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Abstract: Software maintenance is an important step in the software lifecycle. Software module
clustering is a HHMO_CF_GDA optimization problem involving several targets that require min-
imization of module coupling and maximization of software cohesion. Moreover, multi-objective
software module clustering involves assembling a specific group of modules according to specific clus-
ter criteria. Software module clustering classifies software modules into different clusters to enhance
the software maintenance process. A structure with low coupling and high cohesion is considered
an excellent software module structure. In this study, we apply a multi-objective hyper-heuristic
method to solve the multi-objective module clustering problem with three objectives: (i) minimize
coupling, (ii) maximize cohesion, and (iii) ensure high modularization quality. We conducted several
experiments to obtain optimal and near-optimal solutions for the multi-objective module clustering
optimization problem. The experimental results demonstrated that the HHMO_CF_GDA method
outperformed the individual multi-objective evolutionary algorithms in solving the multi-objective
software module clustering optimization problem. The resulting software, in which HHMO_CF_GDA
was applied, was more optimized and achieved lower coupling with higher cohesion and better
modularization quality. Moreover, the structure of the software was more robust and easier to
maintain because of its software modularity.

Keywords: multi-objective optimization problem; multi-objective evolutionary algorithms; software
module clustering; multi-objective hyper-heuristics

1. Introduction

Software module clustering (SMC) classifies software modules into different clusters
to enhance program structure and facilitate easy maintenance [1]. An excellent module
software structure is one with low coupling and high cohesion [2]. Clustering helps dis-
cover groups and identify interesting distributions and patterns in the underlying data.
Moreover, using some techniques (i.e., data mining) that analyze and extract novel, in-
teresting patterns from data, clustering helps data mining techniques extract relations
between software projects and extract information to assess the behavior of software
projects. Some suitable clustering algorithms introduce optimal clustering techniques and
suggest that it is essential to distinguish the consequences of heterogeneous clustering
techniques. Several heterogeneous clustering techniques help solve the problem from
different approaches, i.e., partition-based clustering, density-based clustering, and hierar-
chical clustering [3,4]. In this article, we attempted to solve the software module cluster by
utilizing multi-objective optimization using hyper-heuristic methods to solve a wide range
of problems in different domains.

The multi-objective optimization problem includes two or more objectives that de-
mand to be minimized or maximized based on several related techniques presented for
multi-objective optimization. Multi-objective evolutionary algorithm (MOEA) methods are
commonly used to solve multi-objective optimization problems. The multi-objective SMC

Appl. Sci. 2022, 12, 5649. https://doi.org/10.3390/app12115649 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115649
https://doi.org/10.3390/app12115649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0446-5430
https://doi.org/10.3390/app12115649
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115649?type=check_update&version=1


Appl. Sci. 2022, 12, 5649 2 of 18

problem can be described as assembling a specific group of modules into clusters according
to given criteria [5]. It is also a search problem that is divided into two components. The
first is creating a representation of the problem to explore methodologies, and the second
is creating a cost function, or a fitness function, to estimate the quality of the solution [5].
Hyper-heuristics for multi-objective optimization problems is a new area of research in
evolutionary computation and operational research [6,7]. Hyper-heuristic methods have
been proposed to increase the generality of search methodologies [8]. Moreover, hyper-
heuristics provide general search algorithms suitable for solving a wide range of problems
in different domains [5,8–10]. Different heuristic components can be combined, selected, or
generated in the hyper-heuristic method to efficiently solve a given optimization problem.
On the one hand, hyper-heuristics methodologies involve a high-level strategy that controls
the search over a set of heuristics and not controlling a search over a representation of
the solutions directly [8]. On the other hand, hyper-heuristics with low-level heuristics
using deterministic or non-deterministic methods perform as a “heuristic scheduler” [9].
Considering that each heuristic has its strengths and weaknesses, hyper-heuristics aim to
automatically inform the algorithm by combining each heuristic‘s strengths and making up
for the weaknesses of others. The hyper-heuristic multi-objective genetic algorithm can be
applied to solve a multi-objective SMC problem as a multi-objective search problem. This
study aims to solve the multi-objective module clustering optimization problem by using a
multi-objective hyper-heuristic (MOHH_CF_GDA) approach [11] to minimize coupling,
maximize cohesion, and deliver an optimal or near-optimal solution for the problem.

