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Abstract: Bearings cause the most breakdowns in induction motors, which can result in significant
economic losses. If faults in the bearings are not detected in time, they can cause the whole system
to fail. System failures can lead to unexpected breakdowns, threats to worker safety, and huge
economic losses. In this investigation, a new approach is proposed for fault diagnosis of bearings
under variable low-speed conditions using a smooth sliding digital twin analysis of indirect acoustic
emission (AE) signals. The proposed smooth sliding digital twin is designed based on the combination
of the proposed autoregressive fuzzy Gauss–Laguerre bearing modeling approach and the proposed
smooth sliding fuzzy observer. The proposed approach has four steps. The AE signals are resampled
and the root mean square (RMS) feature is extracted from the AE signal in the first step. To estimate
the resampled RMS bearing signal, a new smooth sliding digital twin is proposed in the second step.
After that, the resampled RMS bearing residual signal is generated using the difference between
the original and estimated signals. Next, a support vector machine (SVM) is proposed for crack
detection and crack size identification. The effectiveness of this new approach is evaluated by AE
signals provided by our lab’s bearing dataset, where the benchmark dataset consists of one normal
and seven abnormal conditions: ball, outer, inner, outer-ball, inner-ball, inner-outer, and inner-outer-
ball. The results demonstrated that the average accuracies of the anomaly diagnosis and crack size
identification of AE signals for the bearings used in this new smooth sliding digital twin are 97.75%
and 97.78%, respectively.

Keywords: induction motor; bearing; acoustic emission signal; smooth sliding digital twin;
autoregressive fuzzy Gauss–Laguerre; fuzzy logic technique; support vector machine; crack detection;
crack size identification

1. Introduction

One of the most widely applicable human inventions is the bearing, which prevents
wear and tear when moving heavy objects and decreases the friction between moving
parts. By using bearings, instead of causing wear and tear, objects can rotate together.
Without bearings, the equipment used to rotate needs to be replaced often. Bearings are
used in diverse industrial applications, such as power generators, oil refining, machine
tool operations, natural gas transportation, and centrifugal/turbocharged pumps. Due
to the widespread use of bearings, the probability of defects in these parts is not small.
Fault diagnosis in industrial components such as bearings is very useful and valuable.
Accurate fault diagnosis can increase safety, extend the lifetime of machinery, and reduce
consumption costs. Inner race, outer race, ball race, and cage faults are among the crucial
types of bearing anomalies [1,2]. Different sensors, such as vibration, stator current, shaft
voltage, and acoustic emission (AE) sensors, can be used to extract the data for the bearings
and check their health. In recent years, vibration and AE sensors have found many
applications in industry [3].
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To design bearing fault diagnosis techniques, various approaches have been carried
out that can be used in three main domains: the time domain, frequency domain, and time–
frequency domain. Time and frequency domain analyses have the challenge of high feature
dimensions. Time–frequency domain analysis, such as the short-time Fourier transform [4],
Wigner Ville distribution [5], and wavelet packet transform [6], have been recommended
to solve problems associated with the nonstationary and nonlinear nature of the bearings’
signals. Moreover, digital twins are an efficient technique for anomaly diagnosis in various
applications. These approaches allow for diverse and much more precise analyses by
designing models/estimates of the original system [7]. In addition, various techniques
can be introduced to design digital twins, such as model-based techniques, signal-based
approaches, artificial intelligence–based algorithms, and hybrid schemes [8]. In signal-
based approaches, signal processing algorithms can be used for anomaly diagnosis [8,9].
The application of a signal-based algorithm for anomaly detection and identification was
suggested in [10]. The application of artificial intelligence–based approaches for anomaly
identification was proposed in [9]. These techniques have been used in several applications,
such as bearing fault diagnosis and pipeline crack diagnosis [9]. In model-based approaches,
mathematical-based fault modeling algorithms can be used for reliable and stable fault
detection and identification. In reliable model-based fault diagnosis, the faults are identified
using a small dataset; however, mathematical modeling of complex systems is challenging
work [11]. Hybrid approaches can be designed based on a combination of the above
techniques [12]. These techniques are able to reduce the weakness of each of the above
methods and increase their strengths.

