weight strategy that relates the change in inertia

weight to the change in the particle’s own fitness, and we use the fitness variance to de-

termine whether the algorithm falls into local optimum. If the algorithm falls into local

optimum, a disturbance mechanism is used to generate new particles and replace the par-

ticles with the worst fitness in the population when the algorithm stalls, thus allowing the

particles to jump out of the local optimum. Compared to other optimization algorithms,

the particle swarm optimization algorithm has memory, all particles in the algorithm re-

tain a better solution and the particles are only updated by internal velocity, making the

algorithm easier to implement with fewer parameters. Therefore, this paper uses the par-

ticle swarm optimization algorithm to optimize the feature fusion weights. Our algorithm

framework is shown in Figure 5.

Start

Initialize the population and
randomly generate n groups

of feature fusion weights

Measure all individuals in
the population

Call subprocess n. Perform
adaptive feature fusion on
the support and query sets
and calculate the fitness

value of individual n

Determine and retain the optimal
individual and its fitness value

Whether termination
conditions are met?

t = t + 1

Population renewal

Return the optimal
individual and its fitness

End

Extraction of support and query
sets on meta-evaluation sets using

N-way K-shot strategy

Yes

No Test the best individual
on the meta-testing set
and obtain the accuracy

Call subprocess 1. Perform
adaptive feature fusion on
the support and query sets
and calculate the fitness

value of individual 1

...

Figure 5. Flow chart of adaptive feature fusion and weight optimization algorithm.

(1) Population initialization 0 0 =1() = { ()}n
i iQ t Q t , where 0()iQ t represents the i-th indi-

vidual of the 0t generation in the population. 0t is the initial generation and n is the total

number of individuals in the population. Each individual has an initial position
0

i
tX and an

Figure 5. Flow chart of adaptive feature fusion and weight optimization algorithm.

Appl. Sci. 2022, 12, 5458 8 of 18

(1) Population initialization Q(t0) = {Qi(t0)}n
i=1, where Qi(t0) represents the i-th

individual of the t0 generation in the population. t0 is the initial generation and n is the
total number of individuals in the population. Each individual has an initial position Xi

t0

and an initial velocity Vi
t0

at the beginning. Each group weight of feature fusion corresponds
to an individual, and population initialization corresponds to the initialization of n group
weight of λi =

{
λi

1, λi
2, λi

3, λi
4
}n

i=1 of feature fusion.
(2) Each individual in the population is measured, and the individual solution can be

expressed as P(t) = (Pi(t))
n
i=1, where Pi(t) represents the solution of the i-th individual in

the t generation population.
(3) Pi(t) is evaluated by the fitness function. Given that the meta-evaluation set

C = {(Dtrain
j , Dtest

j)} J

j=1
, Dtrain

j is used to train the classifier, Dtest
j is used to test the

classifier, and the optimization process of each individual is set up as a thread that the
computer can execute using the parallel computing method. The meta-learning accuracy of
the classifier to the meta-evaluation set is defined as the fitness function of the population:

Fitness(Pi(t)) = Acc(C) (11)

where Acc(C) represents the accuracy of the meta-evaluation set, and the calculation
method can be expressed as:

Acc(C) =
Predict the correct sample size
The total number o f samples

× 100% (12)

(4) The optimal individual is determined and retained. The optimal individuals and
their fitness values were retained as the target of subsequent evolution. If the population
position stabilizes, the algorithm ends; otherwise, t← t + 1, and the next step is performed.

(5) According to the fitness function value Fitness(Pi(t)) and population renewal strat-
egy, the position Xi

t and velocity Vi
t of the previous generation of individuals were updated

to obtain the next generation of population Q(t+ 1) = {Q1(t + 1), Q2(t + 1) · · ·Qn(t + 1)}
and return to step (2). The population renewal strategy is as follows:

Vi
t+1 = wVi

t + c1r1(Pi
best − Xi

t) + c2r2(gbest − Xi
t) (13)

Xi
t+1 = Xi

t + Vi
t (14)

where Pi
best represents the optimal position experienced by the i-th individual and gbest

represents the optimal position experienced by the whole population. c1 and c2 are acceler-
ation constants used to adjust the learning step, r1 and r2 are random functions with values
in the range of [0, 1], and w is the inertia weight.

When the optimization method is complete, the optimal fusion weight is used to test
in the meta-testing set. Input Flast into the classifier for testing, and the calculation formula
is as follows:

ypredict = Classi f ier(Flast) (15)

The training process of the classifier is the same as the testing process, which uses
Equation (15). The pseudo-code of adaptive feature fusion and weight optimization algo-
rithm is shown in Algorithm 1.

