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Abstract: Minutiae feature extraction and matching are not only two crucial tasks for identifying
fingerprints, but also play an eminent role as core components of automated fingerprint recognition
(AFR) systems, which first focus primarily on the identification and description of the salient minutiae
points that impart individuality to each fingerprint and differentiate one fingerprint from another, and
then matching their relative placement in a candidate fingerprint and previously stored fingerprint
templates. In this paper, an automated minutiae extraction and matching framework is presented for
identification and verification purposes, in which an adaptive scale-invariant feature transform (SIFT)
detector is applied to high-contrast fingerprints preprocessed by means of denoising, binarization,
thinning, dilation and enhancement to improve the quality of latent fingerprints. As a result, an
optimized set of highly-reliable salient points discriminating fingerprint minutiae is identified and
described accurately and quickly. Then, the SIFT descriptors of the local key-points in a given
fingerprint are matched with those of the stored templates using a brute force algorithm, by assigning
a score for each match based on the Euclidean distance between the SIFT descriptors of the two
matched keypoints. Finally, a postprocessing dual-threshold filter is adaptively applied, which can
potentially eliminate almost all the false matches, while discarding very few correct matches (less than
4%). The experimental evaluations on publicly available low-quality FVC2004 fingerprint datasets
demonstrate that the proposed framework delivers comparable or superior performance to several
state-of-the-art methods, achieving an average equal error rate (EER) value of 2.01%.

Keywords: fingerprint minutiae; SIFT feature detection; feature matching; FVC2004 database; EER

1. Introduction

Biometrics is often identified as the science of recognizing an individual through his
physical/behavioral traits in addition to physiological characteristics. The characteristics
that can be used by biometric systems typically involve fingerprint recognition, facial
identification, voice recognition and handwriting recognition systems. Among all biometric
techniques, fingerprint recognition is the most widely used for personal identification
systems, due to its relative permanence and uniqueness [1]. Due to the relatively high
level of fingerprint accuracy among all the biometric traits, recent years have witnessed
a fairly substantial upswing in the use of many digital fingerprint reading devices in our
day-to-day lives. However, these modern devices are being used increasingly for a wide
variety of purposes, e.g., for the attendance of the staff before and after their work as a
login password in computers or the key to a locker, etc. Fingerprints are thought to be
excellent individualizing evidence because they are permanent from birth to death and
very unique for each individual (i.e., the probability of two fingerprints being the same is
64 billion to 1.2, according to mathematical assumptions). Furthermore, they are easy to
verify and leave marks on every object a person touches. This makes fingerprint-based
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biometric security devices highly popular in sensitive high-security areas such as banks,
correctional facilities, jewellers, prisons and military establishments [2].

Feature extraction is basically a dimensionality reduction process, whose ultimate goal
is to gain the most relevant information from the original data in a high-dimensional space
and represent that information in a lower dimensional space. When the input data to an
algorithm are too large to be processed, and it is suspected to be excrescent (many data,
but not much information), then the input data should be converted into a reduced set of
representative features (also called feature vector). In other words, through the process
of extracting features, the input high-dimensional data are converted to a small set of
low-dimensional features to identify useful information [3]. If the extracted features are
carefully selected, it is highly expected that the pertinent information will be extracted
from the input data by the reduced feature set, so as to effectively perform a given task
by utilizing this reduced representation rather than the full-size input data. A fingerprint
recognition system is an automatic pattern recognition system that typically consists of three
fundamental stages: image pre-processing, feature extraction and fingerprint matching [4].
A good feature set contains rich information that can effectively distinguish an object from
other objects (i.e., being able to identify an object). At this stage, it is necessary as much
as possible to prevent the creation of different feature codes for the objects in the same
class [5]. Latent fingerprints are merely partial impressions of the finger’s ridge pattern
inadvertently left after fingertips contact a surface, which involve ridges and valleys. In a
fingerprint, ridges are presented as black lines, whereas the valleys are presented as a white
area among the ridges [6]. Fingerprint features can be broadly divided into two categories:

1. Global features: These features form a special pattern of ridge and valleys, called
singularities or Singular Point (SP), and they can further be divided into three types:
loop, delta, and whorl. The significant points are the core and the delta. The core
is defined as the most points on the innermost ridges, and the delta is defined as
the central point where three different trend flows converge (see Figure 1a). It can
be argued that these features provide the most useful and crucial information for
fingerprint classification, fingerprint matching, and fingerprint alignment [7,8].

2. Local features: At the local level, ridge characteristics, collectively called minutia,
represent the most widely used features to match fingerprints. There are several
types of minutiae, but for practical purposes, just two types of minutiae [9,10] are
considered as the two most prominent ridge characteristics: ridge ending (point where
ridge ends abruptly) and ridge bifurcation (point where a ridge forks or diverges into
branch ridges), as shown in Figure 1b,c.

The primary objective of this work is the development of a fully automated minutiae
extraction and matching framework for fingerprint identification and verification purposes,
in which an adaptive SIFT detector is applied to high-contrast fingerprints preprocessed
by means of denoising, binarization, thinning, dilation and enhancement to improve
the quality of latent fingerprints. As a result, an optimized set of highly-reliable salient
points discriminating fingerprint minutiae is identified. The SIFT descriptors of the local
keypoints in a given fingerprint are then matched with those of the stored templates using
a brute force algorithm. Finally, a dual-threshold filter is adaptively applied, which can
potentially eliminate almost all the false matches, while losing less than 4% of correct
matches. The remainder of the paper is organized as follows: in Section 2, we briefly
review closely related prior work on feature extraction and matching algorithms developed
for fingerprint recognition. The details of the proposed methodology for fingerprint
minutiae extraction and matching and its components and stages are elaborately described
in Section 3. Section 4 provides the experimental results and discusses their implications.
Finally, concluding remarks and avenues for future research are drawn in Section 5.
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(a) (c)(b)

Ridge ending Bifurcation 

Figure 1. Typical Minutiae structures: (a) core and delta singularities; (b) ridge ending; and (c) ridge
bifurcation.

