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Abstract: Specific emitter identification (SEI) is a technology for extracting fingerprint features
from a signal and identifying the emitter. In this paper, the author proposes an SEI method based
on ensemble neural networks (ENN) and signal graphs, with the following innovations: First, a
signal graph is used to show signal data in a non-Euclidean space. Namely, sequence signal data
is constructed into a signal graph to transform the sequence signal from a Euclidian space to a
non-Euclidean space. Hence, the graph feature (the feature of the non-Euclidean space) of the signal
can be extracted from the signal graph. Second, the ensemble neural network is integrated with a
graph feature extractor and a sequence feature extractor, making it available to extract both graph
and sequence simultaneously. This ensemble neural network also fuses graph features with sequence
features, obtaining an ensemble feature that has both features in Euclidean space and non-Euclidean
space. Therefore, the ensemble feature contains more effective information for the identification of the
emitter. The study results demonstrate that this SEI method has higher SEI accuracy and robustness
than traditional machine learning methods and common deep learning methods.

Keywords: specific emitter identification (SEI); signal graph; graph convolution; ensemble neural
network (ENN)

1. Introduction

Specific emitter identification (SEI) is a process to extract individual features from
signals of the same model and batch of communication emitters and identify the specific
emitter [1]. The manufacturing process of emitters is random, so emitters, even of the
same model and batch, do not have completely identical electrical characteristics [2]. With
different electrical parameters, each emitter has unique characteristics and is thus called a
fingerprint. The fingerprint characteristics [3] of the signal are due to the effects of in-phase
and quadrature-phase imbalance(IQ imbalance), phase noise, harmonic distortion, and
nonlinear distortion [4]. As the fingerprint of an emitter is unique, steady, and difficult
to imitate, SEI based on the fingerprint feature extracted from an emitter is an effective
method to identify the identity of the communication emitter.

The SEI methods can be divided into two categories: manual-feature-based methods
and deep learning-based methods. Manual-feature-based methods extract manual fea-
tures from the emitter signal and then use the machine learning classifier to Identify the
specific emitter. Different from manual-feature-based methods, the deep learning-based
methods automatically extract the features of the specific emitter signal to perform specific
emitter identification.

At present, various methods have already been proposed for extracting the features of
an emitter signal [5]. Specifically, the features obtained by spectral analysis of the signal
include power spectrum features [6], frequency spectrum features [7], Hilbert spectrum
features [8], and variational mode decomposition spectrum features [9]. The features gener-
ated in modulation–demodulation include non-linear features of the power amplifier [10],
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phase error, IQ offset [11], and carrier frequency offset [12,13]. Moreover, there are also
many other emitter signal feature extraction and identification methods. For example,
in [6], SEI was realized by extracting the signal’s fractal feature. In [14], the authors put
forward an FID model for mathematical modeling of an emitter based on the emitter type
and used this model to identify the undetermined signal. Wong et al. clustered IQ signals
directly to identify specific emitters [15].

However, the manual feature extraction-based method has many shortcomings: First,
the SEI system’s identification effect is limited by the effectiveness of the manual feature;
additionally, the extraction of the manual feature necessitates that the researchers have
sufficient prior knowledge of communication theory on emitters [4]. Second, this method
has poor generalizability. A feature extraction method valid for the identification of one
emitter is often invalid for the identification of other emitters. Hence, researchers usually
need to find a new feature extraction method for identifying a new emitter. Third, many
traditional SEI methods perform poorly and cannot meet the practical demands. Many
recent studies have shown that deep learning outperformed traditional methods in SEI [16].
The shortcomings of traditional methods are being solved by deep learning.

