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Abstract: More and more light-emitting diode lighting devices (LED) are being connected to modern
power distribution lines. In addition to its many positive features, this poses problems in terms
of reactive power compensation. The large number of LEDs interacting with traditional reactive
power compensators leads to a harmful phenomenon—overcompensation. This was experimentally
determined in the investigated power distribution lines. Along with LEDs, a large number of devices
with variable frequency drives (VFD) are connected to the same power distribution lines. This study
presents an innovative approach to conventional diode rectifier supply side AC-DC-AC VFDs. It is
proposed to use these VFDs as a reactive power compensation device while maintaining their main
functions—motor powering and motor speed control. Minor improvements have been proposed
to enable these VFDs to provide and draw out reactive power, thereby keeping power factors close
to the unit in LED-loaded power distribution lines. The proposed improvements are based on the
interaction between the power distribution lines inductivity and the DC circuit capacitance of the
VFD. It has been shown that the power factor can be controlled by varying the capacity of the DC
circuit. The ability of the AC-DC-AC VFD to compensate for the reactive power provided by the
light-emitting diode lighting devices was confirmed by mathematical calculations and experimentally
with a laboratory prototype.

Keywords: reactive power; power factor; variable frequency drive; LED

1. Introduction

Nowadays, the LED lighting devices are increasingly becoming our main source of
artificial light in many applications. This is due to reductions in manufacturing cost and
their excellent characteristics in comparison to conventional lighting solutions. The main
applications are street lighting, residential lighting, automotive, and LED wall displays
for advertising placement. The main economic advantages of LEDs are low maintenance
requirements, long lifetime and reliability and high-power density. The main technical
advantages are controllability in both light and color, lack of warm-up period, and luminous
efficiency. In addition, LEDs are an environment-friendly source of artificial light [1].

Despite the above advantages, most LED light sources are powered by a two-stage
electronic driver without power factor correction equipment [2]. An example is the 32 kW
LED wall display presented in Figure 1a. It is a source of the leading reactive power. By
the interaction of LED with a conventional capacitors-based reactive power compensation
device, the reactive power of the leading character is further increased. Figure 1b shows
the values of the active and reactive power caused by the 32 kW LED wall display. These
data are experimentally collected at a sports arena, where the DA80.1600RGB-50M LED
wall display is installed.
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Figure 1. The 32 kW LED wall display at a sports arena: (a) Installation of the wall display; (b) Time
diagram of active and reactive power at the point of LED wall display connection to 0.4 kV power
distribution line.

These data were collected during bright daytime, as the brightness of the screen was
at that time the highest. These data show that regardless of the active power consumption,
this LED wall display provided reactive power in the range of 9.5 ÷ 10.9 kVar. The
conventional capacitors-based built-in reactive power compensation device in this arena
has not compensated this reactive power. As a result, the company that operates this sports
arena pays huge fines to the electric power supply company.

For the electronic equipment connected to the power distribution line (PDL), the
power factor shows an efficiency measure for the usage of electrical energy. The power
factor improvement reduces the load on the power grid transformers and PDL conductors,
leading to a reduction in the energy losses [3].

Local reactive power compensation devices are used as a standard to improve the
power factor. Typically, the current in conventional PDL lags behind voltage because of in-
ductive loads such as AC motors [4]. Local, capacitance-based reactive power compensation
devices are usually designed to compensate the lagging reactive power. The application
of energy-efficient light-emitting diode LED lighting sources reduces the power demand
by about 30% relative to the currently available sources. Unfortunately, these systems
are, in many cases, the source of disturbances that further reduce the power factor. The
evolution of LED light technology and VFD technology has changed the type of reactive
power available in 0.4 kV PDL (Figure 2).

Various methods of reactive power compensation have been proposed in scientific
publications. The publication [4] proposed the use of a matrix converter-based variable
frequency drive (VFD) to compensate the reactive power provided by LED lighting de-
vices. However, matrix VFDs are innovative VFDs and are not yet widely used. The
authors of the study [5] suggest the use of an alternating current/direct current converter
for prosumer applications. However, the implementation of this compensation method
requires costly additional equipment. The authors of the study [6] suggest the use of a
three-phase star-connected Buck-type dynamic capacitor. However, this measure is suitable
for compensating the lagging type reactive power. The publication [7] examines in detail
and summarizes the power quality coefficients that can be applied to AC-DC-AC VFD-
loaded PDL. The power factor is applied as the universal criterion for the electromagnetic
compatibility of distorted current in PDL and distorting loads. However, ways to reduce
the distortion and reactive power are not presented. The publication [8] presents an LED
driver consisting of an interleaved buck-boost power factor correction (PFC) converter with
coupled inductors and a half-bridge LLC resonant converter. Using this driver reduces the
reactive power provided in the PDL. However, the integrated buck-boost PFC converter
with coupled inductors significantly increases the cost of this driver. The publication [9]
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presents a two-stage LED driver based on commercial integrated circuits. The first stage
consists of an AC-DC power factor correction unit. The second stage consists of a DC/DC
power converter. This two-stage LED driver, as with the driver presented in [9], improves
the power factor but increases the cost of LED light devices due to its complexity. The
publication [10] presents a high-power factor LED driver. Using such a driver in LED light
devices would not cause the aforementioned problems with power factor correction. In
addition, there would be no need for the proposed method of compensation. However,
this is the technology of the future and will not solve the above-mentioned power factor
problems caused by already installed LED light devices. A publication [11] presents a
power factor improvement method based on teaching–learning-based optimization. Using
this method, the optimal capacitor combination to improve the power factor is calculated.
However, this method is only applicable in the presence of lagging reactive power and is
not suitable for compensating the reactive power of LED light devices. Various methods for
reactive power compensation have been presented in [12]. One of them, using Thyristorized
Var Compensators, can compensate for both types of leading and lagging reactive power.
This approach would be appropriate to address the problems mentioned above. However,
the use of Thyristorized Var Compensators involves additional investment and financial
costs. The Static var Compensator presented in [13] also requires additional investment
and financial costs.
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Figure 2. The loads and compensation device of the 0.4 kV power distribution lines: (a) Con-
ventional load of power distribution lines; (b) Modern load of power distribution lines (causes
overcompensation).

