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Abstract: Thermal comfort in indoor environments is perceived as an important factor for the
well-being and productivity of the occupants. To practically create a comfortable environment, a
combination of models, systems, and procedures must be applied. This systematic review collects
recent studies proposing complete thermal-comfort-based control strategies, extracted from a scientific
database for the period 2017–2021. The study consists of this paper and of a spreadsheet recording all
the 166 reviewed works. After a general introduction, the content of the papers is analyzed in terms
of thermal comfort models, indoor environment control strategies, and correlation between these two
aspects. Practical considerations on scope, required inputs, level of readiness, and, where available,
estimated cost are also given. It was found that the predicted mean vote is the preferred thermal
comfort modeling approach, followed by data-driven and adaptive methods. Thermal comfort
is controlled mainly through indoor temperature, although a wide range of options are explored,
including the comfort-based design of building elements. The most popular field of application of
advanced control strategies is office/commercial buildings with air conditioning systems, which can
be explained by budget and impact considerations. The analysis showed that few works envisaging
practical implementations exist that address the needs of vulnerable people. A section is, therefore,
dedicated to this issue.

Keywords: thermal comfort; indoor environment; control system; building; HVAC

1. Introduction

People spend most of their time indoors. Whether it is at home, at work, at school,
in healthcare structures, or in recreational facilities, the demand for a comfortable environ-
ment is a key driver in building research. As pointed out by Frontczak and Wargocki [1],
among the aspects encompassed by the definition of human comfort (visual, acoustic,
thermal, and air-quality-related), the thermal condition of the occupants is decisive in
determining their level of satisfaction. The same study also confirmed the complexity of
the matter, and highlighted its subjective nature, the concurrence of multiple influencing
factors, and quite a few unsolved controversies.

To preserve or improve human thermal comfort in indoor environments, two elements
must be considered. The first element concerns modeling—and thermal comfort models
are as essential to the purpose as they are difficult to develop, given the fact that they
must standardize the outcome of personal perceptions. The pioneering works by Fanger in
the 1970s [2] and de Dear and Brager in the late 1990s [3] are shining examples of this effort,
and are the foundation of the reference standards in the field (ASHRAE Standard 55 [4]
and EN ISO 7730 [5]/EN 16798-1 [6]). However, despite the existence of such recognized
frameworks, contributions on new approaches, investigations, and metrics are constantly
added to the body of knowledge. For example, Zhao et al. [7] reviewed the existing thermal
comfort models and addressed aspects such as sleeping environments and the specific
needs of the elderly, while Arakawa Martins et al. [8] focused on methodological issues
associated with model development.

Appl. Sci. 2022, 12, 5473. https://doi.org/10.3390/app12115473 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115473
https://doi.org/10.3390/app12115473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9481-5504
https://orcid.org/0000-0003-4381-0452
https://orcid.org/0000-0001-5655-0202
https://orcid.org/0000-0001-8871-4494
https://doi.org/10.3390/app12115473
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115473?type=check_update&version=3


Appl. Sci. 2022, 12, 5473 2 of 31

The second element to consider in the creation of a thermally comfortable environment
is control, which implies answering the question of how to obtain comfort conditions once
they have been predicted through an appropriate thermal comfort model. This layered
issue involves the definition of control variables and, possibly, calculation, simulation,
and field deployment. When it comes to control variables, the most obvious choice are
the operating parameters of heating, ventilation, and air conditioning (HVAC) systems,
but this is not—nor it should be—the only option. As discussed by Bean in his guide [9],
the achievement of thermal comfort is often mistaken for other objectives, such as energy
efficiency or mere code compliance, for which solutions as simple as thermostat set-point
adjustment may be enough. Indeed, a gap still exists between thermal comfort and building
management communities [10]: occupant satisfaction is mostly associated with room
temperature, overlooking “the multiple dimensions and psychological aspects identified
by thermal comfort researchers”. Indeed, “homes are not uncomfortable: people are” [9],
and their perception is influenced by building design choices [11] as well as by personal
and general factors, which are known to have an influence on expectations [12]. For this
reason, it is worth remarking that thermal-comfort-based control of HVAC equipment,
which is the predominant option in practice and in the present literature survey, is only a
part of a bigger design strategy.

The inclusion of thermal comfort objectives in building management has been consid-
ered from different perspectives. For example, Enescu [13] focused on the main thermal
comfort indicators for indoor environment control, while Nagele et al. [14] examined
the topic from the angle of room temperature adjustment, and quantified the energy-
saving potential of modern automated systems over traditional temperature controllers.
Recent works have recognized a progressive paradigm shift from traditional group-average
approaches towards personal comfort approaches. Wang et al. [15] discussed individual dif-
ferences in human thermal comfort perceptions and their influencing factors; Kim et al. [16]
and Xie et al. [17] explored occupant-centric frameworks and relative methodologies and
requirements; Jung and Jazizadeh [18] focused on human-in-the-loop occupancy- and
comfort-driven HVAC operations. The diffusion of new technologies and algorithms is
playing an important part in this process. In their 2020 survey, Tomat et al. [19] examined
Internet of Things (IoT) applications related to thermal comfort; the authors noted how this
class of devices, particularly mobile ones, are instrumental in turning people from passive
subjects of measurements to active players in defining their own personal comfort level.
After rigorous selection processes, Halhoul Merabet et al. [20] isolated and analyzed over
one hundred studies from 1992 to 2020 on the application of artificial intelligence to achieve
energy-efficient thermal comfort in buildings, while Čulić et al. [21] mainly concentrated
on smart devices and technologies such as sensors, cameras, and wearable devices.

The endpoint of control system deployment is the human–building interface.
Day et al. [22] presented a review of the most common building interfaces, exploring
the motivation that triggers the interaction, the effect of their operation, and the key
features that make a device more usable and, therefore, effective. One of the analyzed
interfaces is the thermostat, which is also the subject of studies by Ponce and co-authors
(see, for example, [23]) in which the importance of concepts such as expectations and
user-friendliness were highlighted as one of the keys to successful devices. The automatic
control process can also be replaced or complemented by the promotion of behavioral
changes through recommendations. The effect of nudging has been explored in recent
publications, sometimes with contradictory results: for example, the experiment by Idahosa
and Akotey [24] in a hotel and the investigation by Li et al. [25] in individual offices gave a
contrasting interpretation of the influence of environmental appeals on the user’s actions.

To summarize, literature reviews can be found on either comfort models or control
technologies, occasionally giving information about both aspects, but discussing them
separately. To the authors’ knowledge, no application-oriented survey exists on studies in
which findings from the thermal comfort research corpus have been exploited to devise an
indoor environment control system—that is, in which a bridge has been created between
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thermal comfort and building technology communities. This paper aims to fill this gap by
providing a systematic guide to solutions combining scientific evaluation of thermal comfort
and development of comfort-based control methods. In the authors’ view, the survey can
be used as a starting point both from researchers willing to contribute to the field with new
studies, and from practitioners looking for complete solutions. The studies were classified
according to several aspects, including comfort model, control strategy/algorithm, required
inputs, control variables, type of environment, and level of readiness. Where available,
practical information for each of the analyzed solutions was given, such as hardware
and software used, and estimated cost. To make the findings of this work more readily
accessible to the interested reader, the database of the reviewed works was also made
available as Supplementary Materials.

The paper is organized as follows: Section 2 describes the methodology and criteria
employed to select the papers. Section 3 is divided into several subsections: after a statistical
and semantical overview of the selected papers, the actual guide to available solutions
is presented, mostly in visual and tabular form, followed by a discussion about the most
relevant findings and the limits of the review methodology. As most of the reviewed
solutions are developed for standard contexts, some unresolved questions are collected in
Section 4 to raise attention on the needs of vulnerable groups of people. Conclusions are
briefly drawn in the final Section 5.

2. Methods

In this section, source, criteria, and methodologies are presented that were used to
select literature papers and extract information from them. The scope of the research is
to identify works featuring solutions for the control of indoor environment to improve or
preserve thermal comfort. Therefore, the authors searched for papers presenting simultane-
ously:

• A clearly identifiable thermal comfort model with inputs and outputs;
• A strategy that exploits the outputs of the thermal comfort evaluation to control

well-indicated variables connected to the indoor environment.

For example, a paper discussing an innovative control method of indoor temperature,
only indicating the set-point value without specifying the origin of this value, would be
excluded; a paper explaining that the set-point equates the neutral temperature calculated
from predicted mean vote (PMV) model would not be excluded. The search has been
performed in the Scopus database, with the query string graphically visualized in Figure 1.
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Figure 1. Graphical visualization of query string. Keywords in filled boxes were searched with “OR”
logic. Scopus nomenclature: TITLE-ABS-KEY = title, abstract or keyword; PUBYEAR = publication
year; DOCTYPE = document type (ar = article; cp = conference proceeding); * = wildcard character.
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Thermal comfort- and control-related keywords have been searched in the title and
in other informative fields (abstract, keywords), to try and include both comfort-centered
(comfort-related words in title) and control-centered (words related to control methods
or systems in title) studies. The search has been restricted to the 2017–2021 period.
The reason behind this limitation is that the search query includes practical control aspects
that are linked to techological evolution. Moreover, a very large number of studies have
been published on the investigated topic even in such a small period, indicating rapid
progress in the field. This choice, therefore, allowed to consider only the most recent
advancements while examining a large number of papers. Since this survey aims to collect
primary references, only articles and conference papers have been retained.

The search returned 2472 results. All the following selection processes have been
performed manually. Initially, abstracts have been skimmed through to exclude the papers
that clearly did not fit the criteria. A total of 244 papers passed this stage, were exported
from Scopus in .csv format, and were analyzed. After a final selection based on relevance
to the scope and presence of the required information, 166 of them have been included in
the present survey and recorded in a reference database. A total of 123 of them are recalled
in this paper. Table 1 summarizes the selection steps, tools, and criteria described above.

Table 1. Criteria used for paper selection (TC: thermal comfort).

Selection Stage Selection
Base Criterion Process Type Output N.

1. Scopus search Search query Search query in Figure 1
is satisfied Automatic Scopus

search results 2472

2. Preliminary
screening Abstract

The study may contain a
TC model and a TC-based
control strategy

Manual Raw .csv file 244

3. Database entry
definition Full paper

The study describes a TC
model and a TC-based
control

Manual Final .csv file 166

4. Inclusion in
main paper Full paper

The study is relevant for
the presentation of the
results

Manual Bibliographic
entries 123

The .csv file created at the third stage of the selection process only contained the
fields exported from Scopus search, including authors, affiliations, title, year of publication,
document type, source title, identifiers, keywords, and open access availability. To make
the database more informative and to allow the extraction of statistical figures, the file was
cleaned of fields not relevant to this research (e.g., funding details or PubMed ID) and
manually completed with new fields based on full paper content, such as

• Monitored quantities (inputs) and control variables;
• Hardware and software;
• Thermal comfort model category and description;
• Control algorithm type and description;
• Application context (season, building type and possible HVAC system);
• Multi-occupancy;
• Validation;
• Strengths and limits;
• Estimated cost of equipment (where specified);
• Level of readiness.