Deep learning is undergoing rapid development and has been widely used in image
processing, natural language processing, and speech recognition, obtaining excellent results.
Currently, researchers are applying deep learning technology to SEI. Furthermore, some
study results have proved that deep learning is feasible and has great potential in SEI.
For example, T. O’Shea et al. [17] systematically analyzed the studies on deep neural
networks in radio modulation identification. Robyns et al. [7] identified 22 LoRa devices in
the multi-layer perceptron (MLP) and convolutional neural network (CNN) supervised
learning methods. Sankhe et al. [18] identified five 802.11 protocol emitters by using CNN.
Following that, Guanxiong Shen et al. identified 25 LoRa emitters by using CNN, MLP, and
Long Short-Term Memory (LSTM), respectively. However, in the existing deep learning
methods, signal features are generally extracted from Euclidean space directly, and then a
simple neural network structure is used to identify the emitter. There is still a large room
for improving the data representation and network structure.

To effectively extract the features of the signal, we propose signal graph (a new data
representation method) and ensemble neural network (ENN). The main innovations in this
paper are as follows:

(1) By constructing a signal graph, the sequence signal is transformed from a Euclidean
space to a non-Euclidean space. As a result, the graph convolution method can be used
to extract a signal’s non-Euclidean feature from its signal graph. Signal graph provides
a new method, different from a signal sequence, for emitter signal representation.

(2) The ENN is designed with a sequence feature extractor and a graph feature extractor.
Hence, it can extract sequence features from Euclidean space and graph features
from non-Euclidean space and fuse the two features together to enrich the feature
information extracted from the signal and better identify the emitter.

We conduct extensive experiments on ESP20 Dataset and RML2016a Dataset. Experi-
mental results show that the proposed ENN outperforms the state-of-the-art methods for
SEI tasks.

2. Ensemble Neural Network and Signal Graph-Based SEI
2.1. Signal Graph and Improved Graph Convolution
2.1.1. Signal Graph

An emitter signal can be input into a neural network directly or after being converted
into another form. In this paper, the raw signal without any processing is called a signal
sequence, which has two channels (i.e., components I and Q of the emitter signal) and a
length of N. A signal sequence is data in Euclidean space; its elements are arranged as
per the relations in the time sequence, and the geometric position relationships between
the elements are specific. In order to represent the relationship between the nodes of a
signal sequence, adjacent edges were added between the nodes to constitute a signal graph
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and obtain the signal sequence transformed from a Euclidean space to a non-Euclidean
space. Then, a non-Euclidean feature of the signal can be extracted from the signal graph
by graph convolution.

Figure 1 shows a signal sequence with a length of 10. The signal graph is constructed
by adding adjacent edges between the nodes. After that, the nodes in the signal graph
do not have the positional relationship in the signal sequence anymore but only the
connection relationship.

Figure 1. A signal graph constituted from a signal sequence.

2.1.2. Improved Graph Convolution for the Signal Graph

The formula for the original graph convolution can be defined as:

Hl+1 = GConv(H, W) = σ(LHlW l) = σ(D−
1
2 AD−

1
2 HlW l) (1)

where H is the output of the l-th layer graph convolution, W is the parameter matrix of
the l-th layer graph convolution, A is the adjacency matrix of the graph, D is the degree
matrix of the adjacency matrix A. In the original signal graph, all the adjacent nodes have
the same impacts on the central node. However, different adjacent nodes have different
impacts on the central node due to their different positions in the signal sequence [19].

In this regard, the standard graph convolution formula was improved in this study.
Each adjacent edge of the adjacent matrix was given a weight parameter to adjust the
impact of different adjacent nodes on the central node in the summation and updating. The
weight parameter of the adjacent edge is determined by the following formula:

k(d) =
1√
2π

exp(− d2

2σ2 ) (2)

In the formula, k represents the weight parameter of the adjacent edge; d represents the
distance between an adjacent node and the central node in the signal sequence; and σ
is the shape parameter. The distance between the adjacent node and the central node is
inversely proportional to the impact of the former on the latter and vice versa. The set of
the weight parameters is written as a weight matrix K (length× length). The following
formula exhibits the relation between the weight matrix K and the element kij:

K= ∑
d∈[−160,160]

diag(length, d, k|d|)=



k0 k1 k2 · · · km−1 km
k1 k0 k1 · · · km−2 km−1
k2 k1 k0 · · · km−3 km−2
...

...
...

. . .
...