2. Prior Work

In the fingerprint recognition literature, a variety of feature extraction algorithms have
been proposed for identifying remarkable features. For example, in [11], Bader and Sagheer
developed two computer vision algorithms (i.e., FAST and Harris) to extract features (i.e.,
corner points) from the finger vein image, where the fingerprint patterns are matched based
on the differences between corners represented in the form of points using the Manhattan
distance. The false match rate (FMR) and false non-match rate (FNMR) are then minimized
to get the optimum threshold that triggers the final decision. The results of the study
confirmed that the use of two adaptive algorithms concurrently reduces the error rate
and helps to build a reliable system of finger vein identification. In [12], an improved
Harris–SIFT image matching algorithm is proposed. First, the feature points of the image
are extracted by the Harris corner detection operator. Then, the 28-dimensional increasing
homocentric square window is applied to describe the neighborhood information of key
feature points. Euclidean distance is typically employed as a similarity measure function in
the matching process. Finally, simulation results demonstrated the validity of the improved
algorithm, igniting a new thought for the research into the image matching.

The fingerprint feature extraction process aims at finding various minutiae points
in a fingerprint to use them further for fingerprint matching. However, the minutiae
extraction process can be difficult and not accurate because a fingerprint image may be
contaminated due to noise present in the fingerprint image. This results in a lot of minutiae
point candidates. Thus, an optimal preprocessing technique is needed to minimize the
number of key minutiae points and to get only those key points that can be further used
to match the fingerprint [13]. In this direction, recently a study conducted by Singh and
Kaurr [14] proposed a methodology for fingerprint minutia extraction using morphological
operations, where the number of minutiae points is calculated by using three different
methods, and the result is then analyzed. The original image is compared against two
preprocessed images; one is obtained by using a dilation operation and the other is obtained
by first applying hole filling, followed by a dilation.

In addition, Singh et al. [15] proposed a new fingerprint feature detection algorithm,
where it has been found that the presence of artifacts or noise in fingerprint images leads to
a lot of spurious minutiae. To tackle this problem, a good strategy for feature extraction
has been devised to extract the valid minutiae points in fingerprints and at the same
time avoid extracting spurious minutiae points. The presented method could effectively
perform the template matching [16] to find out bifurcation and termination of ridges. A
smoothing algorithm is developed to find ridges in the fingerprint images with the help
of eight different masks. It is a process of making a binary image of ridges from the
grayscale fingerprint image. The experimental results verified the validity and accuracy of
the algorithm in terms of genuine acceptance rate (GAR), false acceptance rate (FAR), and
false rejection rate (FRR).



Appl. Sci. 2022, 12, 6122 4 of 17

Furthermore, in [17], an algorithm based on Harris corner detector was proposed for
extracting fingerprint minutiae. At the beginning, the Harris corner detector is applied
to detect minutiae points and extract high curvature dots from the enhanced fingerprint
image. In the later postprocessing stage, false or spurious minutiae are removed, based
on the space distribution of minutiae. The type of minutiae is judged using a neighboring
gray level information. The exact orientation of minutiae is decided by initial orientation
and style. Compared to typical minutiae extraction algorithms, the presented approach
needs to not convert the fingerprint image to a binary image and submit the resultant
binary image to a thinning process. Instead, the minutiae are directly extracted from the
gray-level fingerprint image. This can reduce the processing time and promote efficiency.
Experimental results on the FVC2002 latent fingerprint database demonstrated that the
presented method is not only fast and fairly reliable, but also fit to use in reality.

In [18], a fingerprint-based authentication approach introduced, by means of finger-
print enhancement, feature extraction and matching techniques. Firstly, the contrast of the
small tiles existing in the fingerprint image is enhanced by using an adaptive variant of
histogram equalization called Contrast Limited Adaptive Histogram Equalization (CLAHE)
along with a combination of Gabor filters [19] and fast Fourier transform (FFT). Then, the
improved fingerprint is authenticated by picking a small amount of information from some
local interest points—so-called ’minutiae features’. In order to render significantly im-
proved feature detection results, a hybrid combination of SURF and Harris corner detection
algorithms is applied to the thinned binary fingerprint image. For fingerprint matching,
the Euclidean Distance between the SURF-Harris descriptors of two feature points is used
as the similarity criterion of the two matched fingerprints. To automatically remove false
matches and incorrect match points, the authors applied an iterative algorithm called
RANdom SAmple Consensus (RANSAC). The extensive experiments conducted on the two
publicly accessible FVC2002 DB1 and FVC2000 DB1 fingerprint databases demonstrated
the efficiency and effectiveness of the proposed method in achieving average recognition
rates of 95% and 92.5% for FVC2002 DB1 and FVC2000 DB1 databases, respectively.

3. Proposed Methodology

In this section, the proposed minutiae-based feature extraction and matching frame-
work for robust fingerprint recognition is presented, detailing its major modules, including
image preprocessing, minutiae feature extraction, and template matching. A block diagram
depicting various modules and workflow within the presented framework is shown in
Figure 2. Minutiae points are local descriptive features of a fingerprint image, which are
heavily relied upon to match fingerprints accurately. These minutiae points are necessary
and sufficient to determine the uniqueness of a fingerprint image. A good-quality finger-
print image typically has 25 to 80 minutiae, depending on the resolution of the fingerprint
scanners and the finger position on the sensor [20].

3.1. Image Preprocessing

In fingerprint recognition, the performance of fingerprint minutiae extraction heavily
depends upon the quality of the input fingerprint image. Typical preprocessing steps prior
to fingerprint minutiae extraction involve binarization, noise removal, and fingerprint
segmentation [20,21]. From a fingerprint image, good minutiae points can precisely be
located from the thinned ridges. However, in practice, it is not yet possible to extract good
minutiae points accurately from a fingerprint image, since a significant percentage of an
acquired fingerprint image is of poor-quality due to several factors, including acquisition
device conditions (e.g., dirtiness, humidity, pattern location, and orientation), individual
artifacts (e.g., skin environment, age, skin tensility, and pressure), etc.
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Figure 2. A functional block diagram of the automated fingerprint recognizer.