We addressed three main issues: (1) How can we achieve minimum coupling and
maximum cohesion when solving the module clustering optimization problem? (2) How
can we apply search-based software engineering techniques such as MOHH to solve our
problem and deliver an optimal solution? (3) How can we interpret the solution and present
it to the decision makers (i.e., the software engineer and the project manager)?

This study’s major contributions are summarized as follows.

• Applying the MOHH_CF_GDA method to solve the multi-objective SMC optimization
problem, which is considered as novel.

• Designing a framework for optimizing SMC to help the decision maker minimize the
effort and time needed to maintain the software.

• Developing a special solution representation matrix to fit with the SMC optimization
problem, and to facilitate applying the MOHH_CF_GDA method to achieve and
deliver an optimal solution.

• Building a visual graph to represent the software module cluster before and after
applying the MOHH_CF_GDA to display to the decision maker the optimal software
module structure.

The rest of this article is structured as follows. Section 2 provides the background and
related works. Section 3 presents the materials and the proposed methodology. Section 4
describes the experimental settings. Section 5 presents the results and discussions. Section 6
provides the conclusion and suggestions for further research.

2. Preliminaries and Related Work
2.1. Overview of SMC

SMC is a process of classifying software modules into different clusters to enhance
program structure and facilitate easy maintenance [1]. An excellent module software
structure is considered to be one that has low coupling and high cohesion [2]. An SMC
framework is depicted in Figure 1. The software clustering process is conducted in several
steps. The first step is extracting the module-level dependencies from the source code
and storing the result in a database using an analysis tool for the source code. After the
extracted model-level dependencies are stored in a database, the script is executed to
query in the database. The query results are filtered, and a textual representation of the
module is produced as a graphical representation comprising nodes and weighted directed
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graphs. The former graphical representation displays the system modules, and the second
representation shows the relations between modules [2].
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2.2. Search-Based Software Engineering

The notion of search-based software engineering (SBSE) was introduced by Herman
and Jones in 2001 [12]. The term “search” indicates the meta-heuristic search-based opti-
mization techniques used [12,13]. SBSE is relevant to software engineering (SE) and uses
search-based optimization techniques to find and address various software engineering
difficulties as optimization problems. SBSE optimization techniques are generally ap-
plied to solve optimization problems in several SE areas, such as software requirement
engineering and software design, testing, refactoring, and management. Search-based
optimization techniques seek to recognize and determine optimal solutions to a specific
problem in a search space containing the candidate solutions. Generally, to solve a spe-
cific problem, the problem’s representation should clearly define an objective function
to evaluate the solutions based on their quality to achieve optimal solutions during the
search process [13,14]. Search-based techniques are mostly applied to resolve many soft-
ware engineering optimization issues. The most commonly used algorithms are genetic
algorithms (GAs) [15], simulated annealing [16], particle swarm optimization [17], ant
colony optimization [18] and hill climbing [19]. These algorithms are collectively known as
evolutionary algorithms [12].

2.3. A Multi-Objective Hyper-Heuristic Approach

Hyper-heuristics have lately increased in use by researchers, and various papers
on hyper-heuristics are still mainly limited to single-objective optimization. The use of
hyper-heuristics for multi-objective optimization problems is a new area of research in evo-
lutionary computation and operational research [6,7]. The multi-objective hyper-heuristic
evolutionary algorithm (MHypEA) [20] has some features that provide excellent solutions
for a wide range of optimization problems such as a generic form of low-level heuris-
tics without combining any domain-specific knowledge, selection of low-level heuristics
based on support learning linked with roulette-wheel selection, dynamic adaptation of
the weights assigned to low-level heuristics based on the performance of the heuristics
in directing the search towards the right areas and acceptable exploitation and explo-
ration of the search space. Studies have been identified that deal with hyper-heuristics for
multi-objective problems.