This led to the spreadsheet in the Supplementary Materials, which is the true heart
of the work, and the base for all the analysis in Section 3. Here, results are presented
in tables and figures; the former summarize information about studies belonging to a
given sub-group, whereas the latter provide an overview of the investigated article set.
The spreadsheet is made available to the interested readers, to enable them to easily select
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the most relevant studies for their research or application. For example, information can be
filtered based on building or HVAC type, comfort model, or level of readiness.

Python scripts were used to preprocess the Scopus-generated .csv and to extract statisti-
cal information, charts, and tables from the database (NumPy, Pandas, Matplotlib, Seaborn,
and Geopandas libraries). Keyword relationships were analyzed with VOSviewer tool.

3. Results
3.1. Bibliographic Information

Figure 2 shows the geographical collocation of the examined papers based on the first
author’s affiliation. US and China display the largest number of contributions. A total of
50% of the documents come from Asian countries, followed by Europe (25%). The South
America, Africa, and Oceania component is below 10%. On a methodological note, the first
author criterion has been chosen over the corresponding author one because the “Corre-
sponding Address” field in the Scopus-generated file is empty in almost 30% of the cases.
However, the countries extracted with the two methods differ in only eight cases.

1
6
11
16
22

Figure 2. Origin of the examined papers based on first author’s affiliation.

The time evolution of the proportion between journal articles and conference papers
is reported in Figure 3. It can be noted that the number of documents increased through
the years, confirming the trend reported in the literature (see, for instance, Park and Nagy,
2018 [10]). The constant rise in the number of journal articles indicates the growing interest
for the subject and a progressive maturation of the studies. According to Scopus details,
one third of the papers are published as Gold, Green, Hybrid, or Bronze Open Access,
reaching 40% when considering only journal articles.
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Figure 3. Evolution of investigated papers by document type.
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Figure 4 shows the breakdown of the analyzed journal articles by source title, where
single occurrences are grouped in slice “Others”. A total of 63% of the examined articles
were published in 20% of the journals. Of the 123 articles investigated, 40 were published
in journals whose titles include the concept of energy, which suggests that the goals of
thermal comfort management and energy efficiency are often intertwined. This element
will be further discussed in the next subsection.

18.0%

Figure 4. Breakdown of investigated articles by journal.

3.2. Detailed Analysis of Papers

The research query represented in Figure 1 has been designed to incorporate papers
featuring both a thermal comfort model and a control system, the latter being expressed
with a wide range of methodologies and applications. Figure 5 shows the key blocks of
this process: input information is fed to a controller that uses a methodology and the
predictions from a thermal comfort model to provide the settings required by a physi-
cal indoor environment control system. The same logic was used in keyword analysis,
taking the “Author Keywords” field in the Scopus-generated database as reference for
144 out of 166 records (empty field in 22 cases). Initially, all unique keywords were ex-
tracted and manually classified in the five categories described in Table 2. Categories
“C”, “S”, and “M” somehow overlap with the rationale behind the query: category “C” is
thermal-comfort-related, while categories “S” and “M” are expected to be related mainly
to control aspects. On the other hand, category “E” is not directly included in the search
query, but it turns out to be an integral part of thermal-comfort-based control literature.
After the classification process, the keyword categories of each paper have been determined
to return the chart in Figure 6. For example, bar “C+E” indicates the number of papers with
at least one keyword “C” and at least one keyword “E”, each paper being only counted
once. Keywords in category 5 have been ignored.

Method

Comfort

Inputs Settings System

Figure 5. Blocks of thermal-comfort-based control system.
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Table 2. Keyword categories for manual classification.

N. Category Included Keywords Real Examples

1 Comfort (C) Thermal-comfort related “thermal comfort”, “PMV”,
“thermal preferences”

2 System (S) Associated with real components or
systems “HVAC”, IoT”, “thermostat”

3 Method (M) Describing algorithms, models,
and solution approaches

“genetic algorithm”, “state-space
model”, “CFD simulations”

4 Energy (E) Energy efficiency, saving,
and consumption strategies

“efficient energy use”, “cooling load”,
“demand response”

5 Generic/not
relevant

Too generic to be classified or out of
scope “man”, “electric vehicles”

S+
M

+C
+E

S+
M

+C

S+
C

+E

S+
C

M
+C

+E

S+
M

+E

S+
M

M
+C S+

E

C
+E

M
+E

Keyword category groups

0

10

20

30

40

Figure 6. Number of papers containing at least one keyword for the identified semantic categories.

Almost 90% of the papers with reported keywords feature at least a “C” keyword.
A similar percentage applies to the “S” category, and method-related keywords are reported
for over 70% of the analyzed works. Although energy is not in the search query, 60% of
the papers contain “E” keywords, and about 50% have both thermal-comfort- and energy-
related keywords. A further confirmation of this bond can be observed in Figure 7, realized
in VOSviewer [26]. The size of node items (keywords) is proportional to the number
of occurrences, and the link between two items represents the co-occurrence of the two
keywords in a document. The distance between groups of keywords (clusters) is the
expression of their relatedness. Clusters are automatically identified by the software
algorithm, although map creation parameters can be adjusted. In this case, ten clusters
were originally returned by VOSviewer, which have been manually reduced to four by
changing sub-cluster colors to provide more meaningful information. Three clusters are
close to each other and can be associated mainly with HVAC systems and control methods
(top-left, in yellow, two sub-clusters merged), to smart buildings and IoT (bottom-left,
in olive, four sub-clusters merged), and to thermal comfort and energy (middle, in indigo,
three sub-clusters merged). The fourth cluster (right, in cyan, single cluster) describes
works focusing on ventilation, which appear to form a cluster on its own.

Keyword clusters do not overlap perfectly with the categories presented in Table 2,
but some results are consistent. For example, it is confirmed that thermal comfort studies
often include energy considerations, and that control issues can be discussed from the
viewpoint of systems and/or methods (HVAC and IoT clusters).
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Figure 7. Keyword co-occurrence network.

3.3. Thermal Comfort Models

The PMV model, also known as “static”, was developed by Fanger in the 1970s
based on the concept that an individual is comfortable when the body is in heat balance,
without the need for excessive intervention by physiological thermoregulatory mechanisms
(skin temperature and sweat rate within acceptable limits). Based on a large number of
experiments, Fanger developed a correlation between the predicted mean vote (PMV)
of a group of occupants and the value of some environmental parameters and personal
factors—namely, air and mean radiant temperature MRT, relative humidity RH, relative air
velocity va, metabolic rate M, and clothing insulation Icl. Thermal neutrality is predicted
with PMV = 0, with −3 and +3 endpoints of the scale indicating a predominantly cold
and hot thermal sensation, respectively, within the group of occupants. As a consequence,
a certain percentage of people dissatisfied (PPD) can be expected in a range between 0%
and 100%, where 0% corresponds to PMV = 0 and 100% corresponds to either of the the
thermal sensation scale endpoints.

As noted by Van Hoof’s “Forty years of Fanger’s model of thermal comfort” [27],
the PMV model as developed by Fanger is still the most widespread approach to estimate
thermal comfort in buildings, despite some known limitations that Auffenberg et al. [28] de-
scribed with reference to its practical applications to HVAC control. For example, the model
is shaped on statistics over a large population, therefore it represents an average indication
that often does not match individual preferences. Moreover, it does not take into account
the adaptation mechanisms of the occupants, which are especially important in naturally
ventilated contexts. Finally, its predictive accuracy strongly depends on the correct estima-
tion of the model inputs, some of which may be too difficult or too expensive to measure
in practical applications. To address such limitations, the response of researchers in the
years has been twofold: on the one hand, attempts have been made to modify the origi-
nal PMV framework by simplification or tailoring actions; on the other hand, completely
different models have been introduced that do not stem from PMV, such as adaptive and
data-based approaches.
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In this work, the subdivision outlined by Li et al. [29] between PMV and non-PMV
approaches was adopted to categorize thermal comfort models. PMV models include
Fanger formulation and modified models sharing the theoretical foundation with the
original study, leaving any other approach to the non-PMV category. Document breakdown
according to the thermal comfort model is shown in Figure 8. In most of the studies,
PMV is the preferred way of evaluating thermal comfort. The reasons may be that it is
mature, standardized, and agreed upon by the scientific community, thus it is adopted
also by researchers without long-term expertise in thermal comfort field. Among the non-
PMV models, the availability or large amount of measured information makes data-driven
approaches attractive. Automatic inference techniques based on occupants’ actions are also
gaining interest in a user-centric perspective. Adaptive models are a popular choice with
natural ventilation, or when simple and flexible formulations are needed.

Figure 8. Reviewed documents classified by thermal comfort models: overall (left) and breakdown
of “non-PMV” sector (right).

The boundary between thermal comfort model types is not sharp. To a certain extent,
models based on occupants’ actions can also be considered data-driven. The same holds
for models included into the “other comfort models” group based on regression analysis.
Additionally, some studies adopted more than one thermal comfort model to compare per-
formances or to describe comfort in different operation modes (Table 3). Thermal comfort
modeling approaches in the reviewed papers are discussed in the following paragraphs.

Table 3. Studies using multiple thermal comfort models.

Reference Thermal Comfort Models

Menconi et al. (2017) [30] • PMV
• Adaptive

Frǎtean and Dobra (2018) [31] • PMV
• Adaptive

Chaudhuri et al. (2019) [32] • PMV, extended PMV, adaptive PMV
• Predicted thermal state
• Gender-based (male/female) thermal state
• Temporal profile thermal state

Fiorentini et al. (2019) [33] • PMV
• Adaptive

PMV models. The majority of the studies reviewed in this survey used PMV models
(63%), about one-fourth of which were in modified forms with respect to the Fanger
formulation. Examples of simplified PMV models are reported in Table 4. In almost all
cases, linearization or linear regression techniques allowed us to simplify PMV model to
incorporate it in a complex calculation framework. Input quantities are usually a reduced
set of the original model’s parameters, but occasionally the simplified function relates PMV
with technological variables. It can be observed that personal factors are never part of
the simplified models’ input set, but they were assumed as constant during the model
construction process.
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Table 4. Modified PMV models.