Appl. Sci. 2022, 12, 5458 9 of 18

Algorithm 1 Adaptive feature fusion and weight optimization algorithm pseudo-code

Input: the meta-evaluation set C =
{
(Dtrain

j , Dtest
j)

}J

j=1
;

1: Initialize t to 1;
2: For i = 1: n do

3: Population initialization Q(t0) = {Qi(t0)}n
i=1;

4: The individual solution P(t) = {Pi(t)}n
i=1 and fitness function was measured

by multi-threads.
Fitness function evaluation Fitness(Pi(t)) = Acc(C);

5: Determine and retain the optimal individual and its fitness value;
6: End for
7: while the population position has not reached stability do
8: For i = 1: n do
9: Equation (13) and Equation (14) were used to update population individuals

Q(t + 1) = {Q1(t + 1), Q2(t + 1) · · ·Qn(t + 1)};
10: End for
11: For i = 1: n do

12: Perform steps 4 and 5;
13: End for
14: t← t + 1;
15: End while

Output: the optimal individual;

3.4. Meta-Classifier

After a good embedding model is obtained, the classifier will be trained and tested us-
ing the extracted features. The classifiers used for classification tasks include nearest neigh-
bor algorithm, Bayesian algorithm, logistic regression, and support vector machine. At
present, the multinomial logistic regression model is used primarily for meta-classification.
Logistic regression is a regression model that narrows the prediction range and limits the
predicted value to the range [0, 1]. Multinomial logistic regression improves binary logistic
regression that can be generalized to train and predict multiple classification problems.
The algorithm trains a multinomial logistic regression model for the multi-classification
problem, including M-1 binary regression models. Given a data point, M-1 models are
run simultaneously, and the category with the highest probability is chosen as the predic-
tion category.

4. Experimental Results

This section describes the experimental setup and numerous results.

4.1. Dataset

We perform experiments on the three widely used few-shot image recognition datasets
and the Miner Unsafe Behavior dataset (MUB). MiniImageNet [10] is the derivative of
ImageNet [32], and CIFAR-FS [33] and FC100 [34] are extracted from CIFAR-100 [35,36].
The Miner Unsafe Behavior dataset is a video dataset established by this research team that
contains a wide range of miners’ unsafe behaviors.

The miniImageNet dataset is a widely used dataset in few-shot learning. The dataset
is extracted from ImageNet and contains 100 classes, each containing 600 images with a
resolution of 84 × 84 pixels. Out of the total classes, 64 are used as a meta-training set, 16
as a meta-evaluation set, and 20 as a meta-testing set.

The CIFAR-FS dataset, fully called CIFAR100 few-shot dataset, is extracted from the
standard CIFAR100. It contains 100 classes in total, each containing 600 images with a
resolution of 32 × 32 pixels, with 60,000 images. Out of the total classes, 64 are used as a
meta-training set, 16 as a meta-evaluation set, and 20 as a meta-testing set.

The FC100 dataset is another subset of CIFAR100, containing 100 classes, each con-
taining 600 images having a resolution of 32 × 32 pixels, with a total of 60,000 images.

Appl. Sci. 2022, 12, 5458 10 of 18

However, FC100 is divided into super-classes rather than classes. Among them, 12 super-
classes (60 classes) are used as meta-training sets, 4 super-classes (20 classes) are used as
meta-evaluation sets, and 4 super-classes (20 classes) are used as meta-testing sets.

The MUB dataset contains 51 classes of miners’ unsafe behaviors and 1530 sets of video
actions. Each behavior consists of 30 video actions performed three times by 10 members
of the research team. Out of the total classes, 31 are used as a meta-training set, 10 as a
meta-evaluation set, and 10 as a meta-testing set.

4.2. Setup

Server configuration: In terms of server configuration, a server with 32 GB memory,
two GTX-1080ti graphics processors, and a Windows-10 operating system was used for
experimental verification. In terms of architecture, the PyTorch deep learning architecture
is used [37].

Optimization setup: For the three widely used few-shot image recognition datasets,
Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 and a weight decay
of 5 × 10−4 were used. Each batch consists of 64 samples. The learning rate was initialized
to 0.05 and decayed three times with a factor of 0.1, once at the start of training, once at the
30th epoch, and once at the 60th epoch. The exception is miniImageNet, in which only two
decays are made, and the third decays has no effect. MiniImageNet used 100 epochs, while
CRFAR-FS and FC100 used 90 epochs. For the MUB dataset, we used SGD optimizer with
a momentum of 0.9 and a weight decay of 1 × 10−3. Each batch consists of 16 samples. The
learning rate is initialized to 0.2 and decayed four times by a factor of 0.1. The MUB dataset
used 150 epochs.

Backbone architecture: Based on previous research, for the three public datasets,
ResNet12 was experimentally selected as the backbone network which consisted of four
residual blocks. After the first three blocks, 4 × 4 self-adaptive pooling, 4 × 4 self-adaptive
pooling, and 2× 2 self-adaptive pooling were adopted, respectively, and 1× 1 self-adaptive
pooling was adopted after the last block. In subsequent experiments, SEResNet-12 was
used as the backbone network for comparison, and the residual blocks of the two backbones
are shown in Figure 6. SEResNet-12 adds extrusion and excitation mechanisms based on
ResNet-12. The first and the second layers are fully connected to reduce dimensionality,
resulting in a significant reduction in the number of parameters and computation. For
the MUB dataset, MobineNet-V2 was selected as the backbone, which contained two
convolutional layers at the beginning and end, as well as several modules. The experiment
output is the features in specific modules for feature fusion.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18

However, FC100 is divided into super-classes rather than classes. Among them, 12 super-

classes (60 classes) are used as meta-training sets, 4 super-classes (20 classes) are used as

meta-evaluation sets, and 4 super-classes (20 classes) are used as meta-testing sets.