...
km−1 km−2 km−3 · · · k0 k1

km km−1 km−2 · · · k1 k0


(3)

In the formula, diag is a diagonal matrix generator, where length controls the dimensions
of the diagonal matrix generated, d controls the position of the diagonal relative to the prin-
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cipal diagonal, k|d| controls the value of the diagonal element. Finally, weight matrix K and
adjacent matrix A were used to calculate the Hadamard product and assign corresponding
weight to each adjacent edge so as to control the impact of the different adjacent nodes on
the central node in its updating. Therefore, the improved graph convolution for extracting
features from the signal graph is written as the following formula:

Hl+1 = Gonv(H, W) = σ(D−
1
2 K� AD−

1
2 HlW l) (4)

where H is the output of the l-th layer graph convolution, W is the parameter matrix of the
l-th layer graph convolution, A is the adjacency matrix of the graph, D is the degree matrix
of the adjacency matrix A, and K is the proposed weight matrix.

2.2. The Proposed Ensemble Neural Network

In this study, an ensemble neural network (ENN) (Figure 2) was designed to make full
use of sequence features and graph features, which are in two different spaces. It integrates
sequence feature extractor with graph feature extractor and has a sequence classifier, a
graph classifier, and an ensemble classifier.

fusion operator

C1, C2, ……, Ck C1, C2, ……, Ck C1, C2, ……, Ck

S G

Sz Gz

SC EC GC

Ez

  

SX GX

...4 5 6

signal 
sequence

signal 
graph

Figure 2. Structure of the ensemble neural network proposed in this paper.

Based on the two feature extractors, the ENN can extract sequence features in Eu-
clidean space and graph features in non-Euclidean space from a signal sequence and a
signal graph simultaneously and then fuse the two features together, obtaining the en-
semble feature. As the ensemble feature contains the features in both Euclidean space
and non-Euclidean space, it has more sufficient feature information for SEI than a single
sequence feature or a graph feature.

The sequence classifier can identify a specific emitter based on the sequence feature
extracted by the sequence feature extractor, and the graph classifier can identify a specific
emitter based on the graph feature extracted by the graph feature extractor. However, the
ensemble classifier can use the combination of sequence features and graph features to
identify a specific emitter. The ENN treats the result obtained by the ensemble classifier as
the final result. The sequence classifier and graph classifier support the training of ENN.
Section 2.2.3 will show how to help the ENN obtain better SEI performance.
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2.2.1. Components of the Modules

Sequence feature extractor: Sequence feature extractor is used to extract the features
of the signal from Euclidean space. To this end, we use three cascaded convolutional layers
with kernel size of 3 × 3 to form the feature extractor. In the selection the number of
convolutional layers, we consider the overfitting and underfitting of the model. When
the model capacity is too large, the model will over-fit, and when the model capacity is
insufficient, the model is prone to under-fitting. In our model, three is a suitable value,
which is obtained through cross-validation. In addition, the number of output channels
of the three convolutional layers is set to 32, which is also the result of multiple attempts.
Defining the sequence feature extractor as S(·), the sequence signal as Xs, the output feature
zS can be expressed as:

zS = S(XS) (5)

Graph feature extractor: Graph feature extractor is used to extract the features of the
signal from non-Euclidean space. Graph feature consists of one graph convolution layer (in-
put layer) connected with two convolution layers with kernel size of 3 × 3. Corresponding
to the sequence feature extractor, we also set the number of output channels of the graph
convolutional layer and the convolutional layer to 32. Defining the graph feature extractor
as G(·), the sequence signal as Xs, the output feature zG can be expressed as:

zG = G(XS) (6)

For the graph feature extractor, the first layer is the graph convolution layer, and
the extracted feature is a graph, so the second layer cannot process graph structure data
directly. In view of this state, the features extracted by the first layer can be transformed
before being subjected to convolution. Specifically, all of the node connections in the
graph feature are removed, and the node information is kept. Then, all of the nodes are
reconstructed into a sequence based on their time sequences in the signal. Finally, the other
two convolution layers are used to extract more of the feature and complete the extraction
of the graph feature.