The global VFD market size was valued at USD 22.5 billion in 2021 and is expected
to grow at a compound annual growth rate of 6.5%. Most industrial and entertainment
buildings equipped with LEDs are also equipped with a large amount of AC-DC-AC VFDs.
These VFDs are used to power the induction motor of fans, pumps and other equipment.
About 70 AC-DC-AC VFDs have been installed in the aforementioned sports arena. A
further study examined the reactive power provided by LEDs and single-phase supply
conventional AC-DC-AC VFD. The possibility of modernizing the VFD by supplementing
the DC circuit with capacitors, at the same time transforming the VFD into a reactive power
compensation and power factor improvement device, was investigated (Figure 3). This
possibility of modernization has been tested mathematically and experimentally.
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Figure 3. Proposed modernization of the conventional single-phase supply AC-DC-AC VFD for the
reactive power compensation in LED-loaded power distribution lines.

Applying the VFD improvement proposed in this article could improve the PDL
power factor with relatively little investment. This is an advantage in terms of energy
costs and, at the same time, in terms of ecology and climate change. The low cost of
the compensation method is due to the fact that no additional expensive compensation
equipment based on inductive reactors is required. It is enough to modernize the already
installed VFD by adding low-cost components—electrolytic capacitors, small control and
switching means. This is an advantage over the method presented in [2], which proposes
to replace a conventional AC-DC-AC converter with a direct AC-AC converter in a number
of already installed VFDs.

The remainder of the paper will be organized as follows. Section 2 of the paper
provides a mathematical analysis of the reactive power in PDL loaded by a supply-side
rectifier VFD. It is shown mathematically that the capacitance of a DC circuit capacitor
affects the nature and value of the reactive power. Section 3 provides an experimental
analysis of reactive power. The nature and value of the reactive power of each of the
major devices connected to modern PDLs were analyzed separately. Experimental analysis
of the reactive power in PDL loaded by LED lighting devices is provided in Section 3.1.
Experimental analysis of the reactive power in the PDL loaded by diode rectifier supply-
side devices is provided in Section 3.2. Experimental analysis of the reactive power in the
PDL loaded by LED light and diode rectifier supply-side devices is provided in Section 3.3.
An experimental analysis of the reactive power in the PDL loaded by the diode rectifier
supply-side variable frequency drive is provided in Section 3.4. Section 4 presents an
experimental analysis of reactive power in VFDs and LEDs-loaded PDLs. The ability of the
VFD to compensate for the reactive power produced by the LED and to achieve a power
factor close to that unit has been experimentally confirmed. Section 5 discusses the results
of this study.

2. Theoretical Background for Interaction between the Power Distribution Lines
Inductivity and the DC Circuit Capacitance of the VFD
2.1. Operating Modes of the VFD’s Supply Side Rectifier

Publication [4] demonstrates that a VFD rectifier connected between a PDL and a DC
circuit capacitor of the VFD provides the leading reactive power (QFund < 0). The reason
for this is the displacement of the pulse of the input current drawn by the VFD rectifier
with respect to the voltage of PDL. The input current pulse reaches its maximum value
in time before the sinusoidal voltage of the PDL reaches its maximum point (the current
leads against the voltage Figure 4a). These processes require a relatively small capacity DC
circuit capacitor and a low PDL resistance; otherwise, the DC capacitor will not be able
to charge until the voltage reaches a maximum. Subsequent experimental studies used a
1 kW rated power VFD with an original 470 µF DC circuit capacitor installed.
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A different process uses a capacitor with a capacitance greater than the minimum
required capacity in the VFD DC circuit and a higher PDL resistance. In this case, conditions
will be reached where the maximum values of the pulse of the input current drawn by
the VFD rectifier and the PDL voltage coincide in time. In this case, the reactive power
provided or drawn out by the VFD will be zero (QFund = 0) (Figure 4b).

Experimental studies have shown that conventional VFD can be a source of lagging
reactive power (QFund > 0). This is due to the high capacity of the VFD DC circuit and the
PDL inductivity. In this case, in the process of interaction between the DC link capacity
of the VFD and the inductivity of the PDL, the maximum value of the pulse of the input
current drawn by the VFD rectifier lags behind the maximum value of the sinusoidal
voltage of the PDL (Figure 4c).