Moreover, the ridge structures in very low quality fingerprint image are completely
corrupted or not always well-defined; therefore, they can not be correctly detected. This
leads to a significant number of spurious minutiae and, at the same time, a large percentage
of genuine minutiae may be ignored. Therefore, fingerprint image preprocessing for
contrast enhancement and illumination correction is a crucial step in any scheme for
automated minutiae extraction and matching [22]. In this work, the fingerprint image
preprocessing stage that primarily aims at improving minutiae features in the fingerprint
image through noise removal and contrast enhancement to reliably extract the minutiae
features and potentially minimize the chances of false or spurious minutiae to be detected
in the highly corrupted regions [1]. The procedure for image preprocessing is elucidated in
some detail in the following subsections below.

3.1.1. Fingerprint Enhancement Using Contextual Filtering

In this work, an enhancement technique based on contextual iterative filters is designed
for preprocessing the fingerprint images, which proceeds in four distinct steps: (i) ROI
estimation (ii) ridge-visibility enhancement, (iii) ridge-pattern enhancement, and (iv) image
binarization. In the first step, an algorithm based on the local standard deviation [23,24]
is applied to the input fingerprint image for evaluating the local variance of the image
intensity, followed by a thresholding operation for removing unwanted finger shadows.
Finally, a mask binary image that reliably identifies the fingerprint ROI is obtained. The
second step is performed based on a Homomorphic filtering technique, in which the
background image BI is first estimated by applying a morphological opening operation
with a mask s to the input image I. Then, the image RI representing the fingerprint ridges
can readily be obtained as: IR = I − BI . In order to effectively suppress the noise present
in the image, a nonlinear equalization is preformed by applying the logarithm to the
ridge image IR, yielding an improved image IL(x, y) = log(IR(x, y)). In the third step,
the enhancement of the ridge pattern is performed, similarly to that described in [23], by
computing ridge frequency and orientation maps, followed by the application of a bank
of Gabor filters optimally tuned to the computed local ridge maps that result in an image
IE containing a minimum amount of background texture details [25]. The fourth and last
step in the preprocessing stage is an adaptive image binarization process, which permits
effectively reducing the noise in the edges of the ridge pattern described in the image IE,
and reliably estimating the potential minutiae points. For obtaining a uniform contrast
between ridges and valleys, the logarithm of IE is taken as: I(x, y) = log(IE(x, y)). After
establishing the histogram of the image II , a binary image of the ridge pattern IB is obtained
as follows:

IB(x, y) =

0 if II(x, y) ≤ arg max
i

(H(i))

1 otherwise
(1)
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where H is the histogram of the image II . A simplified outline of fingerprint image
enhancement based on contextual filters is presented in Figure 3.

ROI 

estimation

Ridge-visibility 

enhancement

Ridge-pattern 

enhancement 

Image

binarization

Figure 3. Simplified outline of fingerprint enhancement based on contextual filters.

Additionally, some morphological operations (e.g., erosion and closing) are performed
to fill out the holes by smoothening the ridges’ surface in the fingerprint image and merging
the narrow gaps among the fingerprint ridges [1].

3.1.2. Thinning and Dilation

Erosion (or thinning) and dilation (or thickening) are two morphological operations
applied to the fingerprint binary image. As the fingerprint ridges are relatively thick, it
is desirable for subsequent minutiae feature extraction and analysis to thin the ridges,
so that each is a single pixel thick [1]. The thinning algorithm essentially consists of
removing contour points of connected components in a fingerprint image to produce their
skeleton [26,27]. In order to extract a skeleton of the fingerprint, a skeletonization process is
performed by applying the Zhang–Suen thinning algorithm developed by Zhang and Suen
in [28] to the binary image. The Zhang–Suen thinning algorithm is a simple and efficient
technique and is one of the most popular adaptive thinning algorithms in the literature,
which maintains a 3× 3 sized block and consists of two sub-iterations. It is an iterative
algorithm that computes the skeleton of an image by removing all the contour points of the
image except those belonging to the skeleton [29].

More formally, suppose black pixels are represented by 1’s and white pixels are
represented by 0s. The algorithm finds connected components in a binary image by
working on every dark pixel (e.g., p1) that can have eight neighbors (see Figure 4). To
preserve the connectivity of the skeleton, each iteration is further divided into two sub-
iterations. In the first subiteration, the contour point p1 is removed from the digital pattern,
if the following conditions are held:

2 ≤ N(p1) ≤ 6, M(p1) = 1, p2× p4× p6 = 0, p4× p6× p8 = 0.

where N(p1) and M(p1) denote the number of 0 to 1 transitions from p2 to p9 in a clockwise
direction and the number of non-zero neighbors of p1, respectively. That is, N(p1) =
p2 + p3 + . . . + p8 + p9.
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P9 P2 P3

P8 P1 P4

P7 P6 P5

Figure 4. A 3× 3 sized block.

In the second subiteration, the contour point p1 is removed from the digital pattern, if
the following conditions are met:

2 ≤ N(p1) ≤ 6, M(p1) = 1, p2× p4× p8 = 0, p2× p6× p8 = 0.

An example of fingerprint thinning is given in Figure 5a. Dilation is one of basic
morphological operations, which is typically applied to binary images to enhance image
features by enlarging the boundaries of the segmented image objects and fill in the holes
within these objects. In this work, the dilation process is used to increase the width of the
fingerprint ridges in a way such that, if there is a gap of one or two pixels between any
two ridges, then they can be joined to form a single ridge. Such a gap of one or two pixels
between fingerprint ridges can be due to any error of some sort [1]. For fingerprint dilation,
we create a function that looks at every pixel of the binary image and, in the meantime, all
the neighboring pixels of the pixel under consideration are checked as well. Consequently,
when a pixel is selected, all of its neighbors are checked and, if any one of them is black,
the value of that pixel is changed to black so that this results in removing small holes in
the image and also joining ridges that have at most a 2-pixel gap [24]. A binary fingerprint
image after the dilation operation is shown in Figure 5b. After performing thinning and
dilation operations, the resultant image is almost well-suited for feature extraction by
removing all noises present in the image. However, there still remains very small patterns
in the fingerprint image that need to be eliminated in order to perform more robust minutiae
feature extraction [1]. This can be performed simply by calculating the number of pixels in
each ridge and any ridge having fewer than a certain number of pixels (e.g., ≤20 pixel) is
removed from the fingerprint image (see Figure 5c).