A paper entitled [1] Fast Multi-objective Hyper-heuristic Genetic Algorithm for Multi-
Objective Software Module Cluster is presented. Six test problems were solved by using the
two-archive multi-objective evolutionary algorithm. The second paper [21] presented a so-
lution to the multi-objective software module clustering problem based on a hyper-heuristic
approach using the multi-objective hyper-heuristic evolutionary algorithm (MHypEA). The
problem was studied using two multi-objective approaches to clustering—the equal-size
cluster approach (ECA) and the maximizing cluster approach (MCA). The MHypEA can be
used to recommend suitable modular structures for weighted MDGs. In the third paper [1],
a multi-objective hyper-heuristic genetic algorithm (MHypGA) is applied to solve the multi-
objective software module clustering problem using selection, crossover, and mutation
operations of evolutionary algorithms.
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In the scientific literature, many studies use SBSE approaches to address software
model clustering problems. In this article, we present the main ideas of SBSE techniques,
including meta-heuristics and hyper-heuristics designed to solve multi-objective optimiza-
tion problems. There are only a few studies on using MOHH to solve module clustering
problems, which highlights the need for scientific research in the area of solving module
clusters using multi-objective evolutionary algorithms and combining meta-heuristics to
yield improved performance, rather than focusing on solving only one problem.

3. Materials and Methods

This study applied the multi-objective choice function-great deluge hyper-heuristic
(HHMO_CF_GDA) approach proposed by Maashi et al. [5]. HHMO_CF_GDA controls and
combines three multi-objective evolutionary algorithms including the multi-objective genetic
algorithm (MOGA) [22,23], the non-dominated sorting genetic algorithm (NSGAII) [24,25],
and the strength Pareto evolutionary algorithm (SPEA2) [26]—which acting as low-level
heuristics in the hyper-heuristic framework [27]. As a selection method, we utilized a
choice function with a high-level strategy that adaptively ranks the performance of three
low-level heuristics, choosing which one to call at each decision point. Based on four
performance metrics—algorithm effort [10], ratio of non-dominated individuals (RNI) [10],
uniform distribution (UD) of a non-dominated population [24], and size of space covered
(SSC; also known as S-metric hypervolume) [28]—we used an online learning mechanism
to give knowledge of the problem domain to the choice mechanism [5]. The great deluge
algorithm (GDA) acts as an acceptance criterion to accept or reject the candidate solution at
each iteration

3.1. Problem Description and Formulation

The purpose of software modularity is to shape a number of subsystems by clustering
the software elements in the software system. The consistency of the software module‘s
clustering outcome can be evaluated in terms of cohesion and coupling. Cohesion is a
function that tests how the modules in a cluster are interrelated. On the other hand, coupling
is an inter-cluster term that tests how two given clusters are inter-edge dependencies.
Coupling is as minimal as possible between the different subsystems, and cohesion within
the subsystem is as high as possible [29]. Our goal is that a high-quality partition has
both a low coupling relationship and a high cohesion relationship, which assumes that
well-designed systems are formed by cohesive sets of loosely related modules between
each other.

The multi-objective software module clustering problem can be described as a specific
group of modules assembled into clusters according to given criteria [30]. The modules‘
relationships automatically enable better-quality clustering of software modules in the
software module clustering problem. These relationships take the form of dependencies
among modules. The idea is to minimize coupling between clusters and to maximize
cohesion within each cluster. Clustering partitions the collection of all modules in the
system. The collection of modules in each partition of the clustering is a cluster. Finding the
most suitable clustering for a given collection of modules is an NP-hard problem, making
it ideal for search-based software engineering techniques [30]. The clustering problem is
defined as follows:

“The set of n objects X = {Xl, X2, ... , xn} is to be grouped. Each object, Xi, is to be
clustered into non-overlapping groups 0 = {01, O2, ... , Ok} where OJ is a cluster j , or a
set of objects and k is the number of clusters, 01 U O2 U . . . U Ok = X, 0i cJ ¢ and 0i n
OJ = ¢ for i cJ j” [30]

Clustering presents an idea of the properties of the groups rather than the individuals
within them. Recently, clustering methods have been used to support comprehension of the
software. The software module clustering problem can be established as a search problem
and divided into two components—the first one is a representation of the problem for
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exploring methodologies and the second one is a cost function, or a fitness function, to
estimate the quality of solutions [30].