2.2. The Initial Operation Conditions of the VFD’s Supply-Side Rectifier

As highlighted in the publication [2], to compensate the reactive power provided by
the LED, the conventional VFD must operate in the mode shown in Figure 4c. Under the
conventional VFD mode shown in Figure 4b, the effect on PDL reactive power will be
neutral. In describing this mathematically, the aim is to describe the capacitor voltage VC at
steady state and the angle of displacement α of the input current pulse.

The current flows through the diodes of the VFD rectifier at the time interval when the
voltage of the PDL v(t) is higher than the voltage of the capacitor of the VFD DC circuit vc.
Assuming that the capacitor capacity is large enough, the vc = const can be considered [14].

i(ωt) =
v(ωt)− vc

R
(1)

where i(t)—VFD rectifier input current, R—PDL resistance.
The charge Q applied to the capacitor of the VFD DC circuit from the PDL can be

described by the following integral:

Q =
∫ 90+α

90−α
i(ωt)dωt (2)

The charge applied to the capacitor of the VFD DC circuit from the PDL during the
half-cycle is as follows:

Q =
vc × π

Rap
(3)
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where Rap—resistance of the circuit consisting of the VFD inverter and the induction motor.
Equation (2) is integrated:

Q =
∫ 90+α

90−α
i(ωt)dωt =

∫ 90+α

90−α

v(ωt)− vc

R
dωt =

∫ 90+α

90−α

sin(ωt)− vc

R
dωt =

2
R
(cos(90− α)− vcα) (4)

where α—angle of displacement.
Since these loads are equal, the components of the above equations can be equated:

2
R

(
cos
(π

2
− α
)
− vcα

)
=

vc × π

Rap
(5)

After transforming the equation:

vc =
2
(
cos
(

π
2 − α

))
π×R
Rap

+ 2α
(6)

The obtained equation is unsolvable, so it is necessary to write another equation for the
time interval when the PDL voltage is equal to the voltage of the VFD DC circuit capacitor:

vc =
(

sin
(π

2
− α
))

(7)

The internal resistance of PDL is assumed to be 1 Ω, as such resistance of PDL was ob-
tained experimentally in the arena building described above. The experimentally obtained
resistance of the circuit consisting of the 1 kW VFD inverter and the induction motor is
equal to 80 Ω. Thus, a similar resistance ratio will remain with increasing VFD power.

Mathematically solving these equations gave the following results: vc = 278 V (idle
voltage 300 V) and α = 21◦. These data will be used to solve further equations to assess not
only the internal resistance of PDL but also the inductance of PDL.

2.3. VFD’s Supply-Side Rectifier Operating Mode as a Periodic Transient Process

To evaluate the effect of PDL internal inductance on the operation of the VFD’s supply-
side rectifier, it is necessary to calculate the transient that occurs when charging the DC
circuit capacitor begins (Figure 5a). In transient process calculations, the sinusoid of the
PDL voltage is shifted through α so that the process calculation starts from zero.
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Such a transient process for calculating i(t) is described by Duhamel’s integral (Figure 5b).
The transient function:

g(t) =
1
R

(
1− e

−R
L t
)

(8)

The voltage of the circuit:

u(t) = Um sin
(

ωt +
π

2
− ∝

)
− uc (9)
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The integral of Duhamel for the current i(t) of this circuit is written as follows:

i(t) =
∫ t

0
u
′
(τ) g(t− τ)dτ (10)

where τ is the intermediate variable.
After rearranging the equation:

g(t− τ) =
1
R

(
1− e

−R
L (t−τ)

)
(11)

u′(τ) = Umω cos
(

ωt +
π

2
− α
)

(12)

After inserting into the integral:

i(t) =
Umω

R

∫ t

0
cos
(

ωt +
π

2
− α
)(

1− e
−R
L (t−τ)

)
dτ (13)

This integral is easy to divide into two parts and integrate them separately:

i1(t) =
Umω

R

∫ t

0
cos
(

ωt +
π

2
− α
)

dτ (14)

i2(t) = −
Umω

R

∫ t

0
cos
(

ωτ +
π

2
− α
)(

e
−R
L (t−τ)

)
dτ (15)

The integration of the first integral yields the equation:

i1(t) =
Umω

R

(
sin
(

ωt +
π

2
− α
)
− sin

(π

2
− α
))

(16)

The first integral does not depend on the circuit inductance L.
The second integral is much more complex to integrate:

i2(t) = −Umω
R
∫ t

0 cos
(
ωτ + π

2 − α
)(

e
−R
L (t−τ)

)
dτ = −Umω

R e
−R
L t ∫ t

0 cos
(
ωτ + π

2 − α
)(

e
R
L τ
)

dτ

= −Umω
R e

−R
L t ∫ t

0 Re ei(ωt+ π
2 −α)

(
e

R
L τ
)

dτ = −Umω
R e

−R
L tRe

∫ t
0 e

R
L τ+i(ωt+ π

2 −α)dτ

= −Umω
R e

−R
L tRe ei( π

2 −α)
∫ t

0 eτ( R
L +iω)dτ = −Umω

R e
−R
L tei( π

2 −α)Re eτ( R
L +iω)