Reference Comfort Model Input Parameters

Zhang et al. (2017) [34]

Linear PMV model based on
regression analysis of
experimental measurements;
M = 1 met, Icl = 0.57 clo

Room air temperature; supply
air flow rate

Hang and Kim (2018) [35]

Linear PMV model based on
regression analysis of measured
environmental parameters;
M = 1.2 met, Icl = 0.5 clo

Indoor air temperature; mean
radiant temperature; relative
humidity; air velocity

Alizadeh and Sadrameli (2018) [36] Quadratic PMV model based on
regression analysis

Fan blade pitch; fan speed;
outdoor air temperature;
relative humidity

Chen et al. (2019) [37]

Linear PMV model by
Buratti et al. (2013) [38];
coefficients depending on
gender and clothing insulation

Ambient temperature; relative
humidity

Vallianos et al. (2019) [39] Adaptive PMV from Yao et al.
(2009) [40] PMV; adaptive coefficient

Kalaimani et al. (2020) [41]

Quadratic PMV models for
winter (Icl = 1 clo) and summer
(Icl = 0.5 clo); M = 1.1 met,
RH = 50%

Indoor temperature; air
velocity

Carli et al. (2020) [42]
Linear PMV model from
linearization of the original
model; M = 1.2 met, Icl = 1 clo

Indoor air temperature;
absolute humidity

Fang et al. (2020) [43]
Linearized PMV model based on
multi-linear regression;
M = 1 met, Icl = 1 clo

Indoor air temperature; air
velocity

Li et al. (2021) [44] PMV model by Deng et al. (2018)
[45]; M = 1 met, Icl = 0.57 clo

Mean room temperature;
mean airflow velocity

Yang et al. (2021) [46]
Linear PMV model by Yang et al.
(2018) [47]; M = 1 met,
Icl = 0.57 clo, va = 0.136 m/s

Indoor air temperature; mean
radiant temperature; absolute
humidity

Over half of the PMV-based studies made simplifications on the input parameters,
especially clothing insulation and metabolic rate, by assuming them on the basis of stan-
dards or public databases (see, for example, the “Compendium of Physical Activities” [48]).
Relatively few attempts to estimate these parameters more accurately and in real time
can be found among the reviewed papers. Calvaresi et al. [49] obtained M from wearable
devices as a function of heartbeat, breathing rate, posture, activity level, and acceleration
module. Park and Rhee [50] calculated metabolic heat gain of human body from occupant
thermal model. Tanaka et al. [51] evaluated M as a 10 min moving average of metabolic
equivalent of task based on walking speed, which is a function of height and body mass.
Choi et al. [52] proposed a clothing insulation system recognition based on real-time frames
from a camera, relying on a convolutional neural network model built from a large garment
image database. Zang et al. [53] used machine learning algorithms to obtain M and Icl from
camera images within a discrete range of possible values.

Another frequent assumption is the equivalence of mean radiant temperature with air
temperature, which is usually motivated by either sensitivity analyses, as in [54], or sim-
plicity reasons. The estimation of MRT is indeed a complex task, as it can be performed
via expensive instrumentation (black globe thermometer) or with one of several calcula-
tion procedures exploiting the readings from an adequate number of surface temperature
sensors. However, MRT is a key parameter in thermal comfort perception, and simply
assuming it equal to air temperature without further validation can compromise the model-
predictive capabilities, particularly in old buildings with high window-to-wall ratios [9].
Most of the PMV-based works analyzed in this review made the temperature equivalence
assumption without providing a reason. The few that estimated MRT obtained it from
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calibrated models [55–58], energy simulations [59,60], or measurements [49,61]. Occasion-
ally, assumptions are made also on air velocity and relative humidity, although the latter is
generally easy to measure with standard sensors, often in combined temperature/humidity
measurement devices.
Non-PMV models. The pie chart on the right in Figure 8 shows that almost half of the 61
papers adopting non-PMV approaches are data-driven. For the sake of brevity, only journal
articles are reported in Tables 5 and 6 where inputs, outputs, and data-driven algorithms
are summarized. Measured, historical, or literature data have been generally used to build
models that can predict thermal comfort subjective indicators (sensation, preference, or
satisfaction) or, less frequently, comfort-related parameters such as neutral temperature
or mean radiant temperature. For the full list of relevant contributions, which includes
the articles in Tables 5 and 6 plus eight conference papers, the reader is referred to the
spreadsheed in the Supplementary Materials.

Table 5. Data-driven thermal comfort models in reviewed journal articles (2017–2019).

Reference Inputs Outputs Algorithm

Hilliard et al. (2017) [62] Zone air dry-bulb temperature, ambient
air temperature and solar radiation

Zone mean radiant
temperature

Regression + adjustment
based on occupants’
feedback

Li et al. (2017) [63]
Metabolic data, environmental
measurements, clothing, thermal
preference feedback from app

Thermal preference Classification (random
forest)

Auffenberg et al. (2017) [28] Operative temperature and relative
humidity

Optimal comfort
temperature, vote and
user’s thermal sensitivity

Bayesian network

Xu et al. (2018) [64] Current and historical feedback Personalized thermal
comfort profile Softmax regression

Pazhoohesh and Zhang (2018) [65] Thermal comfort votes and
corresponding indoor temperatures Thermal perception index Fuzzy classification and

fuzzy map

Gupta et al. (2018) [66] User’s thermal comfort preference for
various temperatures

Individual discomfort
function (simplification:
comfort range limits)

Piecewise approximation
(simplifications: values
provided direclty)

Kruusimagi et al. (2018) [67]
Feedback of thermal sensation and
corresponding measured indoor air
temperature

Neutral temperature Regression

Qiao et al. (2019) [68] Thermal sensation feedback, indoor
temperature

Thermal satisfaction rate
function Linear regression

Chaudhuri et al. (2019) [32]
Skin temperature and conductance,
clothing, surface body area conductance,
oxygen saturation, pulse rate

Thermal state index

Support vector machine,
random forest,
convolutional neural
network

Jung and Jazizadeh (2019) [69] Actual and synthesized thermal votes
from the literature Thermal comfort profile Stochastic modeling

Lu et al. (2019) [70] Subset of ASHRAE RP-884 dataset Thermal sensation
K-nearest neighbors,
support vector machine,
random forest

Aguilera et al. (2019) [71] Thermal preference vote feedback and
corresponding indoor temperature Thermal preference profile Fuzzy logic

Lee et al. (2019) [72]
Subset of ASHRAE RP-884 dataset +
assumptions on metabolic rate, clothing
insulation and air velocity

Thermal preference Bayesian clustering; online
classification
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Table 6. Data-driven thermal comfort models in reviewed journal articles (2020–2021).

Reference Inputs Outputs Algorithm

Gao et al. (2020) [73] Indoor temperature and humidity Thermal comfort value Feedforward neural
network

Mohamadi and Ahmed (2020) [74] Personal factors and indoor
environmental parameters Comfort coefficient Neural network

Alsaleem et al. (2020) [75] Biometric data, environmental data,
comfort feedback Thermal comfort level

Decision tree, adaptive
boosting, gradient boosting
classifier, random forest,
support vector machine

Kumar Yadav et al. (2020) [76] Preferred temperature via app Individual temperature
preference Value provided directly

Deng and Chen (2020) [77]
Thermal sensation feedback and
environmental measurements and
physiological parameters

Thermal sensation Artificial neural network

Li et al. (2021) [78]

Thermal sensation and thermal
satisfaction feedback, heart rate,
and wrist skin temperature and its
variation

Thermal sensation Linear regression

Aryal et al. (2021) [79]

Thermal comfort feedback,
environmental indoor and outdoor
mreasurements, clothing level, HVAC
equipment states

Thermal sensation and
thermal satisfaction

Random forests, k-nearest
neighbors

Li and Chen (2021) [44]
Classified garment image database;
thermal sensation vote feedback, air and
face temperature

Clothing level classification,
comfortable air temperature

Convolutional neural
network

Adaptive thermal models are the second non-PMV category for number of papers.
The adaptive approach is founded on the evidence that the static method tends to overesti-
mate discomfort range in naturally ventilated buildings, especially when the occupants can
act on the surrounding environment and adapt it to their preference [80]. The theory thus
relates comfort operative temperature to outdoor environmental conditions, generally in
the form of a linear correlation. The single dependent variable was initially taken as the
monthly average of outdoor air temperature (Humphreys, 1978 [81]), and subsequently
replaced with an exponentially weighted running mean (EWRM) to include the memory of
weather history. Adaptive model is included in the reference standards [4,6] and its use
is recommended only in the case of naturally ventilated buildings and within a limited
outdoor temperature interval. However, the recent literature is exploring adaptive model
potentiality also in case of mixed-mode or mechanically ventilated buildings, as can be
observed in Table 7. The mathematical formulation is quite simple to implement and
requires only one type of measurement (outdoor temperature). Moreover, experimental
measurements and thermal comfort surveys can be carried out to calibrate the coefficients
of the adaptive formulation to a specific location, building, or group of people.

A third category of non-PMV-based models is worth mentioning: the automatic
inference of thermal comfort preferences from users’ interactions with control devices,
made possible by available current technologies. Table 8 reports the papers characterized
by this approach. Some predominant features can be identified: the use of machine learning
techniques, the personalized connotation of this approach, and the preliminary stage of the
works (five out of eight conference proceedings, mainly theoretical or simulation-based).
The solutions developed with this class of methods are difficult to generalize, in that there
is no underlying model and, differently from data-based approaches, the preferences are
inferred and not asked directly. For example, Laftchiev et al. [82] exploited occupants’
actions on the thermostat, and decided to use only two of the three pieces of information
that can be extracted from them (discomfort condition and direction of corrective action),
because the temperature set by the user cannot be assumed as the ultimate preferred value.
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Table 7. Adaptive thermal comfort models in reviewed contributions.