Various researchers have implemented rigorous studies in the field of fault diagnosis
for bearings using model-based approaches. Model-based approaches for fault diagnosis
utilize signal estimation techniques, system identification approaches, and output observa-
tion schemes. Allal et al. [13] obtained the residual signals that were calculated based on
the difference between original and estimated ones for fault diagnosis using a model-based
approach. Although this approach is stable and reliable, there are significant challenges
related to signal modeling. Mathematical modeling and identification techniques are the
most important methods for signal/system modeling. Although mathematical-based mod-
eling has advantages such as reliability and accuracy, it is difficult to use this method
to model nonlinear and complex signals/systems. On the other hand, an identification-
based approach is able to model the dynamic behavior of the system by analyzing data
extracted from the sensors. Regression-based approaches, such as the autoregressive tech-
nique [14] and autoregressive with external input [15], are the most important schemes for
identification-based modeling. To improve the robustness of regression-based approaches,
the Laguerre filter technique was suggested in [16]. The application of a fuzzy technique to
a regression-based identification technique was introduced in [17]. One of the important
schemes for model-based fault diagnosis is observation-based approaches. These tech-
niques can be designed by various algorithms, which are categorized into two groups:
linear-based observation algorithms and nonlinear-based observation techniques. The
proportional-integral observer, proportional-multi-integral observer, and proportional-
integral-derivative observer each fall into the group of linear observers. For example,
TayebiHaghighi and Koo [18] introduced a proportional-integral (PI) observer for bearing
fault diagnosis. To develop the performance of the PI observer, the proportional-multi-
integral (PMI) observer for fault diagnosis of bearings was introduced in [19]. Apart from
the advantages of linear observers, such as their simplicity of implementation, these meth-
ods suffer from a lack of robustness and accuracy in fault modeling. Nonlinear observation
approaches have been proposed to overcome the problems of linear observation techniques.
Various observers can be listed in the group of nonlinear observers, such as linearized
feedback methods, backstepping approaches, Lyapunov algorithms, variable structure
schemes, fuzzy methods, and neural network algorithms. For instance, linearized feedback
has been applied for accurate fault modeling in [11]. In [20], the vibration signals were
modeled by mathematical techniques, and the fault signal was estimated by a feedback
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linearization observer. This technique has two significant challenges: stability and system
modeling using a mathematical approach. Variable structure algorithms and Lyapunov
methods are two influential, robust, nonlinear algorithms [21]. These two algorithms have
been used in diverse applications for fault diagnosis in bearings, robotics, and pipelines.
High-frequency fluctuations in unknown conditions are a significant challenge of variable
structure observers. To reduce the effect of high-frequency fluctuations, various techniques
have been suggested, including the super-twisting technique [22], saturation algorithm [23],
and high-order variable structure [24].

In this research article, a robust smooth sliding digital twin is recommended for
bearing anomaly identification. This method consists of three main parts. First, the AE
bearing signals are resampled and the RMS feature is extracted from them. Next, the robust
smooth sliding digital twin is designed for modeling and to estimate the RMS feature. After
that, the SVM technique is used for feature classification and crack size identification. The
main part of this research is the digital twin design. So, to design the proposed digital
twin, the indirect (feature) signals are modeled using the proposed autoregressive fuzzy
Gauss–Laguerre algorithm. After modeling the feature signal, the indirect observer based
on the proposed online tuning sliding fuzzy (smooth sliding) algorithm is designed. The
main contributions of the proposed robust smooth sliding digital twin are introduced as:

1. Propose an indirect (RMS feature) AE bearing signal modeling technique using a
robust autoregressive fuzzy Gauss–Laguerre algorithm.

2. Design a robust smooth sliding digital twin using the combination of indirect AE bear-
ing signal modeling and an online tuning sliding fuzzy (smooth sliding) algorithm.

3. Apply a machine learning technique to the robust smooth sliding digital twin for
feature classification and crack size identification.

This research article has the following sections. In the Section 2, the experimental
dataset is explained. The proposed robust smooth sliding digital twin is designed and
analyzed in the Section 3. In the Section 4, the results and discussion of the fault diagnosis
for bearings are explained. Finally, our conclusions and future work are described in
the Section 5.