The software module optimization problem is to assign cohesion and coupling values,
trying to achieve maximum cohesion and low coupling. We define the cohesion relationship
Ai of cluster i with Ni components and µi intra-edge dependencies [31] as follows:

Maximizing Ai =
µi

N2
i

, (1)

Coupling between the i-th cluster and the j-th cluster is expressed by Ei,j after the
software module is clustered [29]:

Minimizing Ei,j =

{
0 , i = j

εi,j
2Ni Nj

, i 6= j
, (2)

We represent a system’s modularization quality (MQ) as a function that shows the
trade-off between interconnectivity and intra-connectivity [31]. Given a model dependency
graph partitioned into k clusters, where Ai is the intra-connectivity of the i-th cluster, and
Eij is the interconnectivity between the i-th and j-th clusters, we represent MQ as follows:

MQ =


∑k

i=1 Ai
k − ∑k

i,j=1 Eij
k(k−1)

2

, ∀k > 1

Ai, k = 1
, (3)

MQ establishes a trade-off between interconnectivity and intra-connectivity that re-
munerates the creation of highly cohesive clusters and penalizes excessive inter-edge
dependencies. The average interconnectivity achieves this trade-off from the average intra-
connectivity. MQ is bound between −1 (no cohesion inside the clusters) and 1 (no coupling
among the clusters) [31]; see Table 1 for notation explanation.

Table 1. Notations for problem formulation.

Notations Descriptions

N Total number of components (nodes) in cluster i

µi Number of intra-edge dependencies in cluster i

ε Number of inter-edge dependencies in clusters i and j

Ni Nj Total number of components (nodes) in clusters i and j

In this study, we applied HHMO_CF_GDA [5] to solve our multi-objective mod-
ule clustering problem. The HHMO_CF_GDA framework proposed in Maashi [5,11,32]
is shown in Figure 2. The high-level strategy can be a learning mechanism or a meta-
heuristic [33]. The high-level strategy task is to lead the search effectively and adapt based
on the success or failure of the low-level heuristic components during the search process
to reuse the applied method for solving several problems [34]. Low-level heuristics are
the hyper-heuristic framework’s problem domain-specific elements; therefore, they can
enter any related information, such as candidate solutions. So, the high-level strategy
does not alter while low-level heuristics and the evaluation function need editing when
taking a new problem [33]. In the HHMO_CF_GDA framework, there is a clear separation
between the high-level hyper-heuristic method and low-level heuristic components. The
idea of the domain barrier is to provide a higher level of abstraction for hyper-heuristics
and raise hyper-heuristics’ generality by applying it to a new problem without changing
the framework. The barrier domain only supports problem information, such as fitness,
cost, and penalty value [35]. This barrier does not allow any problem-specific information
to pass to the high-level strategy during the search process. The framework is designed
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in the same modular manner, making it highly flexible and easily replaceable, and its
components reusable. The multi-objective choice function-great deluge hyper-heuristic
(HHMO_CF_GDA) controls and combines the robustness of three multi-objective evolution-
ary algorithms (NSGAII, SPEA2, and MOGA), which can be used as low-level heuristics.
As a selection method, the choice function utilized with a high-level strategy adaptively
ranks the performance of three low-level heuristics, choosing which one to call at each
decision point. The great deluge algorithm (GDA) is employed as a move acceptance
based on four performance metrics—AE [10], RNI [10], SSC [28], and UD [24]. An online
learning mechanism is used to obtain knowledge of the problem domain for the selection
mechanism [5].
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We propose a module clustering optimization framework as shown in Figure 1.
HHMO_CF_GDA was used to solve the software module clusters in order to find op-
timal or near-optimal solutions that meet the three objectives (low coupling, high cohesion,
and high modularization quality). As shown in Figure 1, the module clustering optimiza-
tion framework consists of two phases. Phase 1 involves building the matrix. In this phase,
the software module matrix is constructed based on the total number of clusters, the num-
ber of components in each cluster, and the number of edges between them. The built matrix
output is an initial solution individual with appropriate representations based on the total
numbers of components, clusters, and edges. The output of phase 1 acts as an input for the
optimization process in phase 2. In this phase, we apply the HH_CF_GDA optimizer to
solve the multi-objective module clustering optimization problem. The output-optimized
solution is built as a diagram to increase decision maker understandability.