Reference Formulation Reference Outdoor Temperature Source Ventilation

Arballo et al. (2017) [83] Adaptive model by Kuchen (2008) [84] Measurements on site in San Juan, AR Mixed-mode

Kramer et al. (2017) [85] Adaptive formulation calibrated with
one-year survey

Museum BMS measurements,
Amsterdam, NL Mechanical

Menconi et al. (2017) [30] EN 15251 standard [86] Energy Plus Weather file for Perugia, IT Mechanical

Stazi et al. (2017) [87] EN 15251 standard [86] or CIBSE
Guide A [88]

Measurements by weather station in
Ancona, IT Mixed-mode

Aparicio-Ruiz et al. (2018) [89] Adaptive formulation calibrated
experimentally [90]

Measurements in mixed-mode buildings
in Seville, ES Mixed-mode

Frǎtean and Dobra (2018) [31] Humphreys (1978) [81] TMY weather data for Bucharest, RO Mechanical

Sghiouri et al. (2018) [91] EN 15251 standard [86] Weather data from TMY of three
Moroccan cities Natural

Gabsi et al. (2020) [92] McCartney and Nicol (2001) [93] Measurements in Nancy, FR Mechanical

Sánchez-García et al. (2020) [94] EN 15251 standard [86] Energy Plus Weather file for Seville, ES Mechanical

Tan and Deng (2020) [95] Tong et al. (2017) [96] Measurements by local weather station
in Wollongong, AU Mixed-mode

Aguilera et al. (2021) [97] EN 16798-1 [6] and EN 15251 [86]
standards

IWEC weather data for Copenhagen,
Edinburgh, Palermo, Tokyo and Zurich Mixed-mode

Lin et al. (2021) [98] EN 15251 standard [86] with EWRM
temperature

Measurements at experimental site in
Hsinchu, TW Mechanical

Vázquez-Torres et al. (2021) [99] Szokolay (2003) [100], Auliciems and
Szokolay (2007) [101]

Average air temperature from IWEC
historical data for MX Natural

Xu et al. (2021) [102] Adaptive model by Yang et al. (2014)
[103] for cold regions of China

Outdoor climate data from National
Weather Service, location not specified Mechanical

Table 8. Thermal comfort models based on occupants’ actions in reviewed papers.

Reference Preference-Related Actions Model Development

Yano (2018) [104] Set-point temperature operating time Statistical model to define acceptable set-point
temperatures based on their operating (unchanged) time

Marche and Nitti (2019) [105] Interactions with HVAC comprehensive
smartphone app

Thermal profile for each user with Gaussian function
based on previous actions

Shetty et al. (2019) [106] Personal fan operation (on/off and
speed setting)

Classification and regression algorithms to predict on/off
state and preferred air speed in case of “on” state

Cicirelli et al. (2020) [107] User’s interactions with HVAC system
(e.g., the user turns on the heating)

Deep reinforcement learning with penalty given each
time the user operates on the HVAC switch

Chenaru and Popescu (2020) [108] Corrective actions (e.g., local
temperature adjustment)

Relevant actions incorporated in learning phase to train
comfort model

Amasyali and El-Gohary (2021) [109] Thermostat adjustment, operation of
doors and shading devices

Classification algorithm to develop group and individual
models from action recordings

Zhu et al. (2021) [110] Air-conditioning switching on/off and
set-point adjusting

Classification rules returning preference patterns for the
specific action (on/off or set-point)

Laftchiev et al. (2021) [82] Temperature set-point adjustment Endpoints of default comfort temperature range shifted
to current temperature based on change direction

In addition to the previous three categories, other non-PMV approaches found in
the analyzed papers include thermal comfort predictions based on physiology and sensa-
tion models [111], evaluation of discomfort degree-hours according to the preferred ap-
proach [112], rule-based indicators [113], direct preference from the user [114], and literature-
based or self-developed sensation and comfort indicators [115,116].
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3.4. Control Strategies

As outlined in Figure 5, thermal-comfort-based control is performed by means of
methods and algorithms which use inputs and thermal comfort information to define
settings and actions that can be passed to the physical system. To examine the algorithms
adopted in the selected papers, the following macro-categories of methods have been
identified that can be used individually or combined with each other:

• Rule-based (RB): settings are determined with knowledge-based rules.
• Model-predictive control (MPC): a model predicts the system state on a desired time

horizon and finds optimal actions minimizing an objective function.
• Machine learning (ML): models are based on continuous data collection.
• Optimization (O): optimal settings are obtained by minimizing an objective function.
• Mathematical model (MM): settings are the solution of a mathematical equation or

system of equations.

An overview of the techniques is given in Figure 9, where a slight prevalence of
rule-based and optimization methods is observed. RB algorithms include strategies in
which the proper action is chosen based on a set of knowledge-based simple instructions.
However, the category also includes fuzzy rule-based systems, such as in [78,113,117–119].
Optimization allows to calculate output quantities by minimizing a cost function subject to
constraints. In these methods, thermal comfort can be in the cost function or in the set of
constraints, typically combined with energy-saving objectives. Examples of techniques used
in the analyzed papers are particle swarm optimization, genetic algorithms, cuckoo search,
proximal policy optimization, gray-wolf optimization, and firefly algorithms. Together with
MPC and ML methods, optimization usually requires elaborate mathematical formulation
and attention to computational resources. Finally, MM indicates any type of physics-based
description that is developed for control purposes; examples range from simple functions,
such as adaptive models to directly calculate comfort temperature, to large sets of equations
describing building or HVAC systems used in optimization or rule-based processes.
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Figure 9. Methods used to determine control settings in the analyzed papers. (Left): occurrences of
each method; (right): method combinations.

In 40% of the occurrences, two techniques have been used together, the most frequent
occurrence being the combination of a mathematical or machine learning model with
optimization techniques (Figure 10). ML is generally used to build a model instead of a
physics-based solution. Therefore, no combination can be found of MM and ML in Figure 10.
It is worth noting that the MPC definition includes both a model and an optimization stage.
This is the reason why no combination of MPC + MM, nor of MPC + O, is present in
Figure 10, either. MPC exploiting a physics-based model is adopted in almost one-fifth of
the studies. The use of an ML-based model instead of a physics-based model in an MPC
system is indicated by ML + MPC; if compared with its physics-based counterpart, this
solution is exploited in one third of the cases.
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Figure 10. Use of methodology combinations in the analyzed papers.

Such methods have been used to calculate the values of a wide range of control
variables, as summarized in Figure 11. Temperature set-points are the most popular
choices, mainly as room—air, operative, thermostat, or, generically, indoor—temperature,
but also in terms of HVAC working parameters (for example, supply air [120,121] or
water [122,123] temperature). In air conditioning systems, some authors proposed to oper-
ate on the air flow by determining air flow rate setting or fan speed, the former being mainly
used in central systems (e.g., [34,124]) and the latter in personal devices (e.g., [125,126]).
Several studies exploited window control for natural ventilation (e.g., [33,87,95,118]) or
solar shading (e.g., [127–130]). The category marked as “Actuators” in Figure 11 indi-
cates the thermal-comfort-based determination of settings and working parameters for
valves [131,132], dampers [133,134], and other HVAC equipment such as compressors [135]
and heat pumps [136]. In some works, humidity was one of the controlled parameters,
mostly in combination with PMV-based thermal comfort models [117,137]. Other studies
included direct control of comfort parameters, especially at a simulation stage [138,139],
energy or power supply [140–142], or the choice of the ventilation mode [33,95]. A dis-
tinct category, labeled as “Design” in Figure 11, gathers all the studies in which thermal
comfort analysis was not finalized to the real-time control of HVAC equipment, but to
comfort-oriented decisions such as material selection, as in [30,112,143], design of build-
ing elements and layouts (see, for example, [91,144,145] and [68]), or HVAC installation
recommendations, such as in [36,97,146]. In the same category, studies are also included
that aimed to provide operating schedules [99,119] or suggestions on most comfortable
areas in relation to the occupant’s preferences [65,147]. Lastly, it is worth noting that only
rarely is thermal comfort satisfaction the sole objective of the control strategy. As discussed
in Section 3.2, energy saving is often the main goal of the study or a constraint, but other
indoor quality parameters may be considered, too, such as CO2 concentration [148–152]
and visual comfort [109,129,130,153].
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Other temperatures
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Figure 11. Variables and settings for thermal-comfort-based control in the analyzed papers.
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Focusing on HVAC systems, Figure 12 shows that in almost 60% of the cases the
control strategy has been applied to air conditioning (AC) systems. The reason is ar-
guably that advanced control methodologies nowadays are employed, especially in of-
fice or commercial buildings, usually heated and cooled through mechanical ventilation.
Hydronic systems are an interesting subgroup due to their diffusion in the residential sector,
especially in Europe. In Table 9, it can be observed that this category covers mostly heating
applications (with the obvious exception of chilled beams) with no building type restriction.
Control variables in this case include temperature set-points, control valve position, and
other water circuit parameters such as pump speed and heating curve.

Figure 12. HVAC systems in the analyzed papers.

Table 9. Hydronic heating (H) and/or cooling (C) systems in the analyzed literature.

Reference HVAC H/C Control Variables Building Control

Wu et al. (2021) [154] Chilled beams C Chilled water flow rate, room
temperature set-point Any MM + O

Xu et al. (2020) [155] Radiant system H Room temperature set-point Any MPC

Hawila et al. (2018) [59] Radiators H Indoor air set-point temperature Any MM

Potočnik et al. (2018) [136] Radiant system H Optimized heating curve for heat pump
flow temperature Residential MPC

Hong et al. (2018) [60] Radiant system Any PMV Residential MM

Uguz and Ipek (2017) [131] Radiators H Radiator valve position Any MM

Lin et al. (2021) [98] Radiant system H Heating/cooling device status Any MM

Karatzoglou et al. (2018) [156] Radiators H Thermostat set-point Any MM + O

Yang et al. (2021) [132] Chilled beams C Pump speed; valve opening Office MPC + RB

Ke et al. (2020) [157] Radiators Any Indoor temperature Any MPC + ML

Ascione et al. (2019) [158] Baseboard radiators H Hourly room set-point temperatures in
typical days Residential MPC

Aguilera et al. (2019) [71] Radiators H Room temperature set-point Office O

Lee et al. (2019) [72] Radiant system C State of radiant coil valves Office MPC

Zhang and Lam (2018) [123] Radiant system Any Supply water set-point Office ML + O

Yano (2018) [104] Radiators H Thermostat set-point Residential RB

3.5. Putting It All Together: Thermal Comfort Control Systems

All the studies included in this survey feature both a thermal comfort model and a
control strategy; thus, it is possible to give a general overview of the analyzed systems and
find correlations between the two aspects. Focusing on the two most advanced levels of
readiness, which are 90% of the analyzed works, it can be observed that many simulation
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studies used PMV thermal comfort models and MPC (Figure 13). The choice of a standard
thermal comfort model and a complex control system indicates that the focus was on the
latter aspect in these studies. Switching to papers presenting prototypes, purely rule-based
systems prevail in conjunction with non-PMV comfort models, which can be explained
with the trend to use real data to define the thermal comfort preferences of the occupants.
Contrary to simulations, here, a generally simple control strategy was chosen, with a
considerable effort invested in thermal comfort evaluation.
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Figure 13. Thermal comfort model category at varying control algorithms and levels of readiness.
Percentages are relative to the total number of papers considered in either chart (i.e., with the specific
level of readiness).