R
L +iω

∣∣∣∣t0
= −Umω

R e
−R
L tRe e

R
L τ+i(ωτ+ π

2 −α)

R
L +iω

∣∣∣∣t0 = −Umω
R e

−R
L tRe

e
R
L τ+i(ωτ+ π

2 −α)( R
L−iω)

( R
L +iω)( R

L−iω)

∣∣∣∣t0
= −Umω

R e
−R
L tRe

e
R
L τ cos(ωτ+ π

2 −α)+i sin(ωτ+ π
2 −α)( R

L−iω)
( R

L +iω)( R
L−iω)

∣∣∣∣t0
= −Umω

R e
−R
L t e

R
L τ(cos(ωτ+ π

2 −α) R
L +ω sin(ωτ+ π

2 −α))

( R
L )

2
+ω2

∣∣∣∣t0

(17)

Inserting the values into the integral gives the following equation:

i2(t) = −Umω
R

(cos(ωt+ π
2 −α) R

L +ω sin(ωt+ π
2 −α))

( R
L )

2
+ω2

+Umω
R e

−R
L t (cos(ωt+ π

2 −α) R
L +ω sin(ωt+ π

2 −α))

( R
L )

2
+ω2

.
(18)

The second integral obtained is quite complex, but it is this equation that shows the
influence of the PDL inductance on the VFD input current pulse displacement with respect
to the PDL sinusoidal voltage. If the PDL inductance L is close to zero, this component i2(t)
also becomes close to zero.
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The next step in the analysis of this process is the graphical generation of VFD input
current pulse curves in MATLAB and the analysis of the dependence of these curves on the
PDL internal R/L ratio.

For the analysis of the influence of the PDL internal R/L ratio, a system with parame-
ters close to those experimentally scanned in the sport arena building and described above
was simulated: a value of PLD internal R = 1 Ω, resistance of the circuit consisting of the
1 kW VFD inverter and the induction motor 80 Ω. The internal inductance of the PDL
is taken such that the inductive resistance of the PDL is less than or equal to the active
resistance, i.e., ωL < 1 Ω. The VFD input current pulse curve generated by MATLAB is
decomposed by the Fourier series to determine the angle φ1 of displacement of the first
harmonic with respect to the sinusoidal voltage PDL. According to this declination, tgφ1 is
obtained, indicating the reactive power QFund of the circuit.

i(t) = I0 + I1 sin(ωt +φ1) + I2 sin(2 ∗ωt +φ2) · · · (19)

Figure 6 shows the position of the current pulse of one half-period VFD input and
the shape of the curve calculated according to Equations (16)–(18). Calculations were
performed by varying the value of the internal inductance of the PDL. The position of the
curves shows that at the lowest PDL inductance, the impulse of the VFD input current
curve is almost symmetrical with respect to the point π/2, so tgφ and the reactive power
QFund are close to zero. This is confirmed by the calculation data in Table 1. Mathematically,
only the component i1(t) predominates in this case, and the other component i2(t) is equal
to zero. As the internal inductance of the PDL increases, tgφ increases, thus increasing
the i2(t) component and the reactive power drawn out by the VFD. This is evident from
the displacement of the VFD input current pulses shown in Figure 6 with respect to the
PDL voltage. At the maximum values of the internal inductance of the PDL, tgφ reaches
value 0.32, which means that the reactive power provided or drawn out by the VFD is
about one-third of the active power of the VFD.

QFund = 0.32 PFund (20)
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Table 1. Electrical parameters at the point of connection of the VFD to the PDL and their dependence
on the internal R/ωL ratio of the PDL.

Test
Number ωL, Ω α, ◦ Uc, V P, W QShunt, var φ, ◦ tgφ R/ωL

1 0.1 22 278 968 5 −5.5 −0.097 10.0

2 0.2 23 276 954 10 −8.5 −0.15 5.0

3 0.3 24 275 940 16 −10.6 −0.18 3.3

4 0.4 24 274 935 17 −12.0 −0.21 2.5

5 0.5 25 272 925 22 −13.4 −0.24 2.0

6 0.6 26 269 910 29 −14.6 −0.26 1.7

7 0.7 27 267 894 36 −15.7 −0.28 1.4

8 0.8 27 267 890 38 −16.3 −0.29 1.3

9 0.9 28 266 885 40 −16.9 −0.30 1.1

10 1 28 265 878 43 −17.8 −0.32 1.0

Another component that can affect the reactive power provided by VFD is the THD
reduction inductive choke. The inductive power of this choke is calculated according to the
following formula:

Qshunt = I2ωL (21)

It is seen that the reactive power of this choke accounts for a small fraction of the
reactive power provided or drawn out by the VFD. Thus, using a low-power choke in the
input of a series-connected VFD yields a much higher reactive power than traditionally
connecting a choke in parallel at the point of connection of the VFD to the PDL. Reactive
power compensation by supplementing the VFD DC circuit with electrolytic capacitors is a
significantly better method in terms of the price, weight and cost of non-ferrous metals.