The MUB dataset contains 51 classes of miners’ unsafe behaviors and 1530 sets of

video actions. Each behavior consists of 30 video actions performed three times by 10

members of the research team. Out of the total classes, 31 are used as a meta-training set,

10 as a meta-evaluation set, and 10 as a meta-testing set.

4.2. Setup

Server configuration: In terms of server configuration, a server with 32 GB memory,

two GTX-1080ti graphics processors, and a Windows-10 operating system was used for

experimental verification. In terms of architecture, the PyTorch deep learning architecture

is used [37].

Optimization setup: For the three widely used few-shot image recognition datasets,

Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 and a weight decay

of 5 × 10−4 were used. Each batch consists of 64 samples. The learning rate was initialized

to 0.05 and decayed three times with a factor of 0.1, once at the start of training, once at

the 30th epoch, and once at the 60th epoch. The exception is miniImageNet, in which only

two decays are made, and the third decays has no effect. MiniImageNet used 100 epochs,

while CRFAR-FS and FC100 used 90 epochs. For the MUB dataset, we used SGD optimizer

with a momentum of 0.9 and a weight decay of 1 × 10−3. Each batch consists of 16 samples.

The learning rate is initialized to 0.2 and decayed four times by a factor of 0.1. The MUB

dataset used 150 epochs.

Backbone architecture: Based on previous research, for the three public datasets, Res-

Net12 was experimentally selected as the backbone network which consisted of four re-

sidual blocks. After the first three blocks, 4 × 4 self-adaptive pooling, 4 × 4 self-adaptive

pooling, and 2 × 2 self-adaptive pooling were adopted, respectively, and 1 × 1 self-adaptive

pooling was adopted after the last block. In subsequent experiments, SEResNet-12 was

used as the backbone network for comparison, and the residual blocks of the two back-

bones are shown in Figure 6. SEResNet-12 adds extrusion and excitation mechanisms

based on ResNet-12. The first and the second layers are fully connected to reduce dimen-

sionality, resulting in a significant reduction in the number of parameters and computa-

tion. For the MUB dataset, MobineNet-V2 was selected as the backbone, which contained

two convolutional layers at the beginning and end, as well as several modules. The exper-

iment output is the features in specific modules for feature fusion.

Residual

+

Input

Output

Residual

Input

Output

Scale

Globe Pooling

FC

FC

Sigmoid

+

Figure 6. Schematic comparison of the residual blocks of ResNet-12 and SE ResNet-12. Figure 6. Schematic comparison of the residual blocks of ResNet-12 and SE ResNet-12.

Appl. Sci. 2022, 12, 5458 11 of 18

Data augmentation: During the training of the embedding model, random clipping,
color dithering, and random horizontal flip [38] are used for data augmentation on the
three public datasets. For the MUB dataset, data augmentation methods such as random
horizontal flipping and center cropping are used to enhance the generalization performance
of the embedding model.

4.3. Results and Discussion

We conduct experiments on the miniImageNet dataset. The number of random seeds
was fixed to ensure the verifiability of the experiment. The particle swarm optimization al-
gorithm was used to optimize the weight of adaptive feature fusion on the meta-evaluation
set. The population was set up with 10 individuals, and the iterations were set at 30 genera-
tions. After finding the optimal weight, it was used for the meta-testing. The results of the
experiment are shown in Table 1 In the 1-shot strategy, the proposed method results are
similar to the state-of-the-art MetaOptNet [38] and better than GEFS [23]. The proposed
method outperforms all others in the five-shot strategy. Experiments show that the method
is both effective and reliable.

Table 1. Experiments were conducted on the miniImageNet dataset and our approach was compared
with existing methods. Average meta-learning classification accuracies (%) with 95% confidence
intervals on miniImageNet meta-test splits. a-b-c-d denotes the size of the layer in the backbone.

Model Backbone
miniImageNet 5-Way

1-Shot 5-Shot

MAML [17] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92
Matching Networks [10] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73

IMP [39] 64-64-64-64 49.2 ± 0.7 64.7 ± 0.7
Prototypical Networks [8] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66

TAML [18] 64-64-64-64 51.77 ± 1.86 66.05 ± 0.85
SAML [40] 64-64-64-64 52.22 ± n/a 66.49 ± n/a
GCR [41] 64-64-64-64 53.21 ± 0.80 72.34 ± 0.64
KTN [42] 64-64-64-64 54.61 ± 0.80 71.21 ± 0.66

PARN [43] 64-64-64-64 55.22 ± 0.84 71.55 ± 0.66
Dynamic Few-shot [44] 64-64-128-128 56.20 ± 0.86 73.00 ± 0.64
Relation Networks [9] 64-64-128-128 50.44 ± 0.82 65.32 ± 0.70

R2D2 [33] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1
SNAIL [45] ResNet-12 55.71 ± 0.99 68.88 ± 0.92

AdaResNet [46] ResNet-12 56.88 ± 0.62 71.94 ± 0.57
TADAM [34] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
Shot-Free [47] ResNet-12 59.04 ± n/a 77.64 ± n/a
TEWAM [48] ResNet-12 60.07 ± n/a 75.90 ± n/a