(a) (b) (c)

Figure 5. Main steps of fingerprint preprocessing: (a) thinning, (b) dilation and (c) unwanted
pattern removal.
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3.2. Minutiae Feature Extraction

After finishing all the aforementioned preprocessing operations, the enhanced finger-
print image is obtained, in which the minutiae feature points can be easily located [1]. In
this work, the robust minutiae feature points of the enhanced fingerprint image are deter-
mined by using an adaptive version of the SIFT detector [30] to obtain a sparse set of frames
(or local keypoints) from the fingerprint image. The keypoints are viewed as oriented disks
attached to blob-like structures of the fingerprint image under consideration [31]. As the
image scales, rotates, and/or translates, these keypoints could help track image objects and
thus the deformation. The effect of such deformation on the feature appearance is excluded
by canonization, i.e., by mapping the keypoints to a canonical disk [32–34]. In order to
search for fingerprint blobs on a multiple scale, the SIFT based detector constructs a scale
space defined as a function F(x, σ) of spatial and scale variables, where x ∈ R2 and σ ∈ R+

are the spatial and scale coordinates, respectively. The domain of the scale-space variable σ
is sampled at discretized steps in logarithmic values:

σ(s, o) = σ02o+s/S, o ∈ Z, s = 0, . . . , S− 1 (2)

where o, s, S ∈ N and σ0 ∈ R+ are the octave index, scale index, scale resolution and base
scale offset, respectively. Notice that octaves of negative index are likely to be obtained.
Then, a resolution defined as a function of the octave can be used for sampling the spatial
coordinate x on a lattice, as follows:

x = 2oxo, o ∈ Z, xo ∈ [0, . . . , No − 1]× [0, . . . , Mo − 1] (3)

where xo and (No, Mo) denote the spatial index and spatial resolution of octave o, respec-
tively. The resolution of the octaves can be obtained from the resolution (M0, N0) of the
base octave o = 0, as follows:

No = b
N0

2o c, Mo = b
M0

2o c (4)

However, some scale levels can be usefully stored twice across different octaves, by
allowing the parameter s to be negative or larger than S. More formally, let [smin, smax] and
[omin, omin + O− 1] be the ranges of s and o, respectively, where O denotes the number
of octaves.

The SIFT detector and descriptor make use of two scale spaces, namely a Gaussian
space and a Difference of Gaussian (DoG) space. The Gaussian scale-space of an image I(x)
can be obtained from the ‘zero-scale’ image by a Gaussian convolution:

G(x, σ) , (gσ ∗ I)(x) (5)

where the scale σ is typically sampled a particular way to reduce redundancy. In prac-
tice, it is assumed that the fingerprint image is nominally pre-smoothed σn, accordingly
G(x, σ) = (g√

σ2−σ2
n
∗ I)(x). As pointed out in [30], successive convolutions need to be

performed by small Gaussian kernels to allow the pyramid to be incrementally computed.
Another scale space that the detection algorithm makes use of is the difference of Gaus-
sians which is progressively calculated from the scale derivative of G(x, σ) along the scale
coordinate σ:

D(x, σ(s, o)) , G(x, σ(s + 1, o))− G(x, σ(s, o)) (6)

For computing the octave o = −1, the fingerprint image is enlarged by a factor of, e.g.,
2 through bilinear interpolation (applied to the enlarged image σn = 1). For scale space
extrema detection at all scales, the DoG space possesses s ∈ [−1, S]. As the DoG space is
derived from the differentiation of the Gaussian scale space, the latter has a scale index in the
range of s ∈ [−1, S + 1]. With regard to the parameter O, it should be set as high as possible
to cover all octaves. Thus, keypoints are extracted by picking local-extremum points in
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3D neighborhoods of D(x, σ), where the extrema are efficiently selected by looking at
9× 9× 9 neighborhoods of samples. Since the octave is represented by a 3D array, the
index k is mapped to scale space indexes (x1, x2, s), as follows:

k− 1 = x2 + x1Mo + (s− smin)Mo No (7)

The index k can alternatively be mapped to a subscript (i, j, l) by using:

x1 = j− 1, x2 = i− 1, s = l − 1 + smin (8)

The actual size of a spatial bin is mσ, where σ is the scale of the keypoint, and m = 3.0
is a nominal factor (see Figure 6).

-0.5 0.5 1.5-1.5 1 2-2 -1

x1

x2

Np

mσ

Figure 6. SIFT descriptor layout for 4× 4 sub-regions.

Due to the way such extrema are detected, the following inequality constraints are
strictly satisfied: 1 ≤ x2 ≤ Mo − 2, 1 ≤ x1 ≤ No − 2 and smin + 1 ≤ s ≤ smax − 1. As the
interest is in both local maxima and minima, the process is then repeated for −G(x, σ).
For sub-pixel refinement, a test with a threshold on the intensity D(x, σ) is simultaneously
applied on the peakedness of the extremum to exclude weak points and/or edge points
(see Figure 7).

(a) (b) (c) (d)

Figure 7. SIFT minutiae detection for various threshold values: (a) source image and detected frames
at threshold values of (b) 5.0, (c) 7.5, and (d) 10.0.
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The orientation θ of a detected keypoint (x, σ) is obtained as a predominant orientation
of the gradient around the keypoint calculated as a quadratically interpolated maximum of
the histogram of gradient orientations ∠∇G(x1, x2, σ) around the keypoint. The histogram
is then weighted by the magnitude of the gradient |∇G(x1, x2, σ)|, using a Gaussian win-
dow of standard deviation 1.5σ centered on the keypoint. After arranging data in bins, a
moving average filter is applied to smooth the constructed histogram before computing
the maximum. Besides the global maximum, there is also a need to retain all the local
maximum of a value over 0.8% of the maximum. Hence, multiple SIFT frames would be
obtained for each location and scale. Two examples of SIFT keypoint detection are shown
in Figure 8 below.

(a) (b) (c) (d)

Figure 8. SIFT minutiae feature detection (a) original image, (b) binary image, (c) thinned image, and
(d) detected SIFT minutiae keypoints (pixels shown in green color).