2.4. Calculation of DC Circuit Capacitance

The previous calculations were made keeping the capacitor capacity infinite. In a real
VFD, which will perform reactive power compensation function in addition to the main
functions, real capacity calculations are required. The voltage Uc in the capacitor of the
VFD DC circuit can vary only in the small range of ∆Uc = 1 ÷ 3%. The equations below are
based on the fact that the time interval during which the VFD inverter and the induction
motor discharges the capacitor is about ∆t = 0.007 s.

∆Q = C∆Uc (22)

∆Q = i× ∆t =
P√
2

∆t (23)

Comparing the equations gives:

C =
P× ∆t√

2×U × ∆Uc
(24)

The following equation combines the internal resistance of the PDL and the capacitance
of the VFD DC circuit. The capacitor must not be fully discharged until the PDL voltage is
higher than the VFD DC circuit voltage, thus creating an inequality:

τ = RC ≥ tCharge (25)

The pulse displacement angle α of the VFD input current varies within 20 ÷ 30◦, so
tCharge = 2α =3.3 ms. Assuming a variation of ∆Uc of 1 ÷ 3%, it is calculated that the



Appl. Sci. 2022, 12, 5955 10 of 24

capacity of a 1 kW VFD DC circuit should be between 5500 and 1830 µF. Calculating
the time constant TRC at the PDL resistance R = 1 Ω, it is obtained that it varies within
0.0018 s ÷ 0.0055 s. This time constant TRC value is close to the required value.

The calculated VFD DC circuit capacitance values are indicative and will be specified
in further experimental studies.

3. Experimental Analysis of the Reactive Power in Nowadays Power
Distribution Lines
3.1. Experimental Analysis of the Reactive Power in PDL Loaded by LED Lighting Devices

In order to investigate the reactive power provided by LED light devices, an exper-
iment was performed with the most commonly used LED light bulbs on the Lithuanian
market. Different color temperature and different power LED light bulbs were selected.
The effect of not only individual LED light bulbs but also their groups on the reactive
power of PDL was investigated. The experimental analysis of the reactive power in the
LED lighting devices loaded PDL was performed with a METREL MI 2892 power quality
analyzer [2].

The experimental setup, for the reactive power provided or drawn out by diode
rectifier supply-side device analysis, consists of (Figure A1):

1. Power distribution line connection;
2. METREL MI 2892 power quality analyzer;
3. 806 lm 2700 K LED light bulb;
4. 1850 lm 4000 K LED light bulb;
5. 1500 lm 3000 K LED light bulb;
6. 1350 lm 3000 K LED light bulb;
7. 1350 lm 3000 K LED light bulb;
8. 1055 lm 3000 K.

A photograph of the experimental setup is presented in Figure A2.
The following PDL parameters were investigated:

• PC—combined active power;
• NC—combined reactive power;
• SC—combined apparent power;
• PF—combined effective power factor;
• PFund—fundamental harmonic active power;
• QVFund—fundamental harmonic reactive power;
• SVFund—fundamental harmonic apparent power;
• PFVFund—fundamental harmonic displacement factor.

The results of the experimental study are presented in Tables 2 and 3 and Figures A3–A6.

Table 2. The electrical parameters of the LED light bulbs at the point of connection to the PDL.

No. LED Bulb Type PC, W NC, var SC, VA PF QVFund,
var

SVFund,
VA tanφFund PFVFund

1 7 W 806 lm 2700 K 5.18 −14.5 15.4 0.966 −1.4 5.55 −0.277 0.952

2 15 W 1850 lm 4000 K 15.9 −26.12 30.6 0.912 −7.27 17.8 −0.456 0.912

3 15 W 1500 lm 3000 K 13.32 −23.3 26.8 0.867 −7.7 15.5 −0.579 0.867

4 15 W 1350 lm 3000 K 12.6 −27.05 29.8 0.945 −4.43 13.6 −0.353 0.943

The results of this experiment confirm the measurement results reported in publica-
tions [15,16]. Despite its excellent lighting properties, LED light devices provide leading
reactive power. The total harmonic distortion of the currents taken from their PDL is
very high.
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Table 3. The electrical parameters of the LED light bulbs combination connected to the PDL.

No. No. of LED Bulb
Connected PC, W NC, var SC, VA PF QVFund,

var
SVFund,

VA tanφFund PFVFund

1 and 2 21.9 −36.7 42.8 0.937 −8.307 23.8 −0.378 0.937

1 and 2 and 3 36 −56.6 67 0.921 −15.5 39.8 −0.43 0.921

1 and 2 and 3 and 4 49.7 −72.7 80.08 0.938 −18.7 53.9 −0.367 0.938

3.2. Experimental Analysis of the Reactive Power in PDL Loaded by Diode Rectifier
Supply-Side Devices

A photograph of the experimental setup is presented in Figure A7.
The experimental setup, for the reactive power provided or drawn out by diode

rectifier supply-side device analysis, consists of (Figure 7):

1. PDL connection switcher;
2. METREL MI 2892 power quality analyzer;
3. Inductive reactor;
4. Diode rectifier;
5. Capacitors bank;
6. DC circuit voltage measuring device;
7. Ohmic load.
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diode rectifier supply-side device analysis.

The internal parameters of PDL the experimental equipment was connected R = 0.82 Ω,
ωL = 0.2 Ω.