MTL [49] ResNet-12 61.20 ± 1.80 75.50 ± 0.80
Variational FSL [50] ResNet-12 61.23 ± 0.26 77.69 ± 0.17

MetaOptNet [38] ResNet-12 62.64 ± 0.61 78.63 ± 0.46
Diversityw/Cooperation [51] ResNet-18 59.48 ± 0.65 75.62 ± 0.48

Fine-tuning [52] WRN-28-10 57.73 ± 0.62 78.17 ± 0.49
LEO-trainval [53] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12

GEFS [23] ResNet-12 62.02 ± 0.63 79.64 ± 0.44
Ours ResNet-12 62.55 ± 0.81 80.57 ± 0.57

To demonstrate the effectiveness of the particle swarm optimization algorithm in
weight optimization, each generation’s optimal feature fusion weights found on the meta-
evaluation set are used for meta-testing. Figure 7 shows the relationship between the
maximum accuracy and average accuracy of miniImageNet and the generation in meta-
testing under the one-shot and five-shot strategies. The particle swarm optimization
algorithm has been found to be both effective and reliable.

The method is validated on FC100 and CIFAR-FS. The population was set up with
10 individuals, and the iterations were set at 30 generations. The results of the experiment

Appl. Sci. 2022, 12, 5458 12 of 18

are shown in Table 2. The results of the one-shot strategy outperforms GEFS [23] for CIFAR-
FS, whereas the results of the five-shot strategy achieve the best performance. For FC100,
our approach achieved the best performance for both one-shot and five-shot strategies.

The effectiveness of particle swarm optimization algorithm has also been proven on
FC100 and CIFAR-FS. Figure 8a shows the relationship between the maximum accuracy
and average accuracy of the CIFAR-FS dataset and the generation in meta-testing under the
one-shot and five-shot strategies. Figure 8b displays the relationship between the maximum
accuracy and average accuracy of the FC100 dataset and the generation in meta-testing
under the one-shot and five-shot strategies.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

maximum accuracy and average accuracy of miniImageNet and the generation in meta-

testing under the one-shot and five-shot strategies. The particle swarm optimization algo-

rithm has been found to be both effective and reliable.

35

40

45

50

55

60

65

0 5 10 15 20 25 30

M
et

a-
T

es
t

A
cc

u
ra

cy
(%

)

Number of Generation

Maximum accuracy

Average accuracy

50

55

60

65

70

75

80

85

0 5 10 15 20 25 30

M
et

a-
T

es
t

A
cc

u
ra

cy
(%

)

Number of Generation

Maximum accuracy

Average accuracy

miniImageNet 1-shot

miniImageNet 5-shot

Figure 7. The relationship between the accuracy and the generation in meta-testing on

miniImageNet. The 0-th generation represents the n groups of feature fusion weights randomly

generated during population initialization.

The method is validated on FC100 and CIFAR-FS. The population was set up with 10

individuals, and the iterations were set at 30 generations. The results of the experiment are

shown in Table 2. The results of the one-shot strategy outperforms GEFS [23] for CIFAR-FS,

whereas the results of the five-shot strategy achieve the best performance. For FC100, our

approach achieved the best performance for both one-shot and five-shot strategies.

Table 2. Experiments were performed on CIFAR-FS and FC100 and our approach was compared

with existing methods. Average meta-learning classification accuracies (%) with 95% confidence in-

tervals on CIFAR-FS and FC100 meta-test splits. a-b-c-d denotes the size of the layer in the backbone.

Model Backbone
CIFAR-FS 5-Way FC100 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

MAML [17] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -

Prototypical Networks

[8]
64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6

Relation Networks [9] 64-64-128-128 55.0 ± 1.0 69.3 ± 0.8 - -

R2D2 [33] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -

TADAM [34] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4

Shot-Free [47] ResNet-12 69.2 ± n/a 84.7 ± n/a - -

TEWAM [48] ResNet-12 70.4 ± n/a 81.3 ± n/a - -

Prototypical Networks

[8]
ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6

MetaOptNet [38] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

GEFS [23] ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6

Ours ResNet-12 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72

Figure 7. The relationship between the accuracy and the generation in meta-testing on miniImageNet.
The 0-th generation represents the n groups of feature fusion weights randomly generated during
population initialization.

Table 2. Experiments were performed on CIFAR-FS and FC100 and our approach was compared with
existing methods. Average meta-learning classification accuracies (%) with 95% confidence intervals
on CIFAR-FS and FC100 meta-test splits. a-b-c-d denotes the size of the layer in the backbone.

Model Backbone
CIFAR-FS 5-Way FC100 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

MAML [17] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [8] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6

Relation Networks [9] 64-64-128-128 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [33] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -

TADAM [34] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
Shot-Free [47] ResNet-12 69.2 ± n/a 84.7 ± n/a - -
TEWAM [48] ResNet-12 70.4 ± n/a 81.3 ± n/a - -

Prototypical Networks [8] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MetaOptNet [38] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

GEFS [23] ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
Ours ResNet-12 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72

Appl. Sci. 2022, 12, 5458 13 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

The effectiveness of particle swarm optimization algorithm has also been proven on

FC100 and CIFAR-FS. Figure 8a shows the relationship between the maximum accuracy

and average accuracy of the CIFAR-FS dataset and the generation in meta-testing under

the one-shot and five-shot strategies. Figure 8b displays the relationship between the max-

imum accuracy and average accuracy of the FC100 dataset and the generation in meta-

testing under the one-shot and five-shot strategies.