The SIFT descriptor of a detected keypoint (x, σ) is a local statistic of gradient orienta-
tions of G(·, σ), which is computed from a weighted 3D histogram of gradient orientations.
More formally, the SIFT descriptor is expressed as a weighted and interpolated histogram
of the gradient orientations and locations within a patch around the keypoint, where the
histogram domain is represented in tuples: (x, θ) ∈ R2 ×R/Z. Moreover, the bins con-
stitute a 3D lattice with Np = 4 spatial bins along each spatial direction, No = 8 bins for
the gradient orientation and a total of N2

p No = 128 components. The window H(x) is a
Gaussian with a deviation of Np/2, i.e., half of the spatial bin range.

For invariance purposes, the histogram is then projected on the image domain, based
on the local reference frame around the keypoint. The spatial dimensions are then mul-
tiplied by a factor of mσ, where m and σ are a nominal factor (set to 3.0 by default) and
the scale of the keypoint, respectively. The layout is rotated as well to ensure that x1 is
aligned to the keypoint orientation θ. The resultant histograms are further weighted by
the gradient modulus, and the contributions of their gradient orientations are smoothly
distributed using a trilinear interpolation into adjacent histogram bins to avoid boundary
effects in which the descriptor changes abruptly as a sample orientation shifts smoothly
from one bin to another.
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3.3. Minutiae Feature Matching

From the above description of the feature extraction module, it is evident that the SIFT
algorithm can generally be seen as a local image operator that takes a given image and
transforms it into a large collection of local feature vectors. Hence, the feature matching
procedure between feature descriptors of two fingerprint images essentially involves
computing the Euclidean distance between each descriptor of the first image and each
descriptor of the second image in Euclidean space [35]. To use this local operator for
fingerprint recognition purposes, it is applied on two fingerprint images, i.e., a test and
template image.

To find corresponding features between the two images, which could lead to fin-
gerprint recognition, several feature matching approaches can be applied. Based on the
Nearest Neighborhood (NN) procedure, for each feature ai in the feature set of the query
fingerprint image, the entire reference database is queried to find the most similar stored
feature bi with the smallest Euclidean distance to the feature ai. A pair of corresponding
features (ai, bi) is typically termed a match M(ai, bi) [36]. To check if this match is positive
or negative, a certain predefined threshold is considered. For matching, when the ratio
of the Euclidean distance of the nearest-neighbor to the Euclidean distance of the next
nearest-neighbor exceeds the predefined threshold, the matched feature is rejected. On
the other hand, if the Euclidean distance between two feature vectors ai and bi does not
exceed the value of the threshold, the match M(ai, bi) is labelled as positive and stored as a
valid match. As shown in [30], Euclidean distance refers to the distance of keypoints in the
feature space.

The keypoints (i.e., features) in image space are transformed into a multi-dimensional
space based on their characteristics such as gradients, orientations, magnitude, locations
and brightness, where each feature is represented by a feature vector. Then, the Euclidean
distance between the two feature vectors a and b is defined as:

D(a, b) =
√
(a1 − b1)2 + (a2 − b2)2 + . . . + (an − bn)2 =

√
n

∑
i=1

(ai − bi)2 (9)

where n denotes the number of features in the feature set. The value of D(a, b) is then
compared with a predefined threshold. If it is greater than the threshold, the matched
keypoint will be discarded. However, the computation of the pairwise Euclidean distances
between all feature points can be prohibitively expensive. As a result, it is very useful,
especially for computational purposes, to find inner products of vectors in the feature
spaces [37]. This will greatly reduce the computational burden and, in the meantime,
retain the feature robustness. As the distance between feature vectors is probably going
to be similar, mismatch might take place, but the angle is constantly different [38]. On
the other hand, cosine similarity that measures the similarity between two vectors in the
feature space can be obtained by the cosine of the angle between the two vectors. Formally,
having computed the inner product of a pair of feature vectors, then it is straightforward to
compute the inverse cosine between each pair of feature vectors as follows:

a · b =
n

∑
i=1

aibi = a1b1 + a2b2 + . . . + anbn

θ = arccos
(

a · b
‖a‖‖b‖

)
(10)

Then, the nearest neighbor is checked to see if it has an angle below the predefined
threshold ratio, i.e., θ < τθ. It is worth mentioning that, in the original SIFT matching algorithm,
only the nearest neighbor distance is compared against other distances and the smallest distance
value is selected, whereas, in this improved SIFT matching algorithm, angles between feature
vectors are compared. Additionally, the ratio of descriptor distances is employed for outlier
rejection to reduce the number of false positive matches (see Figure 9 below).
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(a)

(b)

Figure 9. Fingerprint minutiae matching results using (a) original SIFT algorithm and (b) improved
SIFT algorithm.
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As can be seen in Figure 9, the improved SIFT algorithm gives prominently better results
in terms of matching quality and robustness compared to the original SIFT matching algorithm,
particularly when the fingerprint image contains much local similar characteristics. However,
despite discarding a few correct matches, nearly all mismatches are removed.

4. Experimental Results and Analysis

In this section, the results of the experiments and simulations conducted to verify
the validity and performance of the proposed framework for fingerprint identification
are presented. The experiments were carried out independently on a publicly available
fingerprint database, namely FVC2004 [39] from the Fingerprint Verification Competition
(FVC); a series of competition organised by the University of Bologna (Italy) which aims
at establishing benchmarks for evaluating the performance of fingerprint recognition sys-
tems. FVC2004 is basically a multi-database, where each component database was created
from fingerprints captured with a different sensor technology. In FVC2004 fingerprint
database, there are four distinct datasets (i.e., DB1, DB2, DB3, and DB4), each containing
110 different fingerprint images with eight impressions per finger (resulting in a total of
110× 8 = 880 fingerprints). Each component database is further divided into two disjoint
subsets (A and B), so that the subset A contains the first 100 fingers and eight impressions
per finger (i.e., 800 impressions in total), which is commonly used for the performance
evaluation of fingerprint verification systems, whereas set B that is made available to allow
parameter tuning before the submission of the algorithms only has the last 10 fingers
(80 impressions).