Feature fusion module: Feature fusion module is used to fuse zS and zG, which can
be written as:

zE = [zS, zG] (7)

where [.] denotes feature concat, zE denotes the fused feature.
Classifier: Classifier is used to predict the classification results. To train the model

efficiently, we classify and supervise the sequence feature, graph feature and fused feature.
The classification results of the three classifiers can be expressed as:

pS = CS(zS) (8)

pG = CG(zG) (9)

pE = CE([zS, zG]) (10)

where Cs(.) denotes the sequence feature classifier, CG(.) denotes the graph feature clas-
sifier and CE(.) denotes the fused feature classifier. PS, PG, PE denotes the corresponding
classification results, respectively. The three classifiers all adopt three-layer MLP structures,
the number of neurons in each layer are 256, 80, and 20, respectively.

2.2.2. Loss Function

The ENN has three outputs which are from the sequence classifier, graph classifier,
and ensemble classifier, respectively. In this paper, three sub-loss functions LS, LG and
LE are set for supervising the sequence classifier, graph classifier, and ensemble classifier,
respectively. They are all cross-entropy loss functions as expressed in Formulas (11), (12),
and (13), respectively:
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LS = − 1
N

N

∑
i=1

k

∑
j=1

yCi log[pyCi
(j)] (11)

LG = − 1
N

N

∑
i=1

k

∑
j=1

yGi log[pyGi
(j)] (12)

LE = − 1
N

N

∑
i=1

k

∑
j=1

yEi log[pyEi
(j)] (13)

where N is the number of samples; k is the number of classes; y is the sample label; p is the
result predicted by the model.

2.2.3. Training

The ENN was trained in two steps: local classifier supervision and global classifier
supervision. In the first step, the outputs from the sequence classifier and the graph classifier
were supervised by the loss functions at the same time. Hence, the total loss function Lstep1
in this step was the sum of LS and LG. The purpose was to enable the sequence/graph
feature extractor and classifier to extract and classify corresponding features.

Lstep1 = LS + LG (14)

The second step started after the training passed 90% of the whole epoch. In this step,
the total loss function Lstep2 include LS, LG, and LE. Over the training in the first step, the
sequence feature extractor and graph feature extractor of the ENN had been able to extract
feature; on this basis, a good ensemble classifier was obtained just over a fine adjustment.

Lstep2 = LS + LG + LE (15)

To summarize, the ENN first used a sequence feature extractor and a graph feature
extractor to extract sequence and graph features, respectively, and then fused the two fea-
tures into an ensemble feature. During training, the first step was to supervise the outputs
from the sequence classifier and the graph classifier to make the sequence feature extractor
and the graph feature extractor able to extract corresponding features effectively. In the
second step, the output from the ensemble classifier was also supervised, and the network
was fine-tuned on the basis of the first step, obtaining the optimum SEI performance.

3. Experimental Data

ESP20 Dataset. ESP20 is a WIFI emitter signal dataset acquired by the authors. It
contains the signal data acquired from 20 WIFI emitters of the same model (ESP8266) and
batch. The acquisition process is presented in Figure 3. The dimension of each sample
signal is 160 × 2. Specifically, 160 corresponds to the time dimension of the signal, and 2
corresponds to the in-phase and quadrature-phase of the signal.

RML2016a Dataset. An open-source RML2016a dataset was used to test the performance
of ENN in emitter modulation method recognition. This dataset is a modulation signal dataset
developed by O’Shea et al. using the GNU Radio signal simulation software [20]. Through
this software, they generated 11 emitter signals with different modulation methods. The
information of the ESP20 dataset and RML2016a dataset are summarized in Table 1.
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Table 1. Information summary of ESP20 dataset and RML2016a dataset.

Dataset Name ESP20 RML2016a

Emitter model WIFI device signal Software simulation signal of
different modulation method

Number of classes 20 11

Number of each class
of samples 1300 1000

Sample size Length = 160; number of channels = 2 Length = 128; number of channels = 2

Training set
division

1–1000 per class is divided
into training set

1–700 per class is divided
into training set

Test set
division

1001–1300 per class is divided
into test set

701–1000 per class is divided
into test set

Remarks

The 20 WIFI devices have the same
model (ESP8266) and batch. The
retained signal is the LLTF signal
part in the complete WIFI signal.