Figure 14 qualitatively illustrates the composition of model complexities. Here, PMV
and adaptive methods are defined as “simple” thermal comfort approaches. “Simple”
control-related methods include RB, MM, and the combination of the two. Many works can
be observed with simple thermal comfort model and complex control systems (quadrant
“S–C”), and they are mainly at a simulation level. On the other hand, most of the works
with complex thermal comfort approaches and simple control methods (quadrant “C–S”)
are prototypical. It is worth noting that “simple” in this context does not mean “simplistic”,
but it, rather, indicates a basic approach (for example, standardized, or not requiring
high-level algorithmical skills).

S–CC–C

S–SC–S

Figure 14. Qualitative illustration of thermal comfort model and control system complexities in the
analyzed papers. The distribution of points within quadrants is random.

Among “simple” thermal comfort models, the adaptive comfort model was used in all
the analyzed studies with simulations or prototypes characterized by natural ventilation



Appl. Sci. 2022, 12, 5473 18 of 31

(Figure 15). However, it was also adopted in a significant number of cases with air con-
ditioning or hydronic systems. In case of relatively unsophisticated appliances, such as
personal or electric heaters, PMV and data-based approaches were preferred.

0 10 20 30 40 50 60 70 80

Electric

Natural ventilation

Personal

Hydronic

AC
H

VA
C

Type of comfort model
Adaptive
Others
PMV

Figure 15. Type of comfort model by HVAC type (level of readiness simulation or prototype).

Figure 16 shows the breakdown of works making use of ML in the definition of
thermal comfort models and indoor environment controls over the years. The exploitation
of this family of techniques grew steadily until 2020, whereas the trend reversed in 2021.
Though the sample is too small for accurate conclusions, COVID 19 pandemic effects may
have had a role in this anomaly from two points of view. On the one hand, the requirement
for machine learning is the availability of data, which might have been more difficult
to collect in 2020 than in previous years (hence the brake on ML-driven works in 2021).
On the other hand, the pandemic caused a change of habits in various fields [159], and it
may take longer to process and understand data collected in this period; this may have
been the cause of a publication delay.
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Figure 16. Use of ML in comfort models and control algorithms through the years.

There is no clear correlation between the use of ML techniques, the thermal comfort
model category, and the level of readiness (Figure 17). It can be noted that in simulation
works, ML was mainly used in control system development, while in prototypes it was
often adopted in thermal comfort assessment. This confirms the trends illustrated in
Figures 13 and 14.
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Figure 17. Use of ML by comfort model category and level of readiness.

In terms of field of application, a large portion of the papers focused on commercial
and office buildings (Figure 18), for two main reasons: a usually higher level of readiness
of the control and management infrastructure, and the driving force of attractive energy
savings. In this respect, there is a correlation with the predominant number of AC sys-
tems and of cooling applications, which are typical of tertiary facilities. Residential and
educational buildings are also investigated frequently, while few studies focus on thermal-
comfort-based control of indoor recreational, social, guest accommodation, and healthcare
environments. The last are delicate facilities, in that their occupants include vulnerable
people with special needs that must be taken into consideration (see Section 4).

17.0%

Figure 18. Type of buildings considered in the studies.

With reference to shared spaces, the problem of evaluating thermal comfort for multi-
ple occupants can be of relevance, and has been tackled in several studies. Three ways of
satisfying individual preferences can be identified:

1. With personal devices, such as desk fans;
2. By providing thermal comfort models with “average” inputs representing the occu-

pants, for example through machine learning techniques;
3. By collecting individual thermal preferences and applying decision algorithms.

The first category is the actual expression of personalized thermal comfort paradigm,
but it is not always applicable or energetically convenient. The second approach uses
“average” information to describe a group of people; thus, its modeling capabilities depend
on the quality of input data and on the homogeneity of the occupants. The third is an
intermediate option, in which individual preferences are computed and synthesized into
group settings. A summary of studies using this approach is given in Table 10.
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Concerning software, the adoption of the MATLAB® platform has been reported in
40% of the analyzed studies. The most popular alternative was Python, chosen in 20% of
the cases. Open-source software EnergyPlus was generally preferred to its commercial
competitor TRNSYS for building energy simulations (29 vs. 11 cases). Hardware always
included environmental parameter sensors, while data collection, communication, stor-
age, and processing equipment and infrastructure have rarely been described in detail.
Raspberry Pi, Arduino, and compatible low-cost sensors have been frequently encountered
to build affordable data collection systems, especially at the experimental stage. More
detailed information can be found on the spreadsheet available in Supplementary Materials.

Table 10. Decision approach to synthesize individual preference into group settings (multi-
occupancy).

Reference Decision Approach Building Comfort

Li et al. (2017) [63]
Collective decision algorithm aiming
to satisfy at least half of the
occupants

Any Data-driven

Auffenberg et al. (2017) [28]

Comfort compromiser algorithm
taking the maximum of the lower
bounds and the minimum of the
upper bounds of occupants’ ranges

Any Data-driven

Xu et al. (2018) [64] Aggregated profiles of multiple
occupants Office Data-driven

Liu et al. (2018) [125] Cooperative approach: worst-case
deviation from set-point minimized Educational PMV

Gupta et al (2018) [66] Minimization of total discomfort
from zone occupants’ profiles Any Data-driven

Laing and Kühl (2018) [147] Compatibility between personal
preference and zone characteristics Commercial Data-driven

Yang et al. (2019) [160] Minimization of total PPD or largest
PPD among communities Not discussed PMV

Aguilera et al. (2019) [71] Minimization of group thermal
discomfort Office Data-driven

Lou et al. (2020) [57] Worst-case PMV of occupants in
different positions Residential PMV

Anasyali and El-Gohary
(2021) [109]

Group and individual comfort
models Office Occupants’

actions

Zhang et al. (2021) [130] Occupancy-weighted average of
multiple occupants’ thermal comfort Commercial PMV

To conclude, it is worth observing that the number of papers validated through simu-
lations almost doubles the studies presenting field deployments (Figure 19). In one-fourth
of the cases with prototypes, a rough estimation of costs has been possible, which is
reported in Figure 20 limitedly to the two most numerous building types encountered
(office/commercial, and residential). In particular, the analysis is based on a group of
twenty-two works [33,44,47,49,51,52,60,67,72,78,79,83,105,106,113,126,161–166]. Prices of
equipment described in the papers have been estimated based on Internet searches, whereas
the cost for software licenses has not been considered. The cost for equipment not required
by ordinary operation (for example, a black globe thermometer only required at model
development stage) has not been included, either. The graph shows costs as a function of
floor area of conditioned space. Different symbols indicate building category and featured
devices. This rough estimation shows a slight dependency of costs from the applica-
tion scale. More evidently, some systems were designed to be low-cost by incorporating
hardware such as Raspberry Pi or Arduino ecosystem devices; measurement equipment
featuring—visible or thermal—cameras has intermediate cost, while the most expensive
setup arrangements tend to be the ones including biometric devices, locally installed
weather stations, and building management systems (BMS).
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Figure 19. Readiness level of the analyzed papers.

Figure 20. Costs estimated for office/commercial and residential building applications as a function
of conditioned area (bi-logarithmic scale).

3.6. Limitations of the Study

This brief paragraph summarizes the research method limitations. Although the
search was designed to be as comprehensive as possible, some relevant works may have
been overlooked due to the following reasons. First, keywords in the query string may not
be exhaustive, because authors may have chosen other terms to identify similar concepts.
Second, occasionally abstracts may be misleading, causing the paper exclusion already at
stage 2 of the selection process. Third, in some cases, the final inclusion in the reference
database was debatable, and was ultimately decided based on a subjective evaluation of
relevance and pertinence of the paper.

Concerning the detailed analysis of the selected works, the field of building control
has been especially problematic to describe, because the method categories often overlap,
and control variables are not homogeneous in terms of practical usability (for example,
PMV, operative temperature, and thermostat set-point are three control variables with
different distances from field application). Even at this stage, information extraction
has been made with automatized processing (Python scripts) following human actions
(feature classification). The authors are aware that this approach may have led to over-
simplifications; thus, the present work (including the paper and the spreadsheet in the
Supplementary Materials) should be intended as a guiding tool; the referenced papers
remain the primary source for in-depth analyses.

4. Open Issues: Vulnerable People and Special Environments

Describing adaptive approach in ASHRAE Standard 55, Mora and Bean [167] state
that “adaptive principles assume the persons are able-bodied without physiological and
physical challenges [. . . ] or mental health and/or cognitive disabilities preventing the abil-
ity to adapt”, and that “Standard 55-2017 does not directly cover vulnerable populations”.
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Indeed, studies on the thermal comfort perception of some categories of vulnerable peo-
ple exist in the literature, but practical implementations are almost entirely missing.
Therefore, they cannot be found among the publications that the analysis in Section 3
is built upon. This subsection has the purpose to touch on this subject by providing ref-
erences to recent studies that focus on the peculiarities of vulnerable groups in terms of
thermal comfort needs. The aim is to outline some situations in which a tailored thermal
comfort-based system may be useful, but few or no application-oriented work has been
carried out yet.

Differences in thermal comfort perception due to age have been widely explored by
researchers, with elderly people being a particularly interesting group due to their frailty
and to the aging of the world’s population. Wang et al. [15] noted that the presence of
secondary factors is indeed the reason behind such differences, rather than age, per se.
Hughes and co-authors investigated summer [168] and winter [169] thermal conditions
of elderly people in the UK by means of extensive surveys, revealing that modeling
frameworks according to reference standards often fail to provide reliable predictions.
The specific effect of dementia on the applicability of different thermal comfort approaches
was analyzed in the recent survey by Yi et al. [170].

Conversely, few studies can be found on thermal-comfort-related needs of people
with physical disabilities. These people may have different thermal requirements due not
only to the disability itself, but also to postural and mobility impairment, and possibly to
pharmacological treatments (Parsons, 2002 [171]). Recently, the work by Brik et al. [172]
proposed an IoT-based modeling approach to make comfort evaluation possible even in case
of difficulties in expressing a feedback; the study confirmed that differences exist between
people with and without disabilities, and between people with different disabilities as well.
Similar attention to the survey planning stage can be found in Bouzidi et al. [173], whose
study reaffirmed that PMV tends to predict excessive comfort temperatures, and proposed
a tailored adaptive model.

Cognitive impairment has not been frequently associated with indoor comfort re-
quirements, although authors have demonstrated that these vulnerable people can benefit
from a comfortable environment because it reduces triggers of negative behavior [174].
Bettarello et al. [175] stressed the importance of adapting the environment to the needs of
people with neurodevelopmental disorders to give them the opportunity of “independent
living projects”. Caniato et al. [176,177] reported that experimental observations from
questionnaires (filled in by “proxy respondents”, such as parents or caregivers, in case of
people with severe disorders) do not indicate thermo-hygrometric conditions as a cause
of stress in people with autistic spectrum disorder. However, they noted how very few
investigations can be found in the literature on the individuals’ sensitivity to the differ-
ent comfort domains, and they anticipated the need for more studies to develop quality
thresholds and design guidelines for indoor environments.