The fingerprints in FVC2004 database mainly depend upon image quality, size and
the source sensor type used for acquiring the fingerprints. Fingerprint images are available
in a TIFF format with 8-bit gray-level depth, and a resolution of about 500 dpi. The image
size varies depending on the database. During performance evaluation, only homogeneous
fingerprint images that belong to the same component database are matched to each other.
Fingerprint samples taken from FVC2004 fingerprint database are shown in Figure 10.

Figure 10. A sample of fingerprint images from the FVC2004 fingerprint database.

Taking into account that the fingerprint data included in FVC2004 database were col-
lected by using different fingerprint sensing technologies, including optical, semiconductor,
thermal, and tactile, and also the variations in image size and resolution are particularly
apparent in this database. In addition, in this database, fingerprints were not acquired
in realistic settings according to a formal protocol, but instead primarily characterized
by the presence of different distortions (e.g., rotations, scalings, translations, and poor
quality in resolution) within fingerprints of the same person’s finger. Taking all these
challenging aspects mentioned above into consideration, this dataset represents a great
choice for the testing and validation of the proposed fingerprint matching framework in
extreme conditions. Additionally, a publicly available fingerprint dataset presented in [40]
was used for feature matching subsystem, where these fingerprint images acting as the
fingerprint biometric data undergo minutiae points feature extraction.

The performance of the proposed framework is evaluated on the FVC2004 benchmark
fingerprint database (described above) by the Equal Error Rate (EER) that can be simply
attained from the ROC (Receiver Operating Characteristic) curve; a plot of FMR against
FNMR. The EER refers to the point on the ROC curve where FMR and FNMR are equal; a
lower EER value generally indicates a better performance of the fingerprint verification



Appl. Sci. 2022, 12, 6122 14 of 17

system. A plot of the ROC curve that quantitatively shows the performance of the proposed
framework is presented in Figure 11. In real-world applications, a fingerprint recognition
system usually operates away from the EER point by reducing the FMR in order to ensure
a high level of security. Note that the FMR and FNMR are inversely related and there is
a strict trade-off between them; therefore, it is of particular interest to evaluate how the
FNMR is affected. Moreover, it could also be argued here that the matching performance
(in terms of EER) can be greatly affected by a large variation in true matches against the
false matches.

Figure 11. A plot of the ROC curve between FMR and FNMR for the FVC 2004 fingerprint database.

A comparison of the matching performance in terms of EER (%) between the proposed
framework and some closely related works is presented in Table 1.

Table 1. A summary of the performance comparison between the proposed framework and most
closely related techniques.

Work Techniques EER (%)

Proposed method Improve SIFT Features 02.01
Ali and Prakash [41] Fingerprint Shell 02.02
Arunalatha et al. [42] Dictionary Learning 02.04
Francesco et al. [43] Orientation Extraction 02.06
Alam et al. [44] Fingerprint template 02.07
Jucheng et al. [45] Two-Stage Enhancement Scheme 02.19
Bartunek et al. [46] Pre-processing 02.40
Carsten [47] Curved Gabor Filters 11.97

From the figures presented in Table 1, one can see that the proposed framework
performs effectively in comparison with other techniques, achieving the best EER value of
2.01%. In addition, there is a close matching performance (in terms of EER) between our
framework and those previously presented in [42,43,45,46]. The average execution time
of the fingerprint recognition algorithm, including enhancement, feature extraction and
matching, is about 674 ms, so that it can run sufficiently fast for real-time operation, since
the additional computational costs for the fingerprint enrollment are negligible besides the
realtime SIFT feature extraction and matching. The average recognition time taken by the
proposed technique has been compared with that of several closely related techniques, as
shown in Table 2.
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Table 2. Average time taken comparison of various closely related techniques.

Techniques Elapsed Time (ms)

Proposed Technique 674
Ali and Prakash [41] 632
Arunalatha et al. [42] 745
Francesco et al. [43] 957
Alam et al. [44] 1075
Jucheng et al. [45] 1119
Carsten [47] 1149

The presented fingerprint recognition system is implemented for much of its framework
using Microsoft Visual Studio 2017 development tools and OpenCV Vision Library to realize real-
time digital image processing and automatic object recognition. All tests and evaluations were
preformed on a PC with an Intel® Core(TM) i7 CPU—2.60 GHz with Turbo Boost Technology,
8 GB RAM, and running Windows 10 Pro (64-bit) as the operational system.

5. Conclusions

This paper has introduced an automated minutiae extraction and matching framework
for fingerprint identification and verification purposes, The proposed framework has
followed a stepwise procedure as follows: first, multiple preprocessing operations including
denoising, binarization, thinning, dilation, and enhancement are performed on the input
fingerprint image to obtain high accuracy minutiae data. An improved SIFT detector is then
applied to high-contrast fingerprints to detect an optimized set of highly-reliable salient
points discriminating fingerprint minutiae and describe them accurately and quickly. Then,
the SIFT descriptors of the local key-points in a given fingerprint are matched with those
of the stored templates using a brute force approach. Finally, an adaptive dual-threshold
filter is applied to remove false matches, while preserving the correct one. Experimental
results on the public FVC2004 fingerprint datasets have demonstrated that the presented
framework admits highly competitive or even much better performance than several
state-of-the-art methods in terms of EER and robustness. Furthermore, the results of the
performance evaluation indicated that the framework is easy to perform, inexpensive,
relatively fast, and can offer enough finger ridge detail to allow for excellent fingerprint
comparison for identification and verification purposes, which can be deemed as the most
important managerial implication emerging from this study. Nevertheless, a possible
limitation of this study is that the validation process has been performed using a single
database of a relatively small number of latent fingerprint images. Future work will be
along two main axes. The first will be further extension of this framework by incorporating
advanced deep learning paradigm for better recognition performance. The second will
concentrate on conducting more experiments for testing and evaluation of our approach on
challenging latent fingerprints unintentionally left by subjects at crime scenes.