The 11 modulation methods are 8PSK,
AM-DSB, AM-SSB, BPSK, CPFSK, GFSK,

PAM4, QAM16, QAM64, QPSK, and WBFM.

Emitter
（WIFI   Emitters）

Signal Capture
and Analysis Signal Datasets

USRP B210

The B210 captures the signal and inputs it to the 
PC for analysis.

Emitters Signal Datasets

PC

20 WIFI  Emitters ESP8266

Same model
Same Batch

Add PC Hotspot
WIFI  Emitters

esp8266

Sending signals to 
the PC

PC

USRP
B210

Analyzing signals 
and saving

Figure 3. The production process of WIFI emitter communication platform and signal dataset.

4. Experiment and Result Analysis

An SEI experiment was conducted on the self-acquired ESP20 dataset, and an emitter
modulation method recognition experiment was carried out on the open source RML2016a
dataset. The evaluation indicators of the experiment include accuracy, precision, recall,
F1-score, and confusion matrix. The first experiment followed the following steps: First,
noiseless raw data was used to train the ENN; second, the above evaluation indicators were
used to evaluate the basic performance of the network; third, the additive white Gaussian
noise was used to adjust the SNR of the data and test the robustness of the network at
different SNRs. In the second experiment, as there was no noiseless raw signal, the different
noise modulation signals provided in the dataset were directly used to train the ENN,
which then was tested by the test set signal corresponding to the SNR.
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Comparison methods. To demonstrate the superiority of the method proposed in
this paper, the ENN was compared with two deep learning methods and two traditional
machine learning methods in the experiment. For the deep learning method, we compare
our model with CNN and GCN. The structure of CNN is consistent with the network
structure constituted by the sequence feature extractor and sequence classifier of the ENN,
while the structure of GCN accords with the network structure constituted by the graph
feature extractor and graph classifier of the ENN. Therefore, GCN and CNN are not only
state-of-the-art deep-learning based classifiers, but also part of our model. The comparison
with CNN and GCN is also an ablation study of the effectiveness of the ENN structure.
In addition, the ENN was also compared with the traditional decision tree and k-Nearest
Neighbor algorithms. Both KNN and tree are implemented using sklearn. For the KNN
algorithm, we select all samples in the training set as known classes, select all samples
in the test set as test samples, and set the value of K to 3. For the decision tree method,
we adopted the default values from sklearn. For CNN and GCN, the number of network
layers and the number of neurons use the configuration described in Section 2.2.1. All
hyperparameters are obtained by cross-validation. The results showed that the method
proposed in this paper has better SEI performance than traditional methods and existing
deep learning methods.

Training details. The ENN was trained in two steps. During training, the ENN was
tested and trained on an NVIDIA GeForce GTX 950M GPU based on the PyTorch deep
learning framework under Windows 10. The entire network was optimized by an ADAM
optimizer with an initial learning rate of 0.001 and 50 epochs of iteration. It should be noted
that in the experiments on the ESP20 dataset, the ENN was trained with a noiseless raw
signal merely and tested with signals of various SNRs.

4.1. Results of SEI Experiment on the ESP20 Dataset

(1) Analysis of comprehensive performance indicators. This section analyzes the
evaluated comprehensive indicators and robustness of the proposed method for the ESP20
dataset. Table 2 lists the experimental results of different evaluation indicators of the
proposed method and other comparison methods at various SNRs. The optimum results
have been bolded. As shown in Table 2, ENN had optimum performance in four evaluation
indicators compared with other comparison methods. GCN performed second in the
indicators, which was better than CNN. Through a comparison between GCN and CNN,
it is concluded that the signal graph proposed in this paper is effective for signal data
representation. Moreover, ENN performed better than CNN and GCN in SEI, which
indicated that ENN can effectively extract the fingerprint feature of a signal and identify
the specific emitter. Figure 4 shows the confusion matrices of the methods, where the
pixels of ENN concentrate on the diagonal clearly, while those of the confusion matrix
of the comparison methods are distributed beyond the diagonal area vaguely. This case
intuitively explains that the ENN has the optimum SEI performance.