35

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30

M
et

a-
T

es
t

A
cc

u
ra

cy
(%

)

Number of Generation

Maximum accuracy

Average accuracy

50

55

60

65

70

75

80

85

90

0 5 10 15 20 25 30

M
et

a-
T

es
t

A
cc

u
ra

cy
(%

)

Number of Generation

Maximum accuracy

Average accuracy

15

20

25

30

35

40

45

0 5 10 15 20 25 30

M
et

a-
T

es
t

A
cc

u
ra

cy
(%

)

Number of Generation

Maximum accuracy

Average accuracy

CIFAR-FS 1-shot

CIFAR-FS 5-shot

FC100 1-shot

FC100 5-shot

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30
M

et
a-

T
es

t
A

cc
u

ra
cy

(%
)

Number of Generation

Maximum accuracy

Average accuracy

(a) (b)

Figure 8. The relationship between the accuracy and the generation in meta-testing on CIFAR-FS

and FC100. (a) represents the relationship between meta-learning accuracy and the generation on

CIFAR-FS. (b) represents the relationship between meta-learning accuracy and the generation on

FC100. The 0-th generation represents the n groups of feature fusion weights randomly generated

during population initialization.

To further verify the effectiveness of the method, we performed experiments on the

Miner Unsafe Behavior dataset by extracting video key frames. Random seed number was

fixed to ensure the experiment verifiability. The population was set up with 10 individuals

and the iterations were set at 20 generations. The experimental results obtained by com-

paring the meta-learning accuracy before and after feature fusion are shown in Table 3.

This method achieves good performance.

Table 3. We conduct experiments on the MUB dataset. Average meta-learning classification accu-

racies (%) with 95% confidence intervals on MUB meta-test splits.

Model Backbone
MUB 5-Way

1-Shot 5-Shot

Ours-simple MobileNet-V2 39.57 ± 2.42 52.92 ± 2.19

Ours-fuse MobileNet-V2 49.48 ± 2.05 68.25 ± 2.03

4.4. Ablation Study

4.4.1. Comparison of Different Feature Fusion Methods

Generally speaking, a better feature fusion method can achieve better results. In this

work, in order to further verify that the proposed method is state-of-the-art, comparative

experiments are carried out on multiple feature fusion methods. The feature fusion meth-

ods chosen by the study include: directly fusing the output features by each stage of the

Figure 8. The relationship between the accuracy and the generation in meta-testing on CIFAR-FS
and FC100. (a) represents the relationship between meta-learning accuracy and the generation on
CIFAR-FS. (b) represents the relationship between meta-learning accuracy and the generation on
FC100. The 0-th generation represents the n groups of feature fusion weights randomly generated
during population initialization.

To further verify the effectiveness of the method, we performed experiments on the
Miner Unsafe Behavior dataset by extracting video key frames. Random seed number was
fixed to ensure the experiment verifiability. The population was set up with 10 individuals
and the iterations were set at 20 generations. The experimental results obtained by compar-
ing the meta-learning accuracy before and after feature fusion are shown in Table 3. This
method achieves good performance.

Table 3. We conduct experiments on the MUB dataset. Average meta-learning classification accuracies
(%) with 95% confidence intervals on MUB meta-test splits.

Model Backbone
MUB 5-Way

1-Shot 5-Shot

Ours-simple MobileNet-V2 39.57 ± 2.42 52.92 ± 2.19
Ours-fuse MobileNet-V2 49.48 ± 2.05 68.25 ± 2.03

4.4. Ablation Study
4.4.1. Comparison of Different Feature Fusion Methods

Generally speaking, a better feature fusion method can achieve better results. In this
work, in order to further verify that the proposed method is state-of-the-art, comparative
experiments are carried out on multiple feature fusion methods. The feature fusion methods
chosen by the study include: directly fusing the output features by each stage of the
embedding model according to the same size of channels, without flattening the output
features; performing addition operations on the features output by stage 1 and stage 2 and
inputting them into stage 3, in a similar way to [24]. The experimental results in Tables 4
and 5 show that the strategy of feature fusion according to the size of channels and the
strategy of summing the output features of different stages and feeding them to other
stages are inferior to the adaptive feature fusion method.

Appl. Sci. 2022, 12, 5458 14 of 18

Table 4. Comparison of different feature fusion methods on the miniImageNet dataset. “Ours-
channels” denotes fusing features directly by the same size of channels. “Ours-addition” denotes
summing features from different stages and feeding them to other stages. Average meta-learning
classification accuracies (%) with 95% confidence intervals on miniImageNet meta-test splits.