Healthcare facilities are especially challenging spaces to deal with. Both patients and
healthcare workers should feel thermally comfortable in places where they have to spend
long time periods. Shajahan et al. [178] summarized the impact on patients of HVAC-
related parameters such as indoor air temperature, pointing out that medications and
drugs affect the patient’s thermoregulatory system. As discussed by Pereira et al. in their
recent review on hospital environments [179], only a small number of papers investigated
the relationship between patients with specific conditions and the thermal environment,
but thermal comfort dependency on patient category still has to be explored. The need to
reconcile thermal comfort requirements of different types of occupants, including operators,
makes the identification and control of thermal comfort conditions particularly problematic
in practice. A typical example is the operating room [180], where the patient would need
a warm environment due to being under anesthesia and wearing only a gown, whereas
the medical staff prefer a cool, well-ventilated room due to the mentally and physically
demanding procedures they have to sustain for a long time.
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It is worth noting that the full comfort spectrum should be evaluated in sensitive
indoor environments. This suggests considering a wide range of possibly intertwined
indicators, and to apply diverse control strategies, even at the design stage. Orosa et al. [181]
modeled the effect of internal building covering materials in a region with very high relative
humidity throughout the year; the authors used the “percentage of dissatisfied due to
decreased respiratory cooling” [182] and the “percentage of persons dissatisfied with the
air quality” [183] as local comfort indicators, and related the results to expected energy
consumption. Although the paper focused on office buildings, this is an example of an
integrated strategy that could be well suited also to healthcare facilities.

The cases presented above represent some of the situations in which a wise assessment
of thermal comfort and the implementation of adequate indoor environmental control
systems can make a difference for the occupants. In these and many other cases, however,
designers have limited support from the literature and the reference standards; thus, they
must perform specific investigations and resort to their experience.

5. Conclusions

This study reviewed literature works presenting practical ways to control indoor
environment based on thermal comfort analysis. Journal articles and conference papers
were searched in the Scopus database limited to the five-year period between 2017 and
2021. The analyzed papers showed clear trends both in thermal comfort analysis and in
control strategies. PMV is the dominant framework for the prediction of thermal comfort,
although often with simplified formulation or input assumptions, especially concerning
personal factors and mean radiant temperature. Data-based thermal comfort evaluation
is the most frequently used non-PMV approach. This choice corresponds to a growing
attention towards personal preferences, and already finds implementation in prototyp-
ical studies. The applicability of another popular approach, adaptive thermal comfort,
was found to be explored also outside of the contexts recommended by the reference
standards—for example, some studies utilized it even in the presence of mechanical sys-
tems. A vast majority of the studies focused on thermal-comfort-based control of air
conditioning, followed by hydronic systems. Not surprisingly, the preferred control vari-
able is indoor temperature to be used as a thermostat set-point, although it was not
always clear whether it referred to air temperature or operative temperature. Concern-
ing control aspects, the methods to calculate control settings range from expert rules to
complex modeling techniques such as machine learning and model-predictive control.
Overall, two-thirds of the analyzed papers include one or more optimization steps carried
out with one of the several methods available in the literature. In general, it was found that
many studies on innovative control systems are still at a simulation level. Office or com-
mercial buildings with air-conditioning systems were the most investigated environments;
the reasons are probably linked to higher available budget, more advanced monitoring and
control infrastructure, desire to increase productivity, and perspective of energy savings.
The number of journal papers and of works presenting prototypes has increased through
the years, proving that this research area is vital and that it is moving closer and closer
to field deployment. However, some categories of vulnerable people have special needs
that are only beginning to be investigated and will require more research effort. The wide
variety of analyzed studies shows that there is no one-fits-all solution to the problem,
but many options are available and more will follow. The key is putting it all together:
the synergy between building and HVAC designers, energy saving experts, and thermal
comfort specialists, who still tend to work separately, could be the real breakthrough in the
definition of pleasant sustainable indoor environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12115473/s1, Spreadsheet S1: Full-featured database of
reviewed papers.
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31. Frǎtean, A.; Dobra, P. The impact of control strategies upon the energy flexibility of nearly zero-energy buildings: Energy

consumption minimization versus indoor thermal comfort maximization. In Proceedings of the 2018 IEEE International
Conference on Automation, Quality and Testing, Robotics, AQTR 2018—THETA 21st Edition, Cluj-Napoca, Romania, 24–26 May
2018; pp. 1–6. [CrossRef]

32. Chaudhuri, T.; Soh, Y.; Li, H.; Xie, L. A feedforward neural network based indoor-climate control framework for thermal comfort
and energy saving in buildings. Appl. Energy 2019, 248, 44–53. [CrossRef]

33. Fiorentini, M.; Serale, G.; Kokogiannakis, G.; Capozzoli, A.; Cooper, P. Development and evaluation of a comfort-oriented control
strategy for thermal management of mixed-mode ventilated buildings. Energy Build. 2019, 202, 109347. [CrossRef]

34. Zhang, S.; Cheng, Y.; Fang, Z.; Huan, C.; Lin, Z. Optimization of room air temperature in stratum-ventilated rooms for both
thermal comfort and energy saving. Appl. Energy 2017, 204, 420–431. [CrossRef]

35. Hang, L.; Kim, D.H. Enhanced model-based predictive control system based on fuzzy logic for maintaining thermal comfort in
IoT smart space. Appl. Sci. 2018, 8, 1031. [CrossRef]

36. Alizadeh, M.; Sadrameli, S. Numerical modeling and optimization of thermal comfort in building: Central composite design and
CFD simulation. Energy Build. 2018, 164, 187–202. [CrossRef]

37. Chen, Y.; Luo, F.; Dong, Z.; Meng, K.; Ranzi, G.; Wong, K. A day-ahead scheduling framework for thermostatically controlled
loads with thermal inertia and thermal comfort model. J. Mod. Power Syst. Clean 2019, 7, 568–578. [CrossRef]

38. Buratti, C.; Ricciardi, P.; Vergoni, M. HVAC systems testing and check: A simplified model to predict thermal comfort conditions
in moderate environments. Appl. Energy 2013, 104, 117–127. [CrossRef]

39. Vallianos, C.; Athienitis, A.; Rao, J. Hybrid ventilation in an institutional building: Modeling and predictive control. Build.
Environ. 2019, 166, 106405. [CrossRef]

40. Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Build. Environ.
2009, 44, 2089–2096. [CrossRef]

41. Kalaimani, R.; Jain, M.; Keshav, S.; Rosenberg, C. On the interaction between personal comfort systems and centralized HVAC
systems in office buildings. Adv. Build. Energy Res. 2020, 14, 129–157. [CrossRef]

42. Carli, R.; Cavone, G.; Othman, S.; Dotoli, M. IoT based architecture for model predictive control of HVAC systems in smart
buildings. Sensors 2020, 20, 781. [CrossRef] [PubMed]

43. Fang, J.; Ma, R.; Deng, Y. Identification of the optimal control strategies for the energy-efficient ventilation under the model
predictive control. Sustain. Cities Soc. 2020, 53, 101908. [CrossRef]

44. Li, X.; Chen, Q. Development of a novel method to detect clothing level and facial skin temperature for controlling HVAC
systems. Energy Build. 2021, 239, 110859. [CrossRef]

45. Deng, Y.; Feng, Z.; Fang, J.; Cao, S.J. Impact of ventilation rates on indoor thermal comfort and energy efficiency of ground-source
heat pump system. Sustain. Cities Soc. 2018, 37, 154–163. [CrossRef]

46. Yang, S.; Wan, M.; Chen, W.; Ng, B.; Dubey, S. Experiment study of machine-learning-based approximate model predictive
control for energy-efficient building control. Appl. Energy 2021, 288, 116648. [CrossRef]

47. Yang, S.; Wan, M.; Ng, B.; Zhang, T.; Babu, S.; Zhang, Z.; Chen, W.; Dubey, S. A state-space thermal model incorporating humidity
and thermal comfort for model predictive control in buildings. Energy Build. 2018, 170, 25–39. [CrossRef]

48. Ainsworth, B.; Haskell, W.; Herrmann, S.; Meckes, N.; Bassett Jr., D.; Tudor-Locke, C.; Greer, J.; Vezina, J.; Whitt-Glover, M.;
Leon, A. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sport. Exerc. 2011,
43, 1575–1581. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2021.127685
http://dx.doi.org/10.1016/j.buildenv.2020.106920
http://dx.doi.org/10.1016/j.enbuild.2017.03.065
http://dx.doi.org/10.1016/j.enpol.2021.112293
http://dx.doi.org/10.1016/j.enbuild.2021.111480
http://dx.doi.org/10.1007/s11192-009-0146-3
http://dx.doi.org/10.1111/j.1600-0668.2007.00516.x
http://dx.doi.org/10.1145/3057730
http://dx.doi.org/10.4324/9781315142074-36
http://dx.doi.org/10.4081/jae.2017.668
http://dx.doi.org/10.1109/AQTR.2018.8402759
http://dx.doi.org/10.1016/j.apenergy.2019.04.065
http://dx.doi.org/10.1016/j.enbuild.2019.109347
http://dx.doi.org/10.1016/j.apenergy.2017.07.064
http://dx.doi.org/10.3390/app8071031
http://dx.doi.org/10.1016/j.enbuild.2018.01.006
http://dx.doi.org/10.1007/s40565-018-0431-3
http://dx.doi.org/10.1016/j.apenergy.2012.11.015
http://dx.doi.org/10.1016/j.buildenv.2019.106405
http://dx.doi.org/10.1016/j.buildenv.2009.02.014
http://dx.doi.org/10.1080/17512549.2018.1505654
http://dx.doi.org/10.3390/s20030781
http://www.ncbi.nlm.nih.gov/pubmed/32023965
http://dx.doi.org/10.1016/j.scs.2019.101908
http://dx.doi.org/10.1016/j.enbuild.2021.110859
http://dx.doi.org/10.1016/j.scs.2017.11.014
http://dx.doi.org/10.1016/j.apenergy.2021.116648
http://dx.doi.org/10.1016/j.enbuild.2018.03.082
http://dx.doi.org/10.1249/MSS.0b013e31821ece12


Appl. Sci. 2022, 12, 5473 26 of 31

49. Calvaresi, A.; Arnesano, M.; Pietroni, F.; Revel, G. Measuring metabolic rate to improve comfort management in buildings.
Environ. Eng. Manag. J. 2018, 17, 2287–2296. [CrossRef]