(2) Robustness analysis at various SNRs. As shown in Table 2, the classification
indicators of the ENN were obviously superior to those of CNN and GCN at different SNRs.
Figure 5 illustrates that the proposed method has higher accuracy than the comparison
methods at all the SNRs. This proves that this method has excellent robustness at different
SNRs. Especially in poor signal environments, for example, when the SNR was 20 dB, the
experimental results better reflected the robustness of the proposed method. At this time,
the identification accuracy of CNN was 76.38%, that of GCN was 84.51%, and that of the
proposed method was 85.23%. The accuracy of GCN based on signal graph and improved
graph convolution was about 8% higher than that of CNN, which implied that signal graph
was effective for representing signal data. Meanwhile, the accuracy of ENN was about 1%
higher than that of GCN, further indicating the excellent robustness of ENN.
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Table 2. A Summary of the evaluated indicators of different methods at various SNRs. Experimental
results of our model are bolded.

SNR Index ENN CNN GCN KNN TREE

raw

Accuracy 97.38 94.4 95.78 79.91 62.9
Precision 97.33 93.76 94 80.61 63.17

Recall 97.41 93.56 94.45 79.79 62.77
F1-Score 97.14 93.08 93.47 79.68 62.71

26 dB

Accuracy 96.73 92.31 92.38 84.52 47.23
Precision 96.07 93.76 94.33 85.14 47.65

Recall 98.53 95.61 92.41 84.73 47.19
F1-Score 96.7 93.98 91.84 84.48 47.37

24 dB

Accuracy 94.51 89.3 92.87 85.18 41.67
Precision 96.2 89.96 94.85 86.06 41.6

Recall 95.69 88.56 95.7 85.02 41.57
F1-Score 95.22 88.13 93.93 85.09 41.53

22 dB

Accuracy 91.56 85.1 89.65 84.12 34.47
Precision 93.55 81.03 84.29 84.72 34.31

Recall 93.37 83.94 80.68 83.95 34.53
F1-Score 92.21 80.44 80.68 83.86 34.36

20 dB

Accuracy 85.23 76.38 84.51 83.23 25.55
Precision 90.62 74.44 84.64 84.07 25.42

Recall 89.27 71 82.06 83.2 25.56
F1-Score 88.97 70.02 80.03 83.16 25.33

Figure 4. Confusion matrices of ENN and the comparison methods. The confusion matrix of
our model has been highlighted with a red square. The stronger the blue color, the higher the
classification accuracy.
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Figure 5. Accuracies of ENN and the comparison methods at various SNRs.

4.2. Results of Emitter Modulation Method Recognition Experiment on the RML2016a Dataset

This section analyzes the effectiveness of the proposed method for emitter modulation
method identification based on the open source RML2016a dataset. Table 3 displays the
emitter modulation method identification results of ENN and the comparison methods
at various SNRs. The optimum results have been bolded. Figure 6 shows the accuracies
of the methods at various SNRs. As the signals of the RML2016a dataset had low SNR as
a whole, traditional methods became almost unable to identify the emitter based on the
dataset, while the three deep learning methods (ENN, CNN, and GCN) still showed high
robustness, with significantly higher accuracy than traditional machine learning methods.
Figure 7 presents the confusion matrices of the methods, where the pixels of ENN are
concentrated on the diagonal the most. This indicated that the proposed SEI method had
optimum performance. The specific results are presented in Table 3.

As shown, the proposed method obtained the best accuracy, precision, recall, and
F1-score. Both CNN and GCN have advantages. CNN performed better than GCN at high
SNR, but was less robust than GCN at low SNR. In summary, the signal graph and ENN
combined method proposed in this paper has excellent identification ability and robustness
at various SNRs.