Model Backbone
miniImageNet 5-Way

1-Shot 5-Shot

Ours-channels ResNet-12 62.25 ± 0.61 80.14 ± 0.42
Ours-addition ResNet-12 62.16 ± 0.58 79.83 ± 0.51
Ours-fuse ResNet-12 62.55 ± 0.81 80.57 ± 0.57

Table 5. Comparison of different feature fusion methods on CIFAR-FS and FC100. “Ours-channels”
denotes fusing features directly by the same size of channels. “Ours-addition” denotes summing
features from different stages and feeding them to other stages. Average meta-learning classification
accuracies (%) with 95% confidence intervals on CIFAR-FS and FC100.

Model Backbone
CIFAR-FS 5-way FC100 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

Ours-channels ResNet-12 71.72 ± 0.8 86.32 ± 0.64 42.92 ± 0.71 59.8 ± 0.54
Ours-addition ResNet-12 71.67 ± 0.72 86.21 ± 0.59 42.81 ± 0.75 59.42 ± 0.67
Ours-fuse ResNet-12 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72

4.4.2. Comparison of Different Classifiers

The effects of different classifiers on the experiment were tested, and multiple classi-
fiers were used for validation on three public datasets. The experimental classifiers include
nearest neighbor classification, support vector machine, cosine similarity, and logistic re-
gression. The experimental results are shown in Table 6. The performance of each classifier
varies depending on the dataset, but the logistic regression classifier is better than other
classifiers in the experiment; hence it is selected for subsequent research.

Table 6. Ablation experiments with classifiers. “NN” and “LR” denote nearest neighbor classifier
and logistic regression. “Cosine” stands for cosine similarity.

Classifier
CIFAR-FS 5-Way FC100 5-Way miniImageNet 5-Way

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

NN 68.9 ± 0.86 81.82 ± 0.67 42.41 ± 0.75 57.92 ± 0.74 61.03 ± 0.83 73.85 ± 0.65
SVM 71.32 ± 0.88 83.96 ± 0.75 40.89 ± 0.75 58.43 ± 0.76 58.16 ± 0.78 74.58 ± 0.64

Cosine 68.9 ± 0.86 81.82 ± 0.67 42.41 ± 0.75 57.92 ± 0.74 61.03 ± 0.83 73.85 ± 0.65
LR 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72 62.55 ± 0.81 80.57 ± 0.57

4.4.3. Comparison of Different Backbones

ResNet-12 is used as the backbone in the above experiments. To compare the perfor-
mance of the algorithm under different backbone networks, ResNet-12 and SEResNet-12 are
used in comparative experiments. Figure 6 shows the network structure of ResNet-12 and
SEResNet-12. The experimental results are shown in Tables 7 and 8. It can be concluded that
the algorithm exhibits better performance under SEResNet-12, indicating that SEResNet-12
better represents the features of the samples.

Appl. Sci. 2022, 12, 5458 15 of 18

Table 7. Meta-learning accuracy of different backbones on CIFAR-FS and FC100.

Model
CIFAR-FS 5-Way FC100 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

ResNet-12 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72
SEResNet-12 72.31 ± 0.93 86.84 ± 0.59 44.58 ± 0.84 62.52 ± 0.68

Table 8. Meta-learning accuracy of different backbones on miniImageNet.

Model
miniImageNet 5-Way

1-Shot 5-Shot

ResNet-12 62.55 ± 0.81 80.57 ± 0.57
SEResNet-12 62.81 ± 0.92 80.95 ± 0.62

4.4.4. Comparison of Different Optimization Algorithms

In this paper, to verify the impact of different optimization algorithms on the experi-
mental results, we used quantum genetic algorithms (QGA) and particle swarm optimiza-
tion algorithms for comparison. To ensure the accuracy of the experiments, the classifiers
we used were all logistic regression classifiers, and the backbone network uniformly used
ResNet12. The experimental results are shown in Tables 9 and 10. It can be concluded that
the results using the particle swarm optimization algorithm are slightly better than those
of the quantum genetic algorithm, further confirming the reliability and stability of the
particle swarm optimization algorithm.

Table 9. Meta-learning accuracy of different optimization methods on miniImageNet. QGA denotes
Quantum Genetic Algorithm. PSO stands for Particle Swarm Optimization.

Optimization Method Backbone
miniImageNet 5-Way

1-Shot 5-Shot

QGA ResNet-12 62.29 ± 0.71 80.05 ± 0.52
PSO ResNet-12 62.55 ± 0.81 80.57 ± 0.57

Table 10. Meta-learning accuracy of different optimization methods on CIFAR-FS and FC100.