The experimentally taken results of power analysis are presented in Figures 8–10.
The next step of the experiment was performed by keeping the power constant of the

single-phase diode rectifier supply-side device and connecting additional inductive chokes
ωLPDL to the PDL circuit. The aim was to increase the reactive power consumption of this
diode rectifier supply-side device.

The diagrams in Figures 10 and 11 show that tgφ reaches 0.25, which confirms the
theoretical calculations presented in Table 1 test number 7. It can also be seen that the
reactive power changes the character transition from leading to lagging at a DC circuit
capacity of 1800 ÷ 4000 µF/kW. This experimental point also confirms the theoretical
assumptions. The tgφ as a function of the DC circuit capacity at different PDL internal
resistances and inductances shows that at higher PDL internal inductances, the reactive
power of the diode rectifier supply-side device shifts to lagging to a lower DC circuit
capacity. The diagrams in Figure 10 correspond in nature to the diagrams in Figure 6 based
on theoretical calculations.
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As the internal inductance of the PDL increases, the pulse max value of the current
flowing to the diode rectifier supply-side device shifts to the lagging power consumption
side (Figure 12).

The inductance and resistance of the power distribution lines with the capacitance of
the VFD DC circuit form a corresponding resonant frequency with a sequential oscillating
circuit. When the instantaneous value of the voltage in the power distribution lines
becomes higher than the voltage in the capacitor of the DC circuit, the capacitor charges.
Depending on the value of the capacitance in the DC circuit, and the value of the resistance
and inductance of the power distribution lines, the charging of the capacitor may occur
aperiodic and periodic, with fading oscillations during charging. This is the situation we
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see in the current waveform at C = 23 µF (Figure 11). With a larger capacity of the DC
circuit, charging takes place aperiodically, and the oscillations do not occur, as we see in
other current waveforms.
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3.3. Experimental Analysis of the Reactive Power in PDL Loaded by LED Light and Diode Rectifier
Supply-Side Devices

A photograph of the experimental setup is presented in Figure A8.
The experimental setup, for the reactive power provided or drawn out by LED light

and diode rectifier supply-side devices analysis, consists of (Figure 13):

1. PDL connection switcher;
2. METREL MI 2892 power quality analyzer;
3. Diode rectifier;
4. Capacitors bank;
5. DC circuit voltage measuring device;
6. Ohmic load
7. 18 W LED light bulb;
8. 15 W LED light bulb;
9. 15 W LED light bulb;
10. 15 WK LED light bulb.

The experimentally taken results of power analysis are presented in Figure 14.
As can be seen from the diagrams in Figure 14, the reactive power of the PDL depends

on the size of the DC circuit capacity of the diode rectifier supply-side device and the
number of LED devices connected. By varying the DC circuit capacity value, the diode
rectifier supply-side device can fully compensate the reactive power provided by the LED.
In this particular experimental case, the size of the capacitors connected in the DC circuit
was sufficient to compensate the reactive power provided by the two LEDs (32 W). This is
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shown in the diagrams in Figure 14a,b. In this case, for two LEDs, increasing the capacity
of the DC circuit, the reactive power changed from negative to positive, and there is a point
in the diagram where the reactive power is zero and the power factor is equal to one. The
phase diagrams in Figure 14a,b show that the current leads against the PDL voltage at the
minimum capacitor capacity used (CDC = 23.5 µF). It can also be seen that the current lags
behind the PDL voltage at the maximum capacitor capacity (CDC = 1123 µF) used in the
experiment. The diagrams in Figure 14c,d show that after connecting the four LED devices
(62 W), the maximum DC circuit capacitance used in the experiment is not sufficient to
compensate for the reactive power provided by the LEDs. The reactive power remains
negative, and the current leads against the PDL voltage.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25 
 

 

Figure 12. Time and phase diagrams of the current at the point of connection of single-phase diode 

rectifier supply-side device to the PDL in the case of different PDL internal resistance and inductivity. 

3.3. Experimental Analysis of the Reactive Power in PDL Loaded by LED Light and Diode Recti-

fier Supply-Side Devices 

A photograph of the experimental setup is presented in Figure A8. 

The experimental setup, for the reactive power provided or drawn out by LED light 

and diode rectifier supply-side devices analysis, consists of (Figure 13): 

1. PDL connection switcher; 

2. METREL MI 2892 power quality analyzer; 

3. Diode rectifier; 

4. Capacitors bank; 

5. DC circuit voltage measuring device; 

6. Ohmic load 

7. 18 W LED light bulb; 

8. 15 W LED light bulb; 

9. 15 W LED light bulb; 

10. 15 WK LED light bulb. 

 

Figure 13. Circuit diagram of experimental setup for the reactive power provided or drawn out by 

LED light and diode rectifier supply-side devices analysis. 

The experimentally taken results of power analysis are presented in Figure 14. 

Figure 13. Circuit diagram of experimental setup for the reactive power provided or drawn out by
LED light and diode rectifier supply-side devices analysis.