50. Park, H.; Rhee, S.B. IoT-Based Smart Building Environment Service for Occupants’ Thermal Comfort. J. Sens. 2018, 2018, 1757409.
[CrossRef]

51. Tanaka, K.; Wada, K.; Kikuchi, T.; Kawakami, H.; Tanaka, K.; Takai, H. Study on air-conditioning control system considering
individual thermal sensation. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Tokyo,
Japan, 2019; Volume 294. [CrossRef]

52. Choi, H.; Na, H.; Kim, T.; Kim, T. Vision-based estimation of clothing insulation for building control: A case study of residential
buildings. Build. Environ. 2021, 202, 108036. [CrossRef]

53. Zang, M.; Xing, Z.; Tan, Y. IoT-based personal thermal comfort control for livable environment. Int. J. Distrib. Sens. Netw. 2019,
15, 1550147719865506. [CrossRef]

54. Park, J.; Kim, T.; Lee, C.S. Development of thermal comfort-based controller and potential reduction of the cooling energy
consumption of a residential building in Kuwait. Energies 2019, 12, 3348. [CrossRef]

55. Nagarathinam, S.; Doddi, H.; Vasan, A.; Sarangan, V.; Venkata Ramakrishna, P.; Sivasubramaniam, A. Energy efficient thermal
comfort in open-plan office buildings. Energy Build. 2017, 139, 476–486. [CrossRef]

56. Haniff, M.; Selamat, H.; Khamis, N.; Alimin, A. Optimized scheduling for an air-conditioning system based on indoor thermal
comfort using the multi-objective improved global particle swarm optimization. Energy Effic. 2019, 12, 1183–1201. [CrossRef]

57. Lou, R.; Hallinan, K.; Huang, K.; Reissman, T. Smart wifi thermostat-enabled thermal comfort control in residences. Sustainability
2020, 12, 1919. [CrossRef]

58. Park, J.; Choi, H.; Kim, D.; Kim, T. Development of novel PMV-based HVAC control strategies using a mean radiant temperature
prediction model by machine learning in Kuwaiti climate. Build. Environ. 2021, 206, 108357. [CrossRef]

59. Hawila, A.W.; Merabtine, A.; Chemkhi, M.; Bennacer, R.; Troussier, N. An analysis of the impact of PMV-based thermal comfort
control during heating period: A case study of highly glazed room. J. Build. Eng. 2018, 20, 353–366. [CrossRef]

60. Hong, S.; Lee, J.; Moon, J.; Lee, K. Thermal comfort, energy and cost impacts of PMV control considering individual metabolic
rate variations in residential building. Energies 2018, 11, 1767. [CrossRef]

61. Farag, W. ClimaCon: An Autonomous Energy Efficient Climate Control Solution for Smart Buildings. Asian J. Control 2017,
19, 1375–1391. [CrossRef]

62. Hilliard, T.; Swan, L.; Qin, Z. Experimental implementation of whole building MPC with zone based thermal comfort adjustments.
Build. Environ. 2017, 125, 326–338. [CrossRef]

63. Li, D.; Menassa, C.; Kamat, V. Personalized human comfort in indoor building environments under diverse conditioning modes.
Build. Environ. 2017, 126, 304–317. [CrossRef]

64. Xu, Y.; Chen, S.; Javed, M.; Li, N.; Gan, Z. A multi-occupants’ comfort-driven and energy-efficient control strategy of VAV system
based on learned thermal comfort profiles. Sci. Technol. Built. Environ. 2018, 24, 1141–1149. [CrossRef]

65. Pazhoohesh, M.; Zhang, C. A satisfaction-range approach for achieving thermal comfort level in a shared office. Build. Environ.
2018, 142, 312–326. [CrossRef]

66. Gupta, S.; Kar, K.; Mishra, S.; Wen, J. Incentive-Based Mechanism for Truthful Occupant Comfort Feedback in Human-in-the-Loop
Building Thermal Management. IEEE Syst. J. 2018, 12, 3725–3736. [CrossRef]

67. Kruusimägi, M.; Sharples, S.; Robinson, D. A novel spatiotemporal home heating controller design: System emulation and field
testing. Build. Environ. 2018, 135, 10–30. [CrossRef]

68. Qiao, Y.; Zhang, S.; Wu, N.; Wang, X.; Li, Z.; Zhou, M.; Qu, T. Data-driven approach to optimal control of ACC systems and
layout design in large rooms with thermal comfort consideration by using PSO. J. Clean. Prod. 2019, 236, 117578. [CrossRef]

69. Jung, W.; Jazizadeh, F. Comparative assessment of HVAC control strategies using personal thermal comfort and sensitivity
models. Build. Environ. 2019, 158, 104–119. [CrossRef]

70. Lu, S.; Wang, W.; Lin, C.; Hameen, E. Data-driven simulation of a thermal comfort-based temperature set-point control with
ASHRAE RP884. Build. Environ. 2019, 156, 137–146. [CrossRef]

71. Aguilera, J.; Kazanci, O.; Toftum, J. Thermal adaptation in occupant-driven HVAC control. J. Build. Eng. 2019, 25, 100846.
[CrossRef]

72. Lee, S.; Joe, J.; Karava, P.; Bilionis, I.; Tzempelikos, A. Implementation of a self-tuned HVAC controller to satisfy occupant thermal
preferences and optimize energy use. Energy Build. 2019, 194, 301–316. [CrossRef]

73. Gao, G.; Li, J.; Wen, Y. DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning. IEEE
Internet Things 2020, 7, 8472–8484. [CrossRef]

74. Mohamadi, S.; Ahmed, A. Thermal comfort control via air conditioning system using fuzzy neural network feedback controller.
Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 586–592. [CrossRef]

75. Alsaleem, F.; Tesfay, M.; Rafaie, M.; Sinkar, K.; Besarla, D.; Arunasalam, P. An IoT Framework for Modeling and Controlling
Thermal Comfort in Buildings. Front. Built Environ. 2020, 6, 87. [CrossRef]

76. Kumar Yadav, M.; Verma, A.; Ketan Panigrahi, B.; Mishra, S. User comfort driven time-table linked AHU scheduling for ancillary
service maximization of an educational building. Energy Build. 2020, 225, 110317. [CrossRef]

77. Deng, Z.; Chen, Q. Development and validation of a smart HVAC control system for multi-occupant offices by using occupants’
physiological signals from wristband. Energy Build. 2020, 214, 109872. [CrossRef]

http://dx.doi.org/10.30638/eemj.2018.227
http://dx.doi.org/10.1155/2018/1757409
http://dx.doi.org/10.1088/1755-1315/294/1/012066
http://dx.doi.org/10.1016/j.buildenv.2021.108036
http://dx.doi.org/10.1177/1550147719865506
http://dx.doi.org/10.3390/en12173348
http://dx.doi.org/10.1016/j.enbuild.2017.01.043
http://dx.doi.org/10.1007/s12053-018-9734-5
http://dx.doi.org/10.3390/su12051919
http://dx.doi.org/10.1016/j.buildenv.2021.108357
http://dx.doi.org/10.1016/j.jobe.2018.08.010
http://dx.doi.org/10.3390/en11071767
http://dx.doi.org/10.1002/asjc.1426
http://dx.doi.org/10.1016/j.buildenv.2017.09.003
http://dx.doi.org/10.1016/j.buildenv.2017.10.004
http://dx.doi.org/10.1080/23744731.2018.1474690
http://dx.doi.org/10.1016/j.buildenv.2018.06.008
http://dx.doi.org/10.1109/JSYST.2017.2771528
http://dx.doi.org/10.1016/j.buildenv.2018.02.027
http://dx.doi.org/10.1016/j.jclepro.2019.07.053
http://dx.doi.org/10.1016/j.buildenv.2019.04.043
http://dx.doi.org/10.1016/j.buildenv.2019.03.010
http://dx.doi.org/10.1016/j.jobe.2019.100846
http://dx.doi.org/10.1016/j.enbuild.2019.04.016
http://dx.doi.org/10.1109/JIOT.2020.2992117
http://dx.doi.org/10.11591/ijeecs.v19.i2.pp586-592
http://dx.doi.org/10.3389/fbuil.2020.00087
http://dx.doi.org/10.1016/j.enbuild.2020.110317
http://dx.doi.org/10.1016/j.enbuild.2020.109872


Appl. Sci. 2022, 12, 5473 27 of 31

78. Li, W.; Zhang, J.; Zhao, T.; Ren, J. Experimental study of an indoor temperature fuzzy control method for thermal comfort and
energy saving using wristband device. Build. Environ. 2021, 187, 107432. [CrossRef]

79. Aryal, A.; Becerik-Gerber, B.; Lucas, G.; Roll, S. Intelligent Agents to Improve Thermal Satisfaction by Controlling Personal
Comfort Systems under Different Levels of Automation. IEEE Internet Things 2021, 8, 7069–7100. [CrossRef]

80. Carlucci, S.; Bai, L.; de Dear, R.; Yang, L. Review of adaptive thermal comfort models in built environmental regulatory documents.
Build. Environ. 2018, 137, 73–89. [CrossRef]

81. Humphreys, M. Outdoor temperatures and comfort indoors. Batim. Int. Build. Res. Pract. 1978, 6, 92. [CrossRef]
82. Laftchiev, E.; Romeres, D.; Nikovski, D. Dynamic Thermal Comfort Optimization for Groups. In Proceedings of the American

Control Conference, Virtual, 25–28 May 2021; Institute of Electrical and Electronics Engineers Inc.: New Orleans, LA, USA, 2021;
Volume 2021, pp. 1456–1463. [CrossRef]

83. Arballo, B.; Kuchen, E.; Chuk, D. An energy efficiency optimization method applying adaptive thermal comfort in a public
office building in San Juan-Argentina. In Proceedings of the 33rd PLEA International Conference: Design to Thrive, PLEA 2017,
NCEUB 2017—Network for Comfort and Energy Use in Buildings, Edinburgh, Scotland, 2–5 July 2017; Volume 2, pp. 2022–2029.

84. Kuchen, E. Spot-Monitoring zum Thermischen Komfort in Bürogebäuden; Der Andere Verlag: Osnabrück, Germany, 2008.
85. Kramer, R.; van Schijndel, J.; Schellen, H. Dynamic setpoint control for museum indoor climate conditioning integrating collection

and comfort requirements: Development and energy impact for Europe. Build. Environ. 2017, 118, 14–31. [CrossRef]
86. CEN/TC 156. EN 15251:2007; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Build-

ings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Committee for Standardization,
CEN: Brussels, Belgium, 2007.