Optimization Method Backbone
CIFAR-FS 5-Way FC100 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

QGA ResNet-12 71.72 ± 0.76 86.68 ± 0.94 44.02 ± 0.59 61.98 ± 0.64
PSO ResNet-12 71.91 ± 0.85 86.77 ± 0.63 44.16 ± 0.77 62.17 ± 0.72

5. Conclusions

In terms of the differences between the features of different stages of the convolutional
neural networks and the impact of the features of different stages on the performance
of the classifier, this paper proposes a meta-learning method based on adaptive feature
fusion and weight optimization. This method merges different features of the low and
high stages of the embedding model, and optimizes the feature fusion weights through
the particle swarm algorithm; on this basis, this method optimizes the weights on the
meta-evaluation set, and uses the obtained optimal fusion weights for the meta-test. The
method was verified on the three widely used few-shot image recognition datasets and
the MUB dataset produced by the research team. The results show that compared with
the current mainstream meta-learning methods, the proposed method has achieved better
performance. In future research, we intend to build on the research in this paper to explore
the effect of the dimensionality of the features output by the pooling layer of the embedding
model on the performance of the classifier. We attempt to vary the pooling dimension of

Appl. Sci. 2022, 12, 5458 16 of 18

the pooling layer at each stage of the embedding model, and hence the dimensionality of
the output features at each stage. The pooling dimension of each stage and the feature
fusion weights of each stage are jointly optimized by an optimization algorithm in the hope
of further improving the performance of the classifier.

Author Contributions: Conceptualization, X.C. and Z.L.; methodology, X.C. and Z.L.; software,
X.C. and Z.L.; validation, X.C. and Z.L.; formal analysis, K.Z. and Z.L.; investigation, X.C. and Q.Y.;
resources, X.C.; data curation, X.C. and Z.L.; writing—original draft preparation, X.C.; writing—
review and editing, K.Z., Z.L. and Q.Y.; visualization, X.C. and Z.L.; supervision, E.D.; project
administration, E.D.; funding acquisition, E.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China on Research
on On-line identification of Coal Gangue Based on terahertz detection technology (grant number NO.
52074273), and by the State Key Research Development Program of China (grant number NO. 2017
YFC0804400, NO. 2017YFC0804401).

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://pan.baidu.com/s/1bQTtrkEgWfs_iaVRwxPF3Q#list/path=%2F (accessed on 20
April 2022), extraction code 33e7; https://pan.baidu.com/s/1HqRUw3dmsMBInt_Fh3J_Uw (accessed
on 20 April 2022), extraction code ub38; https://pan.baidu.com/s/1Wnlp1-obKsMLcHITYQ1CLg
(accessed on 20 April 2022), extraction code kcd6.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.

Intell. Neurosci. 2018, 2018, 1–13. [CrossRef] [PubMed]
3. Vanschoren, J. Meta-learning. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 35–61.
4. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.

(CSUR) 2020, 53, 1–34. [CrossRef]
5. Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.
6. Chen, Y.; Liu, Z.; Xu, H.; Darrell, T.; Wang, X. Meta-baseline: Exploring simple meta-learning for few-shot learning. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Sunnyvale, CA, USA, 25 October 2021; pp. 9062–9071.
7. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML

Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2.
8. Snell, J.; Swersky, K.; Zemel, R.S. Prototypical networks for few-shot learning. arXiv 2017, arXiv:1703.05175.
9. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 1199–1208.

10. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016,
29, 3630–3638.

11. Karlinsky, L.; Karlinsky, L.; Shtok, J.; Harary, S.; Marder, M.; Pankanti, S.; Bronstein, A.M. Repmet: Representative-based metric
learning for classification and few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5197–5206.

12. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019;
pp. 7260–7268.

13. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks. In
Proceedings of the International Conference on Machine Learning PMLR, York City, NY, USA, 19–24 June 2016; pp. 1842–1850.

14. Munkhdalai, T.; Yu, H. Meta networks. In Proceedings of the International Conference on Machine Learning PMLR, Sydney,
Australia, 6–11 August 2017; pp. 2554–2563.

15. Cai, Q.; Pan, Y.; Yao, T.; Yan, C.; Mei, T. Memory matching networks for one-shot image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4080–4088.

16. Kaiser, Ł.; Nachum, O.; Roy, A.; Bengio, S. Learning to remember rare events. arXiv 2017, arXiv:1703.03129.
17. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the

International Conference on Machine Learning PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.
18. Jamal, M.A.; Qi, G.-J. Task agnostic meta-learning for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Sydney, Australia, 6–11 August 2019; pp. 11719–11727.

https://pan.baidu.com/s/1bQTtrkEgWfs_iaVRwxPF3Q#list/path=%2F
https://pan.baidu.com/s/1HqRUw3dmsMBInt_Fh3J_Uw
https://pan.baidu.com/s/1Wnlp1-obKsMLcHITYQ1CLg
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://doi.org/10.1145/3386252

Appl. Sci. 2022, 12, 5458 17 of 18

19. Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835.
20. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
21. Ye, H.-J.; Hu, H.; Zhan, D.-C.; Sha, F. Learning embedding adaptation for few-shot learning. arXiv 2019, arXiv:1812.03664.
22. Hao, F.; Cheng, J.; Wang, L.; Cao, J. Instance-level embedding adaptation for few-shot learning. IEEE Access 2019, 7, 100501–100511.

[CrossRef]
23. Tian, Y.; Wang, Y.; Krishnan, D.; Tenenbaum, J.B.; Isola, P. Rethinking few-shot image classification: A good embedding is all

you need? In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020;
Springer: Berlin/Heidelberg, Germany, 2020; Volume 16 (Pt XIV), pp. 266–282.

24. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 2117–2125.