The pseudocode of the multi-objective module clustering optimization framework
based on HHMO_CF_GDA is shown in Algorithm 1. The SMC framework consists of
two phases; the first phase aims to build the input matrix using software information
from the decision maker including input values, the total number of clusters, the total
number of components in each cluster, and the total number of edges. Then, the number



Appl. Sci. 2022, 12, 5649 7 of 18

of edges between each node is counted until the total number of nodes is achieved. After
determining each cluster with its edges and components, we calculate cohesion, coupling,
and initial MQ values. Then, those values are fed to the optimization phase and act as
inputs to the HHMO_CF_GDA method. In the second phase, HHMO_CF_GDA is run to
solve the SMC problem and obtain the optimized solution.

Algorithm 1 Module Cluster Optimization

Input
Total number of clusters, total number of components in each cluster, and total
number of edges

Result Getting optimize objectives
1. Phase 1: Build matrix
1.1 Sorting each cluster with its edges and components
1.2 Calculte the objective‘s value and send it as an initial value
2. Phase 2: Optimization process
2.1 Apply the optimization process (HHMO_CF_GDA)
2.2 Getting optimize objectives.

HHMO_CF_GDA acts as the optimizer in phase2. The pseudocode of HHMO_CF_GDA [5]
is reprinted in Algorithm 2. HHMO_CF_GDA combines three multi-objective meta-
heuristics as low-level heuristics for solving a multi-objective optimization problem, which
in our case is a module clustering optimization problem. HHMO_CF_GDA performs a
fixed number of iterations. Initially, all low-level heuristics are run for a fixed number of
function evaluations with the same population size and number of generations. Then, all
low-level heuristics are ranked with respect to performance metrics (AE, RNI, SCC, and
UD). The low-level heuristic with the best performance is selected to execute the next itera-
tion. In each iteration, one low-level heuristic is run and then the ranking of all low-level
heuristics is updated. This process is reputed until the stopping criteria are met. The choice
function provides a balance between intensification and diversification. The choice function
addresses the trade-off between the undiscovered areas of the search space and the past
performance of each heuristic. So, the heuristic with the best performance will be chosen
more frequently to exploit the search area. This will boost the intensification element. The
time element in the choice function boosts diversification. A low-level heuristic that is exe-
cuted for a long period of time is recalled to support diversification by exploring unvisited
areas of the search space. See [5] for more details on how HHMO_CF_GDA works.

Algorithm 2 HHMO_CF_GDA

Input Data HHMO_CF_GDA (H, F) whereas H = low level heuristic, F = performance metrics
Result Getting optimized result
1. Initialization (take initial objectives values)
1.1 Run all H members
1.2 For all H members, get the values of all members of F for each member of H
1.3 Rank all H member based on ranking scheme
1.4 Get the values of the simple choice function for each member of H.

1.5
The member of H with the largest choice function value will be selected as an initial
heuristic

2. Repeat
4. Execute the selected member of H.
5. Get the values of all member of F for the selected H member
6. Update the rank for all H members based on ranking scheme
7. Updating the choice function values for all H members.

8.
The member of H with the largest choice function value will be selected for the
next iteration

10. Until stopping condition is met
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3.2. Solution Representation

We encoded the chromosomes in a way that represents the main characteristic of
our multi-objective SMC that can be applied to the multi-objective choice function-based
hyper-heuristic method. We used the binary bit string, which is primarily used to encode
the chromosomes. In the module clustering optimization problem, each chromosome
represents one solution for the clustering modules, as shown in Table 2. A gene in a
chromosome represents one cluster, and each gene comprises the following elements: total
number of nodes (TON) and total number of edges for each node (TOE). Moreover, each
individual chromosome represents a solution of the module clustering problem; each
solution consists of a set of genes, and each gene represents one component, which consists
of a total number of edges. Before running HHMO_CF_GDA, the built matrix constructs
the initial solution individuals with appropriate representations based on the total numbers
of components, clusters, and edges.