3.4. Experimental Analysis of the Reactive Power in PDL Loaded by Diode Rectifier Supply-Side
Variable Frequency Drive

A photograph of the experimental setup is presented in Figure A9.
The experimental setup, for the reactive power provided or drawn out by diode

rectifier supply-side device analysis, consists of (Figure 15):

1. PDL connection switcher;
2. METREL MI 2892 power quality analyzer;
3. Siemens Micromaster 420 variable frequency drive;
4. Induction motor connected to VFD;
5. Mechanically connected to induction motor DC generator;
6. Ammeter for DC generator load current measurement;
7. DC generator loading lamp bulbs;

The aim of this experimental study was to determine the value and type of the
reactive power provided or drawn out by a single-phase diode rectifier supply-side VFD. A
laboratory workbench with the components described above was used for this purpose. As
can be seen from the diagrams in Figure 16, this standard VFD provides leading reactive
power over the entire frequency range of the induction motor. It can be argued that
standard VFDs, like previously studied LED devices, are the leading sources of reactive
power. This study also confirms the data presented in the Section 1, which were obtained
experimentally in the sports arena.
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4. Application of Single-Phase Supply AC-DC-AC VFD for Power Factor
Improvement in LED Lighting Devices Loaded PDL

A photograph of the experimental setup is presented in Figure A10.
The experimental setup, for the reactive power provided or drawn out by diode

rectifier supply-side device analysis, consists of (Figure 17):

1. PDL connection switcher;
2. METREL MI 2892 power quality analyzer;
3. SIMOVERT P 6SE21 variable frequency drive;
4. Induction motor powered by the SIMOVERT P 6SE21 VFD;
5. Mechanically connected to induction motor DC generator;
6. Ammeter for DC generator load current measurement;
7. DC generator loading resistors;
8. 18 W LED light bulb;
9. 15 W LED light bulb;
10. 7 W LED light bulb;
11. 15 W LED light bulb;
12. 15 W LED light bulb;
13. DC circuit voltage measuring device;
14. Capacitors bank;
15. Resistor for capacitors discharging.

4.1. The Reactive Power in PDL Loaded by SIMOVERT P 6SE21 VFD

The SIMOVERT P 6SE21 VFD is factory-fitted with a relatively high-capacity DC
circuit capacitor—470 µF. Therefore, this VFD, unlike the VFDs studied in Section 3.4 and
presented in [4], provides leading reactive power only at the maximum high induction
motor voltage frequency (67–80 Hz). However, by connecting additional capacitors to the
SIMOVERT P 6SE21VFD DC circuit, the reactive power provided or drawn out by the VFD
becomes lagging over the entire frequency range of the induction motor voltage. This is
clearly seen in the diagrams in Figure 18a.

The results of the experiment show that with natural PDL internal resistance and
inductance and a factory-fitted DC circuit capacitor, the VFD consumes lagging active
power only up to a certain load level. By increasing the load on the VFD above this level,
the VFD begins to provide leading reactive power. In order for the VFD to remain a
consumer of lagging reactive power and to be able to compensate the leading reactive
power provided by the LED, the capacitance of the DC circuit capacitors must be increased.
In addition, an experiment with SIMOVERT P 6SE21VFD showed that the additional
capacitors in the DC circuit have no real effect on the active power.
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4.2. Compensation of Reactive Power Provided by LED Light Devices by SIMOVERT P 6SE21
VFD Fitted by Additional Capacitance in DC Circuit

This experimental study was performed to test the ability of SIMOVERT P 6SE21VFD
to compensate for the reactive power provided by LED light devices. According to the study
described in Section 3.1, all experimentally investigated LED light devices provide leading
reactive power. This is confirmed by the data published in [2]. According to the results
of the study described in Section 4.1, additional capacitors in the VFD DC circuit convert
the VFD into a lagging reactive power source. It was assumed that the reactive power
provided by the LED light devices connected to the PDL would have to be compensated
by the aforementioned VFD. This assumption was tested experimentally. The study was
performed by connecting five different power and color temperature LED light devices and
SIMOVERT P 6SE21VFD to PDL. Data were collected at the point of connection of these
devices to the PDL. The results of the experimental study are presented in Figure 19.
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As can be seen from the results of the experimental study in Figure 19a, using the
SIMOVERT P 6SE21 VFD only with a factory-fitted 470 mF capacitor, we have the leading
reactive power over the entire frequency range of the induction motor voltage. With the
factory-fitted 470 mF capacitor, the SIMOVERT P 6SE21 VFD does not compensate the
reactive power provided by the LED. By connecting additional capacitors in the VFD DC
circuit and increasing the capacity to 705 µF, the SIMOVERT P 6SE21 VFD becomes able to
compensate the reactive power provided by the LED in the frequency range between 30
and 70 Hz. However, it is not capable of the remaining frequency range. By connecting
additional capacitors to the VFD DC circuit and increasing the capacity to 815 µF, the
SIMOVERT P 6SE21 VFD becomes able to compensate the reactive power provided by the
LED over the entire voltage frequency range of the induction motor.

It is also found that the additional capacitors in the SIMOVERT P 6SE21 VFD DC
circuit do not affect the active power. As can be seen from the data in Figures 18b and 19b,
the active power remains the same at all capacitances of the DC circuit of the VFD, and the
VFD acquires the ability to operate as a reactive power compensator.