Author Contributions: Conceptualization, S.B.; methodology, S.B.; software, S.B.; validation, S.B.
and S.A.; formal analysis, S.B. and S.A.; project administration, S.A., A.A. and A.B.; funding acquisi-
tion, S.A., A.B. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 6122 16 of 17

References
1. Singh, P.; Kaur, L. Fingerprint Feature Extraction using Ridges and Valleys. Int. J. Eng. Res. Technol. 2015, 4, 1330–1334.
2. Grosz, S.A.; Engelsma, J.J.; Liu, E.; Jain, A.K. C2CL: Contact to Contactless Fingerprint Matching. IEEE Trans. Inf. Forensics Secur.

2022, 17, 196–210. [CrossRef]
3. Bakheet, S.; Al-Hamadi, A. Chord-length shape features for license plate character recognition. J. Russ. Laser Res. 2020, 41, 156–170.

[CrossRef]
4. Ali, S.F.; Khan, M.A.; Aslam, A.S. Fingerprint matching, spoof and liveness detection: Classification and literature review. Front.

Comput. Sci. 2021, 15, 151310. [CrossRef]
5. Kumar, G.; Bhatia, P.K. A Detailed Review of Feature Extraction in Image Processing Systems. In Proceedings of the 2014 Fourth

International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 5–12.
6. Duan, Y.; He, K.; Feng, J.; Lu, J.; Zhou, J. Estimating 3D Finger Pose via 2D-3D Fingerprint Matching. In Proceedings of the 27th

International Conference on Intelligent User Interfaces, Helsinki, Finland, 22–25 March 2022.
7. Bakheet, S.; Al-Hamadi, A. Robust hand gesture recognition using multiple shape-oriented visual cues. EURASIP J. Image Video

Process 2021, 2021, 26. [CrossRef]
8. Mali, K.; Bhattacharya, S. Fingerprint recognition using global and local structures. Int. J. Comput. Sci. Eng. 2011, 3, 161–172.
9. Alonso-Fernandez, F.; Bigun, J.; Fierrez, J.; Fronthaler, H.; Kollreider, K.; Ortega-Garcia, J. Fingerprint recognition. In Guide to

Biometric Reference Systems and Performance Evaluation; Springer: London, UK, 2009; pp. 51–88.
10. Bakheet, S.; Al-Hamadi, A. A framework for instantaneous driver drowsiness detection based on improved HOG features and

naïve Bayesian classification. Brain Sci. 2021, 11, 240. [CrossRef]
11. Bader, A.S.; Sagheer, A.M. Finger Vein Identification Based On Corner Detection. J. Theor. Appl. Inf. Technol. 2018, 96, 2696–2705.
12. Cao, Y.; Pang, B.; Liu, X.; Shi, Y. An Improved Harris-SIFT Algorithm for Image Matching. In Proceedings of the International

Conference on Advanced Hybrid Information Processing, Harbin, China, 17–18 July 2017; pp. 56–64.
13. Bakheet, S.; Al-Hamadi, A. A Discriminative Framework for Action Recognition Using f-HOL Features. Information 2016, 7, 68.

[CrossRef]
14. Singh, P.; Kaur, L. Fingerprint feature extraction using morphological operations. In Proceedings of the International Conference

on Advances in Computer Engineering and Applications, Cebu, Philippines, 15–17 December 2015; pp. 764–767.
15. Singh, K.; Kaur, K.; Sardana, A. Fingerprint feature extraction. Int. J. Comput. Sci. Technol. 2011, 2, 237–241.
16. Bakheet, S.; Al-Hamadi, A.; Mofaddel, M.A. Recognition of Human Actions Based on Temporal Motion Templates. Br. J. Appl.

Sci. Technol. 2017, 20, 1–11. [CrossRef]
17. Lian, Q.; Zhang, J.; Chen, S. Extracting fingerprint minutiae based on Harris corner detector. Opt. Tech. 2008, 34, 383–387.
18. Bakheet, S.; Al-Hamadi, A.; Youssef, R. A Fingerprint-Based Verification Framework Using Harris and SURF Feature Detection

Algorithms. Appl. Sci. 2022, 12, 2028. [CrossRef]
19. Bakheet, S.; Al-Hamadi, A. Hand gesture recognition using optimized local Gabor features. J. Comput. Theor. Nanosci. 2017,

14, 1380–1389. [CrossRef]
20. Thakkar, D. Minutiae Based Extraction in Fingerprint Recognition. Available online: https://www.bayometric.com/minutiae-

based-extraction-fingerprint-recognition/ (accessed on 10 October 2017).
21. Sadek, S.; Abdel-Khalek, S. Generalized α-Entropy Based Medical Image Segmentation. J. Softw. Eng. Appl. 2014, 7, 62–67.

[CrossRef]
22. Bakheet, S.; Al-Hamadi, A. A Hybrid Cascade Approach for Human Skin Segmentation. Br. J. Math. Comput. Sci. 2016, 17, 1–14.

[CrossRef]
23. Hong, L.; Wan, Y.; Jain, A. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. Pattern Anal.

Mach. Intell. 1998, 20, 777–789. [CrossRef]
24. Sadek, S.; Al-Hamadi, A.; Michaelis, B.; Sayed, U. A New Method for Image Classification Based on Multi-level Neural Networks.

In Proceedings of the International Conference on Signal and Image Processing (ICSIP’09), Amsterdam, The Netherlands, 23–25
September 2009; pp. 197–200.

25. Bakheet, S.; Al-Hamadi, A. Computer-Aided Diagnosis of Malignant Melanoma Using Gabor-Based Entropic Features and
Multilevel Neural Networks. Diagnostics 2020, 10, 822. [CrossRef]

26. Patel, M.B.; Parikh, S.M.; Patel, A.R. An Improved Thinning Algorithm For Fingerprint Recognition. Int. J. Adv. Res. Comput. Sci.
2017, 8, 1238–1244. [CrossRef]

27. Hall, R.W. Fast parallel thinning algorithms: Parallel speed and connectivity preservation. Commun. ACM 1989, 32, 124–131.
[CrossRef]

28. Zhang, T.Y.; Suen, C.Y. A Fast Parallel Algorithms For Thinning Digital Patterns. Commun. ACM 1984, 27, 236–239. [CrossRef]
29. Kocharyan, D. A modified fingerprint image thinning algorithm. Am. J. Softw. Eng. Appl. 2013, 2, 1–6.
30. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 2, 91–110. [CrossRef]
31. Vedaldi, A. An Implementation of SIFT Detector and Descriptor. 2008. Available online: http://cs.tau.ac.il/~turkel/imagepapers/