Table 2. Representation of the clustering module solution.

1 chromosome (1 individual)

C1(TON) C1(TOE) C2(TON) C2(TOE) C3(TON) C3(TOE) C4(TON) C4(TOE) . . . .. CN(TON) CN(TOE)

gene1 gene2 gene3 gene4 geneN

Table 3 represents sample data for the input matrix used to save the number of edges
between each node until the total number of nodes is achieved. Table 4 represents each
node, which belongs to a specific cluster (label) which indicates the total number of clusters.

Table 3. The built input matrix.

Node Main User Control State Family Computer

Main 0 1 1 0 0 0

User 1 0 0 1 1 1

Control 1 0 0 0 1 0

State 0 1 0 0 1 1

Family 0 1 1 1 0 0

Computer 0 1 0 1 0 0

System 0 1 1 1 0 1

Table 4. Clustering labels.

Main User Control State Family Computer System

Cluster1 Cluster2 Cluster1 Cluster3 Cluster2 Cluster4 Cluster3

4. Experiments and Settings

A set of experiments were conducted using two datasets to observe the differences
between the performances of each multi-objective meta-heuristic (NSGAII, SPEA2, and
MOGA) and HHMO_CF_GDA [5] in solving the multi-objective module clustering prob-
lem. The two datasets were mutins [20], which is an operating system for educational
purposes written in the Turing language and comprises 20 components and 57 edges, and
telnet2 [36], which comprises 28 components and 81 edges. Table 5 presents the datasets.
We implemented module clusters in C++ using the Microsoft Visual Studio C++ platform
and Ubuntu and performed 30 independent runs on the datasets using Linux x86_64
and Windows 10 with Intel Core i7 computer systems. The HHMO_CF_GDA algorithm
executed 100 iterations with a population size of 32 and 50 generations in each run. We
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chose 100 iterations (i) to show the heuristic with the best performance for many iterations
due to the impact of the intensification factor, and (ii) to provides the opportunity for
other heuristics to be called because of the diversification factor. For fair comparison, each
low-level heuristic was used in isolation and terminated after 1600 × 100 evaluation func-
tions. For each dataset, 30 independent trials were run for each algorithm with different
random seeds and a population size of 32 and 50 generations in each run. For all three
low-level heuristics, the crossover and mutation probabilities were set to 0.9 and 1/24,
respectively, and the corresponding distribution indices were set to 10 and 20, respectively.
Distance sharing σ for the UD metric and MOGA was set to 0.01 in the normalized space.
This setting was used for SSC and UD as a feedback indicator in the ranking scheme of
HHMO_CF_GDA and as a performance measure for comparison. All the algorithms were
implemented with the same common sub-functions using Microsoft Visual Studio C++
platform and Ubuntu on Windows 10 with Intel Core i7 computer system. Furthermore,
all the experimental parameters were the same as those commonly used in the scientific
literature for discrete problems [37]. Table 6 presents the parameter settings used to solve
the module cluster problem.

Table 5. Dataset information.

Dataset Total Number of Components Total Number of Edges

mutins 20 57

telnet2 28 81

Table 6. Parameter settings of HHMO_CF_GDA and low-level heuristics.

HHMO_CF Parameters Settings

Population size 32

Total number of generations 50

Total number of iterations of HHMO_CF_GDA 100

Stopping criteria Max iterations

Length of individual chromosome Based on total number of components

Number of independent runs 30

Random seed for NSGAII2 1.0

Number of independent runs for NSGAII2 Based on ranking scheme

Number of independent runs for SPEA2 Based on ranking scheme

Random seed for SPEA2 11

Number of independent runs for MOGA Based on ranking scheme

5. Results and Discussion

We conducted various experiments to achieve an optimal or near-optimal solution
for the multi-objective module cluster problem. We repeated each experiment 30 times for
each dataset and calculated the average, maximum, minimum, and standard deviation of
the results. For all the performance metrics, a higher value indicates better performance.