70 

60 

>,50u 
« 

二｝u 40 
足

301 -
ENN

-+-CNN 
20j 

----+--

GNN 
KNN 

10
1 

TREE

6dB 4d8 2dB OdB -2dB 
SNR/dB 

-4dB -6dB

Figure 6. Accuracies of the proposed method and the comparison methods at various SNRs.
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Figure 7. Confusion matrices of the proposed method and the comparison methods at SNR of 6 dB.
The confusion matrix of our model has been highlighted with a red square. The stronger the blue
color, the higher the classification accuracy.

Table 3. Experimental results of the indicators at various SNRs. Experimental results of our model
are bolded.

SNR Index ENN CNN GCN KNN TREE

6 dB

Accuracy 76.41 72.82 72.27 19.15 30.21
Precision 77.61 72.55 72.09 25.09 30.84

Recall 77.14 72.37 71.86 19.3 29.95
F1-Score 77.24 72.41 71.87 16.28 30.31

4 dB

Accuracy 76.05 74.18 70.27 17.15 27.39
Precision 76.63 73.81 69.98 26 27.96

Recall 75.95 73.67 69.92 17.64 27.31
F1-Score 76.07 73.71 69.86 15.06 27.54

2 dB

Accuracy 73.55 70.68 69.5 16.82 22.48
Precision 73.63 71.48 70.28 25.76 22.96

Recall 73.49 71.32 70.04 16.98 22.46
F1-Score 73.49 71.29 70.1 14.46 22.59

0 dB

Accuracy 69.73 67.64 63.95 17.03 17.82
Precision 70.43 67.77 63.98 23.51 18.26

Recall 70.54 67.93 64.3 17.51 17.94
F1-Score 70.38 67.79 64.07 12.29 18
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Table 3. Cont.

SNR Index ENN CNN GCN KNN TREE

−2 dB

Accuracy 64.09 55.55 60.64 9.33 15.48
Precision 64.93 56 60.41 15.42 15.65

Recall 64.68 55.57 60.59 9.17 15.55
F1-Score 64.67 55.69 60.47 3.23 15.57

−4 dB

Accuracy 53.73 48.91 53 9.18 13.91
Precision 53.07 48.78 53.1 10.09 14

Recall 52.66 48.81 53.01 9.09 13.85
F1-Score 52.84 48.77 53.04 1.82 13.88

−6 dB

Accuracy 42.55 40.55 39 8.7 11.45
Precision 42.91 40.67 38.37 8.09 11.47

Recall 42.94 40.27 38.68 9.09 11.56
F1-Score 42.84 40.33 38.47 1.48 11.5

5. Conclusions

In view that the signals used in some existing studies were sourced from simulation
software and the dataset was less representative in practice, the authors designed a WIFI
emitter communication platform, acquired WIFI signals practically, and formulated the
dataset. To fully extract fingerprint features from a signal, a signal graph was designed and
used to have the signal sequence transformed from a Euclidean space to a non-Euclidean
space; furthermore, an ensemble neural network (ENN) was designed, making it available
to extract features from the signal sequence and signal graph simultaneously. Subsequently,
the extracted sequence and graph features were fused together, forming an ensemble feature
with richer information than a single sequence or graph feature. Finally, the ENN was
trained in two steps. In the experiments, there were four comparison methods, including
two traditional SEI methods (decision tree and k-nearest neighbor algorithms) and two deep
learning SEI methods (CNN and GCN). Among them, CNN has the same network structure
as the network structure formed by the sequence feature extractor and sequence classifier of
the ENN, while GCN has a completely identical network structure to the network structure
formed by the graph feature extractor and graph classifier of the ENN. Therefore, the
experiment on CNN and GCN is an ablation study of the network modules of ENN, which
can indicate the effectiveness of the modules. In the experiments, SEI was conducted on
the ESP20 dataset, and emitter modulation method recognition was carried out on the
open-source RML2016a dataset. The experimental results demonstrated that the proposed
method performed the best in accuracy, precision, recall, and F1-score at various SNRs.
This indicates that this method can effectively improve the SEI’s performance on the basis
of CNN and GCN. Furthermore, the best performance of the proposed method at various
SNRs proves that this method has the highest robustness, and the optimum performance
of the method in different SEIs reveals that our method has high generalization.
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