25. Deng, C.; Wang, M.; Liu, L.; Liu, Y.; Jiang, Y. Extended feature pyramid network for small object detection. IEEE Trans. Multimed.
2021, 24, 1968–1979. [CrossRef]

26. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

27. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, IEEE, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

28. Yu, Y.; Li, Y.; Li, J. Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator
utilizing enhanced particle swarm optimization. J. Intell. Mater. Syst. Struct. 2015, 26, 2446–2462. [CrossRef]

29. Kim, J.; Lee, S.; Kim, S.; Cha, M.; Lee, J.K.; Choi, Y.; Choi, Y.; Cho, D.Y.; Kim, J. Auto-meta: Automated gradient based meta
learner search. arXiv 2018, arXiv:1806.06927.

30. Elsken, T.; Staffler, B.; Metzen, J.H.; Hutter, F. Meta-learning of neural architectures for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12365–12375.

31. Zhou, F.; Wu, B.; Li, Z. Deep meta-learning: Learning to learn in the concept space. arXiv 2018, arXiv:1802.03596.
32. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
33. Bertinetto, L.; Henriques, J.F.; Torr, P.H.; Vedaldi, A. Meta-learning with differentiable closed-form solvers. arXiv 2018,

arXiv:1805.08136.
34. Oreshkin, B.N.; Rodriguez, P.; Lacoste, A. Tadam: Task dependent adaptive metric for improved few-shot learning. arXiv 2018,

arXiv:1805.10123.
35. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, University of Tront, Toronto,

ON, Canada, 2009.
36. Torralba, A.; Fergus, R.; Freeman, W.T. 80 million tiny images: A large data set for nonparametric object and scene recognition.

IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1958–1970. [CrossRef]
37. Ketkar, N. Introduction to pytorch. In Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; pp. 195–208.
38. Lee, K.; Maji, S.; Ravichandran, A.; Soatto, S. Meta-learning with differentiable convex optimization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10657–10665.
39. Allen, K.; Shelhamer, E.; Shin, H.; Tenenbaum, J. Infinite mixture prototypes for few-shot learning. In Proceedings of the

International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 232–241.
40. Hao, F.; He, F.; Cheng, J.; Wang, L.; Cao, J.; Tao, D. Collect and select: Semantic alignment metric learning for few-shot learning.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 8460–8469.

41. Li, A.; Luo, T.; Xiang, T.; Huang, W.; Wang, L. Few-shot learning with global class representations. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9715–9724.

42. Peng, Z.; Li, Z.; Zhang, J.; Li, Y.; Qi, G.-J.; Tang, J. Few-shot image recognition with knowledge transfer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 441–449.

43. Wu, Z.; Li, Y.; Guo, L.; Jia, K. PARN: Position-aware relation networks for few-shot learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6659–6667.

44. Gidaris, S.; Komodakis, N. Dynamic few-shot visual learning without forgetting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4367–4375.

45. Mishra, N.; Rohaninejad, M.; Chen, X.; Abbeel, P. A simple neural attentive meta-learner. arXiv 2017, arXiv:1707.03141.
46. Munkhdalai, T.; Yuan, X.; Mehri, S.; Trischler, A. Rapid adaptation with conditionally shifted neurons. In Proceedings of the

International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3664–3673.
47. Ravichandran, A.; Bhotika, R.; Soatto, S. Few-shot learning with embedded class models and shot-free meta training. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 331–339.

48. Qiao, L.; Shi, Y.; Li, J.; Wang, Y.; Huang, T.; Tian, Y. Transductive episodic-wise adaptive metric for few-shot learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 3603–3612.

http://doi.org/10.1109/ACCESS.2019.2906665
http://doi.org/10.1109/TMM.2021.3074273
http://doi.org/10.1177/1045389X14556166
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1109/TPAMI.2008.128

Appl. Sci. 2022, 12, 5458 18 of 18

49. Sun, Q.; Liu, Y.; Chua, T.-S.; Schiele, B. Meta-transfer learning for few-shot learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 403–412.

50. Zhang, J.; Zhao, C.; Ni, B.; Xu, M.; Yang, X. Variational few-shot learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1685–1694.

51. Dvornik, N.; Schmid, C.; Mairal, J. Diversity with cooperation: Ensemble methods for few-shot classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3723–3731.

52. Dhillon, G.S.; Chaudhari, P.; Ravichandran, A.; Soatto, S. A baseline for few-shot image classification. arXiv 2019, arXiv:1909.02729.
53. Rusu, A.A.; Rao, D.; Sygnowski, J.; Vinyals, O.; Pascanu, R.; Osindero, S.; Hadsell, R. Meta-learning with latent embedding

optimization. arXiv 2018, arXiv:1807.05960.

	Introduction
	Related Works
	Metric-Based Meta-Learning
	External Memory-Based Meta-Learning
	Initialization Method Based on Strong Generalization

	Method
	Meta-Learning Knowledge
	Feature Fusion
	Weight Optimization
	Meta-Classifier

	Experimental Results
	Dataset
	Setup
	Results and Discussion
	Ablation Study
	Comparison of Different Feature Fusion Methods
	Comparison of Different Classifiers
	Comparison of Different Backbones
	Comparison of Different Optimization Algorithms

	Conclusions
	References