For each dataset, HHMO_CF_GDA exhibited a better performance compared to the
individual low-level algorithms with respect to RNI, SSC, and UD, as presented in Table 7.
The results revealed that HHMO_CF_GDA yielded a better solution than the other algo-
rithms. The performance results are also displayed as box plots in Figures 3–5 to provide
a clear visualization of the distributions of the simulation data of the 30 independent
runs. The results revealed that HHMO_CF_GDA achieved the maximum possible cohe-
sion and minimum coupling, considering MQ, to keep the result as balanced as possible
compared to the standalone algorithms. A higher SSC value indicates a better quality of
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non-dominated space, that is, a smaller distance from the actual Pareto optimal front. The
SSC metric calculates the size of the objective function space occupied by the solutions
surrounding the Pareto optimal front. The higher the UD value, the better the quality of
the non-dominated set, that is, the non-dominated front is spread widely along the Pareto
optimal front. The UD metric evaluates the distribution of non-dominated individuals
over the Pareto optimal front. RNI values lie between 0 and 1, and the metric evaluates
the fraction of non-dominated individuals in the population and indicates the quality of
the solution. A RNI value of 0 indicates that none of the individuals in a population are
non-dominated, whereas a RNI value of 1 indicates that all the individuals in a popula-
tion are non-dominated. Figures 6 and 7 show the successful solution obtained when the
HHMO_CF_GDA approach was applied to the mutins dataset. Figure 6 shows the structure
of the mutins software before the application of HHMO_CF_GDA, whereas Figure 7 shows
the optimized mutins software result of the module clustering after the application of
HHMO_CF_GDA. It was observed that the structure of the mutins software was more
optimized after applying HHMO_CF_GDA. In addition, the nodes and clustering were
more organized, cohesion of the software clusters was higher, and coupling between the
nodes was lower. Similarly, HHMO_CF_GDA successfully achieved the objectives after it
was applied to optimize the telnet2 software. Figure 8 shows the telnet2 dataset before the
application of HHMO_CF_GDA, whereas Figure 9 shows the optimized telnet2 dataset
results of the module clustering after the application of HHMO_CF_GDA.

Table 7. Average performance of HHMO_CF_GDA compared to low-level heuristics on the mutins
and telnet2 datasets with respect to the ratio of non-dominated individuals (RNI), size of space
covered (SSC), and uniform distribution (UD).

Dataset Method
RNI SSC UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

Dataset 1
(mutins)

NSGAII 0.65671 0.37500 0.87500 0.142272338 24795565 13,000,000 36,100,000 6,258,335 0.41061 0.17536 0.64427 0.1307

SPEA2 0.60532 0.25000 0.81250 0.147015408 27846667 13,000,000 40,000,000 8,331,442 0.45983 0.17536 0.68357 0.1460

MOGA 0.67414 0.37500 0.93750 0.154935576 26531667 12,000,000 90,000,000 23,804,432 0.33415 0.16575 0.61257 0.1234

HHMO_CF_GDA 0.85727 0.81606 0.89466 0.025291224 86591950 86,180,700 86,963,900 268,330 0.61415 0.58441 0.63763 0.0155

Dataset 2
(telnet2)