5. Discussion

The need to find ways to compensate the leading reactive power provided by LED
light devices has arisen due to the problems created by these light devices being connected
to the conventional type of power distribution lines. These problems are due to the
overcompensation of reactive power when LED lighting devices and capacitor-based
compensating devices interact. Consumers pay fines to electricity supply companies for
this overcompensation. Therefore, ways have been sought to compensate this reactive
power with the available means and with the least possible investment. One of the easily
accessible means is a large number of VFDs connected to the same power distribution lines
as LEDs.

In this study, it has been shown mathematically and experimentally that most diode
rectifier supply-side devices, including conventional AC-DC-AC VFDs, provide leading
reactive power. It has also been shown mathematically and experimentally that by varying
the capacitance of DC circuit capacitors, the value and type of reactive power can be
varied—transfer from leading reactive power to lagging. In this way, these conventional
VFDs acquire the ability not only to perform their main functions—motor powering and
speed control, but also to perform the functions of a reactive power compensator.

In this study, it has been mathematically shown that the ability of a VFD to consume
reactive power is related to the interaction between the capacitance of the VFD DC circuit
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and the internal inductance of the power distribution lines, or to the inductance of the
additional choke. As a result of this interaction, the VFD consumes many times more
reactive power compared to the reactivity of the inductance of the power distribution lines
or the inductance of the auxiliary choke.

The experiment connecting a group of LED light devices and conventional VFD with
additional DC circuit capacitors to the same power distribution line showed that such VFD
can compensate the reactive power provided by LEDs.

Despite the advantages listed, this method of reactive power compensation has a
number of practical limitations. The control of power factor is not continuous but grad-
ual. The method requires access to the intermediate DC circuit of the VFD. Not all VFD
manufacturers allow it, especially during the warranty period.

Despite the relatively high power of LED loads, only single-phase power distribution
lines and single-phase supply side VFDs are considered in this study. This is due to the
fact that most of the VFDs installed in the observed sports arena are single-phase. They are
used to power and control the motors of pumps, fans and other engineering equipment.
Therefore, a single-phase supply VFD is investigated in this study. The application of
three-phase VFD to reactive power compensation is planned in further studies.

The aim of this study is to show a possible way to compensate the reactive power
of LEDs. Therefore, in these experiments, additional capacitors in the VFD DC circuit
were connected manually using circuit breakers. Using such compensation in practice, an
additional unit with capacitors, their switching electronic switches and a controller should
be constructed. It will be the subject of future work.
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Appendix A

Matlab codes for calculating displacement using Fourier series.
%calculation rectifier input current
clear all;
%initial parameters: angle, network resistance, resistance-inductance relatioship
fi = 27; R = 1; Rapk = 80; t = 0; Um = 300; w = 314; L = 0.0032/10 * 10;g = R/L;Q = 0;
gal = 100;
%circle of current calculation according Duhamel integral
for kam = 0:gal
t = kam * 0.02/360; dt = 0.02/360;
%calculation current value according derived equations
i1 = (sin((w * t + 90/57.2 − fi/57.2)) − sin((90/57.2 − fi/57.2)))/w;
i2 = (cos(w * t + 90/57.2 − fi/57.2) * g + sin(w * t + 90/57.2 − fi/57.2) * w)/(gˆ2 + wˆ2);
i3 = −exp(−g * t) * (cos(90/57.2 − fi/57.2) * g + sin(90/57.2 − fi/57.2) * w)/(gˆ2 + wˆ2);
it = Um * w * (i1-i2-i3)/(R);
% if current less zero canceling calculation
if it < 0;
it = 0;
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end;
srov(kam + 1) = it;
%calculation electric charge of input current
Q = Q + it * dt;
end
Qik = Q
Uc = Um * sin((90/57.2 − fi/57.2));
%calculation electric charge of output current
Qisk = Uc/Rapk * 0.01
Uc
P = Ucˆ2/Rapk
%Full period data formation from calculated current and zeros
srove(1:90 − fi) = 0;
srove1 = [srove srov];
ik = max(size(srove1));
srove1(ik + 1:180) = 0;
%current plol
plot(srove1)
%current mean square value
kvadrsr = sum(srove1.ˆ2) * 2/360;
kvadr = sqrt(kvadrsr);
Reakt = kvadrˆ2 * w * L
% Fourier series calculation; x-one current period input data; num-number of harmonic;
% a first colume-harmonic amplitude; a second colume-harmonic phases.
num = 11;
x = [srove1 − srove1];
n = max(size(x));
eil = linspace(2 * pi/n,2 * pi,n);
har = round(n)/2;
a(1,1) = sum(x)/n;a(1,2) = 0;b(1) = a(1,1);
for i = 1:num;
tarp = x.* sin(i * eil);
tarp1 = x.*cos(i * eil);
sk = sum(tarp) * 2/n;
is = sum(tarp1) * 2/n;
a(i + 1,1) = sqrt((sk * sk)+(is * is));b(i + 1) = a(i + 1,1);
a(i + 1,2) = atan(is/sk);
end;
knes = sqrt(sum(b(3:num + 1).* b(3:num + 1))) * 100/b(2);
%output parameters – first harmonic phase displacement angle(degrees) and tan of angle
poslinkis = a(2,2) * 57.1
tangentas = tan(a(2,2))
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