87. Stazi, F.; Naspi, F.; Ulpiani, G.; Di Perna, C. Indoor air quality and thermal comfort optimization in classrooms developing an
automatic system for windows opening and closing. Energy Build. 2017, 139, 732–746. [CrossRef]

88. CIBSE. Guide A Environmental Design, 8th ed.; Chartered Institution of Building Services Engineers: London, UK, 2007.
89. Aparicio-Ruiz, P.; Barbadilla-Martín, E.; Salmerón-Lissén, J.; Guadix-Martín, J. Building automation system with adaptive comfort

in mixed mode buildings. Sustain. Cities Soc. 2018, 43, 77–85. [CrossRef]
90. Barbadilla-Martín, E.; Salmerón Lissén, J.; Guadix Martín, J.; Aparicio-Ruiz, P.; Brotas, L. Field study on adaptive thermal comfort

in mixed mode office buildings in southwestern area of Spain. Build. Environ. 2017, 123, 163–175. [CrossRef]
91. Sghiouri, H.; Mezrhab, A.; Karkri, M.; Naji, H. Shading devices optimization to enhance thermal comfort and energy performance

of a residential building in Morocco. J. Build. Eng. 2018, 18, 292–302. [CrossRef]
92. Gabsi, F.; Hamelin, F.; Sauer, N.; Yame, J. `ε-Regularized Economic Model Predictive Control for Thermal Comfort in Multizone

Buildings. In SMARTGREENS 2020—Proceedings of the 9th International Conference on Smart Cities and Green ICT Systems, Virtual,
2–4 May 2020; SciTePress: Setubal, Portugal, 2020; pp. 137–148.

93. McCartney, K.; Nicol, J. Developing an adaptive control algorithm for Europe. Energy Build. 2002, 34, 623–635. [CrossRef]
94. Sánchez-García, D.; Rubio-Bellido, C.; Tristancho, M.; Marrero, M. A comparative study on energy demand through the adaptive

thermal comfort approach considering climate change in office buildings of Spain. Build. Simul. 2020, 13, 51–63. [CrossRef]
95. Tan, Z.; Deng, X. An optimised window control strategy for naturally ventilated residential buildings in warm climates. Sustain.

Cities Soc. 2020, 57, 102118. [CrossRef]
96. Tong, Z.; Chen, Y.; Malkawi, A. Estimating natural ventilation potential for high-rise buildings considering boundary layer

meteorology. Appl. Energy 2017, 193, 276–286. [CrossRef]
97. Aguilera, J.; Bogatu, D.I.; Kazanci, O.; Angelopoulos, C.; Coakley, D.; Olesen, B. Comfort-based control for mixed-mode buildings.

Energy Build. 2021, 252, 111465. [CrossRef]
98. Lin, Y.B.; Tseng, S.K.; Hsu, T.H.; Tseng, C. HouseTalk: A House That Comforts You. IEEE Access 2021, 9, 27790–27801. [CrossRef]
99. Vázquez-Torres, C.; Gómez-Amador, A.; Bojórquez-Morales, G.; Beizaee, A.; Eliás-López, P. Natural Ventilation Strategy in a

Social Housing with Sub-humid Warm Climate Based on Thermal Comfort. Environ. Clim. Technol. 2021, 25, 508–524. [CrossRef]
100. Szokolay, S. Introduction to Architectural Science: The Basis of Sustainable Design, 1st ed.; Architectural Press: Oxford, UK, 2003.
101. Auliciems, A.; Szokolay, S. PLEA Note 3: Thermal Comfort; PLEA Notes; Design Tools and Techniques; PLEA: Passive and Low

Energy Architecture International in association with Department of Architecture, The University of Queensland: Brisbane,
Australia, 2007.

102. Xu, X.; Fu, B.; Wu, Z.; Sun, G. Predictive control for indoor environment based on thermal adaptation. Sci. Prog. 2021, 104,
00368504211006971. [CrossRef] [PubMed]

103. Yang, L.; Yan, H.; Lam, J. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014,
115, 164–173. [CrossRef]

104. Yano, T. Space heating control using acceptable set-point temperature estimation by a statistical approach in the lyon smart
community project. In Proceedings of the IEEE International Conference on Industrial Technology, Lyon, France, 20–22 February
2018; Volume 2018, pp. 1645–1650. [CrossRef]

105. Marche, C.; Nitti, M. IoT for the users: Thermal comfort and cost saving. In Proceedings of the International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), Catania, Italy, 2–5 July 2019; Association for Computing Machinery:
Catania, Italy, 2019; pp. 55–60. [CrossRef]

106. Shetty, S.; Hoang, D.; Gupta, M.; Panda, S. Learning desk fan usage preferences for personalised thermal comfort in shared offices
using tree-based methods. Build. Environ. 2019, 149, 546–560. [CrossRef]

http://dx.doi.org/10.1016/j.buildenv.2020.107432
http://dx.doi.org/10.1109/JIOT.2020.3038378
http://dx.doi.org/10.1016/j.buildenv.2018.03.053
http://dx.doi.org/10.1080/09613217808550656
http://dx.doi.org/10.23919/ACC50511.2021.9483191
http://dx.doi.org/10.1016/j.buildenv.2017.03.028
http://dx.doi.org/10.1016/j.enbuild.2017.01.017
http://dx.doi.org/10.1016/j.scs.2018.07.028
http://dx.doi.org/10.1016/j.buildenv.2017.06.042
http://dx.doi.org/10.1016/j.jobe.2018.03.018
http://dx.doi.org/10.1016/S0378-7788(02)00013-0
http://dx.doi.org/10.1007/s12273-019-0560-2
http://dx.doi.org/10.1016/j.scs.2020.102118
http://dx.doi.org/10.1016/j.apenergy.2017.02.041
http://dx.doi.org/10.1016/j.enbuild.2021.111465
http://dx.doi.org/10.1109/ACCESS.2021.3058364
http://dx.doi.org/10.2478/rtuect-2021-0037
http://dx.doi.org/10.1177/00368504211006971
http://www.ncbi.nlm.nih.gov/pubmed/33870778
http://dx.doi.org/10.1016/j.apenergy.2013.10.062
http://dx.doi.org/10.1109/ICIT.2018.8352428
http://dx.doi.org/10.1145/3331052.3332479
http://dx.doi.org/10.1016/j.buildenv.2018.12.040


Appl. Sci. 2022, 12, 5473 28 of 31

107. Cicirelli, F.; Guerrieri, A.; Mastroianni, C.; Spezzano, G.; Vinci, A. Thermal comfort management leveraging deep reinforcement
learning and human-in-The-loop. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems, ICHMS
2020, Virtual, 7–9 September 2020. [CrossRef]

108. Chenaru, O.; Popescu, D. IoT gateway for personalized user comfort management in smart home applications. In Proceedings of
the 2020 28th Mediterranean Conference on Control and Automation, MED 2020, Saint-Raphaël, France, 16–18 September 2020;
Institute of Electrical and Electronics Engineers Inc.: Saint-Raphaël, France, 2020; pp. 921–926. [CrossRef]

109. Amasyali, K.; El-Gohary, N. Real data-driven occupant-behavior optimization for reduced energy consumption and improved
comfort. Appl. Energy 2021, 302, 117276. [CrossRef]

110. Zhu, M.; Pan, Y.; Wu, Z.; Xie, J.; Huang, Z.; Kosonen, R. An occupant-centric air-conditioning system for occupant thermal
preference recognition control in personal micro-environment. Build. Environ. 2021, 196, 107749. [CrossRef]

111. Bouclier, K.; Hoffmann, S. Modeling decentralized systems for energy savings based on detailed local thermal comfort calculations.
In Proceedings of the Building Simulation Conference, Rome, Italy, 2–4 September 2019; International Building Performance
Simulation Association: Rome, Italy, 2019; Volume 4, pp. 2278–2285.

112. Chegari, B.; Tabaa, M.; Simeu, E.; Moutaouakkil, F.; Medromi, H. Multi-objective optimization of building energy performance
and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy Build. 2021, 239,
110839. [CrossRef]

113. Turhan, C.; Simani, S.; Gokcen Akkurt, G. Development of a personalized thermal comfort driven controller for HVAC systems.
Energy 2021, 237, 121568. [CrossRef]

114. Dutta, S.; Zhang, Z.; Sahin, C.; Omagari, Y.; Kotani, S.; Watahiki, K.; Ng, Y.; Wong, Y. An optimized air-conditioning set-point
temperature selection approach in a shared office based on thermal comfort and energy efficiency. In ECOS 2020—Proceedings of
the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Osaka, Japan,
29 June–3 July 2020; ECOS 2020 Local Organizing Committee: Osaka, Japan, 2020; pp. 2005–2015.

115. Lopez, G.; Aoki, T.; Nkurikiyeyezu, K.; Yokokubo, A. Model for thermal comfort and energy saving based on individual sensation
estimation. Sensor. Mater. 2020, 32, 693–702. [CrossRef]

116. Ghaddar, D.; Itani, M.; Ghaddar, N.; Ghali, K.; Zeaiter, J. Model-based adaptive controller for personalized ventilation and
thermal comfort in naturally ventilated spaces. Build. Simul. 2021, 14, 1757–1771. [CrossRef]

117. Sung, W.T.; Hsiao, S.J.; Shih, J.A. Construction of Indoor Thermal Comfort Environmental Monitoring System Based on the IoT
Architecture. J. Sensors 2019, 2019, 2639787. [CrossRef]

118. Bretones, M.; Alvarez, J.; Del Mar Castilla, M.; Berenguel, M. A Fuzzy Controller for Thermal Comfort and Indoor Air Quality in
a Bioclimatic Building. In Proceedings of the European Control Conference 2020, ECC 2020, Saint-Petersburg, Russia, 12–15 May
2020; Institute of Electrical and Electronics Engineers Inc.: Saint Petersburg, Russia, 2020; pp. 1029–1036.

119. Duman, A.; Erden, H.; Gönül, Ö.; Güler, Ö. A home energy management system with an integrated smart thermostat for demand
response in smart grids. Sustain. Cities Soc. 2021, 65, 102639. [CrossRef]

120. Kannan, T.; Lork, C.; Tushar, W.; Yuen, C.; Wong, N.; Tai, S. Energy Management Strategy for Zone Cooling Load Demand
Reduction with Occupancy Thermal Comfort Margin. In Proceedings of the 2019 IEEE PES GTD Grand International Conference
and Exposition Asia, GTD Asia 2019, Bangkok, Thailand, 19–23 March 2019; Institute of Electrical and Electronics Engineers Inc.:
Bangkok, Thailand, 2019; pp. 247–252. [CrossRef]

121. Zhang, S.; Lu, Y.; Lin, Z. Coupled thermal comfort control of thermal condition profile of air distribution and thermal preferences.
Build. Environ. 2020, 177, 106867. [CrossRef]
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