NSGAII 0.67662 0.34028 0.93750 0.148507718 32460000 12,000,000 90,000,000 25,474,959 0.33816 0.16480 0.61257 0.11512

SPEA2 0.62795 0.18750 0.87500 0.151444811 27973333 13,000,000 90,000,000 18,705,945 0.37900 0.16575 0.67008 0.1412

MOGA 0.62396 0.25000 0.81250 0.13938832 32746667 11,000,000 90,000,000 20,866,451 0.42805 0.17536 0.68357 0.1427

HHMO_CF_GDA 0.85264 0.81400 0.88908 0.01992233 86591757 86,225,400 86,955,900 195,271 0.61202 0.58296 0.64152 0.01947
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From the results, we made two observations: (a) HHMO_CF_GDA showed its appli-
cability in a wide range of problems in different domains. In this study, HHMO_CF_GDA
was applied to solve the multi-objective software module clustering problem, which is a
real-world problem in discrete space. The algorithm effectively achieved the objectives
of higher cohesion and lower coupling. Additionally, an increase in the generality of
the HHMO_CF_GDA methodology, achieving diversity and convergence, was attainted.
This observation supports HHMO_CF_GDA results when applied to solve the vehicle
crashworthiness design problem, which is a real-world problem in continuous space [32].
(b) HHMO_CF_GDA can efficiently solve different optimization problems regardless of the
kind of problem space, whether in discrete space, as in the case of multi-objective software
module clustering, or in continuous space, as in the case of the vehicle crashworthiness
design problem.
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6. Conclusions

The need for systems that can help software engineers in decision making to optimize
SMC for their systems motivated us to develop a HHMO_CF_GDA approach to solve the
multi-objective module clustering optimization problem. This approach can help software
engineers to optimize module clustering to minimize coupling and maximize cohesion. We
also introduced a multi-objective module clustering framework that comprises two phases:
building the input matrix and running the optimization process. In the matrix-building
phase, the software structure is obtained from the decision maker and then proceeds to
the next phase to run the optimization framework (HHMO_CF_GDA). The optimizer
minimizes coupling and maximizes cohesion by considering MQ objective, which is to
balance coupling and cohesion. Subsequently, the proposed framework produces the
optimized solution as a diagram to make it more understandable to the decision maker. We
apply HHMO_CF_GDA to solve the multi-objective module clustering optimization prob-
lem. We also conducted several independent experiments on mutins and telnet2 datasets
using HHMO_CF_GDA and the individual low-level heuristics of MOEA algorithms to
determine the performance of HHMO_CF_GDA. The experimental results show that the
HHMO_CF_GDA method outperformed the individual multi-objective evolutionary al-
gorithms in solving the multi-objective software module clustering optimization problem.
The resulting software, in which HHMO_CF_GDA was applied, was more optimized and
achieved lower coupling with higher cohesion and better modularization quality. Moreover,
the structure of the software was more robust and easier to maintain because of its software
modularity. As a future work, we intend to add a multi-objective evolutionary algorithm
based on the decomposition algorithm instead of MOGA to HHMO_CF_GDA to improve
its performance in solving the module clustering optimization problem. More optimized
software with high modularity can lead to more maintainable software. To enhance the
modularity of the software in the optimization process, some possible methods can be
applied, such as the k-means-like clustering algorithm based on the silhouette analysis
approach [38], to estimate the optimal number of clusters in the clustering categorical data.
The algorithm uses the kernel-density estimation approach to define the cluster centers
for the clustering step. It also uses information theory-based dissimilarity to measure
the distance between the centers and objects in each cluster. Moreover, it evaluates the
quality of the cluster obtained in the first step to select the best k. Another algorithm is
the hierarchical agglomerative clustering algorithm for restructuring software systems
(HARS) [39], which identifies the refactoring required to restructure a software system. The
HARS algorithm is used to obtain an improved software system structure by identifying
the required refactoring.
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Abbreviations

HHMO_CF Choice Function-Based Hyper-Heuristic for Multi-Objective
MOEA Multi-Objective Evolutionary Optimization
MOEA\D Multi-Objective Algorithm Based on Decomposition
MQ Modularization Quality
NSGAII Non-Dominated Sorting Genetic Algorithm
SBSE Search-Based Software Engineering
SE Software Engineering
SMC Software Module Clustering
SPEA2 Strength Pareto Evolutionary
MOHH Multi-Objective Hyper-Heuristic
GA Genetic Algorithms
HHMO_CF_GDA Multi-Objective Choice Function-Great Deluge Hyper-Heuristic
RNI Ratio of Non-Dominated Individuals
SSC Size of Space Covered
UD Uniform Distribution
GDA Great Deluge Algorithm
TON Total Number of Nodes
TOE Total Number of Edges for Each Node
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