(accessed on 8 March 2022).
32. Lee, Y.; Lee, D.H.; Park, J.H. Revisiting NIZK-Based Technique for Chosen-Ciphertext Security: Security Analysis and Corrected

Proofs. Appl. Sci. 2021, 11, 3367. [CrossRef]
33. Dospinescu, O.; Brodner, P. Integrated Applications with Laser Technology. Inform. Econ. 2013, 17, 53–61. [CrossRef]

http://doi.org/10.1109/TIFS.2021.3134867
http://dx.doi.org/10.1007/s10946-020-09861-1
http://dx.doi.org/10.1007/s11704-020-9236-4
http://dx.doi.org/10.1186/s13640-021-00567-1
http://dx.doi.org/10.3390/brainsci11020240
http://dx.doi.org/10.3390/info7040068
http://dx.doi.org/10.9734/BJAST/2017/28318
http://dx.doi.org/10.3390/app12042028
http://dx.doi.org/10.1166/jctn.2017.6460
https://www.bayometric.com/minutiae-based-extraction-fingerprint-recognition/
https://www.bayometric.com/minutiae-based-extraction-fingerprint-recognition/
http://dx.doi.org/10.4236/jsea.2014.71007
http://dx.doi.org/10.9734/BJMCS/2016/26412
http://dx.doi.org/10.1109/34.709565
http://dx.doi.org/10.3390/diagnostics10100822
http://dx.doi.org/10.26483/ijarcs.v8i7.4534
http://dx.doi.org/10.1145/63238.63248
http://dx.doi.org/10.1145/357994.358023
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://cs.tau.ac.il/~turkel/imagepapers/
http://dx.doi.org/10.3390/app11083367
http://dx.doi.org/10.12948/issn14531305/17.1.2013.05


Appl. Sci. 2022, 12, 6122 17 of 17

34. Agarwal, D.; Garima; Bansal, A. A Utility of Ridge Contour Points in Minutiae-Based Fingerprint Matching. In Proceedings of
the International Conference on Computational Intelligence and Data Engineering, Hyderabad, India, 8–9 August 2020.

35. Jiayuan, R.; Yigang, W.; Yun, D. Study on eliminating wrong match pairs of SIFT. In Proceedings of the IEEE 10th International
Conference on Signal Processing Proceedings, Ljubljana, Slovenia, 18–20 September 2010; pp. 992–995. [CrossRef]

36. Omercevic, D.; Drbohlav, O.; Leonardis, A. High-Dimensional Feature Matching: Employing the Concept of Meaningful Nearest
Neighbors. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–20
October 2007; pp. 1–8. [CrossRef]

37. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK,
31 August–2 September 1988; pp. 147–151.

38. Moravec, H. Towards Automatic Visual Obstacle Avoidance. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence (IJCAI’77), Cambridge, MA, USA, 22–25 August 1977; Volume 1, p. 584.

39. Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC 2004: Third Fingerprint Verification Competition. In Proceedings
of the International Conference on Biometric Authentication, Hong Kong, China, 15–17 July 2004; Volume 3072, pp. 1–7.

40. Lakshmanan, R.; Selvaperumal, S.; Chow, M. Integrated Finger Print Recognition Using Image Morphology and Neural Network.
Int. J. Adv. Stud. Comput. Sci. Eng. 2014, 3, 40–48.

41. Ali, S.; Prakash, S. 3Dimensional Secured Fingerprint Shell. Pattern Recognit. Lett. 2019, 126, 68–77. [CrossRef]
42. Arunalatha, J.S.; Tejaswi, V.; Shaila, K.; Anvekar, D.; Venugopal, K.R.; Iyengar, S.S.; Patnaik, L.M. FIVDL: Fingerprint Image

Verification using Dictionary Learning. Procedia Comput. Sci. 2015, 54, 482–490. [CrossRef]
43. Turroni, F.; Maltoni, D.; Cappelli, R.; Maio, D. Improving Fingerprint Orientation Extraction. IEEE Trans. Inf. Forensics Secur. 2011,

6, 1002–1013. [CrossRef]
44. Alam, B.; Jin, Z.; Yap, W.S.; Goi, B.M. An alignment-free cancelable fingerprint template for bio-cryptosystems. J. Netw. Comput.

Appl. 2018, 15, 20–32. [CrossRef]
45. Yang, J.; Xiong, N.; Vasilakos, A.V. Two-Stage Enhancement Scheme for Low-Quality Fingerprint Images by Learning from the

Images. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 235–248. [CrossRef]
46. Bartunek, J.S.; Nilsson, M.; Sallberg, B.; Claesson, I. Adaptive Fingerprint Image Enhancement With Emphasis on Preprocessing

of Data. IEEE Trans. Image Process. 2013, 22, 644–656. [CrossRef] [PubMed]
47. Gottschlich, C. Curved-Region-Based Ridge Frequency Estimation and Curved Gabor Filters for Fingerprint Image Enhancement.

IEEE Trans. Image Process. 2012, 21, 2220–2227. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICOSP.2010.5655847
http://dx.doi.org/10.1109/ICCV.2007.4408880
http://dx.doi.org/10.1016/j.patrec.2018.04.017
http://dx.doi.org/10.1016/j.procs.2015.06.055
http://dx.doi.org/10.1109/TIFS.2011.2150216
http://dx.doi.org/10.1016/j.jnca.2018.04.013
http://dx.doi.org/10.1109/TSMCC.2011.2174049
http://dx.doi.org/10.1109/TIP.2012.2220373
http://www.ncbi.nlm.nih.gov/pubmed/23014753
http://dx.doi.org/10.1109/TIP.2011.2170696
http://www.ncbi.nlm.nih.gov/pubmed/21984503

	Introduction
	Prior Work
	Proposed Methodology
	Image Preprocessing
	Fingerprint Enhancement Using Contextual Filtering
	Thinning and Dilation

	Minutiae Feature Extraction
	Minutiae Feature Matching

	Experimental Results and Analysis
	Conclusions
	References