2. Experimental Dataset

The block diagram of the bearing fault simulator is demonstrated in Figure 1. Based
on this figure, this fault simulator has three main parts: a three-phase induction motor, a
gearbox, and acoustic emission sensors. To transfer the load to the shaft, a gearbox is used.
The acoustic emission sensors are used to collect the bearing data. Based on this figure,
a FAG NJ206-E-TVP2 bearing is attached in the shaft. Moreover, a wideband frequency
AE sensor (PAC WSα) was used to acquire data when placed on the top of nondrive end
shaft bearing at a 21.48 mm displacement under normal and abnormal conditions when
the sampling rate is 250 kHz [9]. To simulate the faulty conditions, a bearing with 3-mm
and 6-mm crack sizes in length and 0.3-mm crack size in depth and 0.35 mm in width is
used [25–27]. Figure 2 shows our lab’s testbed, which was used to collect bearing data in
normal (NS) and seven abnormal conditions. Moreover, Table 1 shows information about
the AE sensors used for data collection [25–27]. Figure 3 illustrates the seven abnormal
conditions in the bearing, including ball (BS), inner (IS), outer (OS), inner-ball (IBS), outer-
ball (OBS), inner-outer (IOS), and inner-outer-ball (IOBS).

The ball faults are the anomalies found on the balls, the outer faults are the faults found
on the outside of the balls, and the inner faults are the faults found on the inside of the balls.
Moreover, the other faults are the combination of ball, inner, and outer faults. Furthermore,
because fault diagnosis on a low-speed motor is difficult, we considered motor rotation
speeds of 300, 400, 450, and 500 RPM. The information of the bearing dataset, comprising
the working conditions, motor speed, and crack size of the bearings, is illustrated in Table 2.
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Figure 2. Experimental test for data collection in bearings: (a) data generation and (b) two-channel
acoustic emission PCI board for data acquisition.

Table 1. Sensor and data collection system information [9].

AE Sensor (PAC WSα) Information PCI Board with Two-Channel AE Sensor Information

Peak sensitivity [V/µbar]: −62 dB
Operational frequency range: 100–900 kHz

Directionality: ±1.5 dB
Resonant frequency: 650 kHz

A/D conversion: 18-bit 40 MHz
AE sensor: 2 channels (one has a 10 M samples/s rate,

and the other has a 5 M samples/s rate; the two channels are used simultaneously)
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Table 2. Signal information for eight conditions.

Conditions Speed of Motor [RPM] Size of Crack [mm]

NS 300, 400, 450, 500 -
OS, IS, BS, IOS, IBS, OBS, IOBS 300, 400, 450, 500 3; 6

3. Proposed Scheme

The proposed scheme for bearing anomaly identification and crack size detection in
bearings using a robust smooth sliding digital twin is shown in Figure 4. Bearing anomaly
identification and crack size detection using the proposed digital-twin-based algorithm
consists of three parts: (a) resampling and featuring, (b) designing the robust smooth
sliding digital twin, and (c) bearing anomaly identification and crack size detection using
SVM. In the first step, the AE signals extracted from the bearing are resampled and its RMS
characteristic is extracted. The second part is the main section of this research. At this stage,
the proposed robust smooth sliding digital twin is designed. This part consists of two main
sub-sections: modeling and estimation. The first sub-section focuses on modeling the indi-
rect AE bearing (resampled RMS feature) signals using the N. The proposed autoregressive
fuzzy Gauss–Laguerre algorithm for normal feature signal modeling is designed using
a combination of the autoregressive algorithm, Gaussian methods to improve the power
of nonlinearity modeling, a Laguerre filter to overcome the uncertain conditions, and a
fuzzy algorithm to modify the power of nonlinearity signal modeling. After modeling the
normal resampled RMS signal using the proposed autoregressive fuzzy Gauss–Laguerre
algorithm, the signal estimation algorithm is designed using the proposed robust smooth
sliding digital twin. The proposed robust smooth sliding digital twin is designed based on
the combination of the proposed autoregressive fuzzy Gaussian–Laguerre algorithm for
signal modeling, a high-order sliding mode technique to improve the robustness, and a
fuzzy approach to overcome fluctuations arising in unknown conditions. After modeling
and estimation of the AE feature signals using the robust smooth sliding digital twin, in
the Section 3, the residual signals are generated and the SVM technique is used for bearing
anomaly identification and crack size detection.

3.1. Resampling and Featuring

To design the proposed indirect robust smooth sliding digital twin, in the initial step,
the root mean square (RMS) feature is extracted from the original AE signals according to
the following definition.

SAE(k)rms =

√
1
K ∑K

i=1 (SAE(k))
2 (1)

where SAE(k)rms is a resampled RMS value of the original AE signals in all conditions and
K is the number of windows for resampling the original AE signals. The number of samples
for NS for all motor speeds (300 RPM, 400 RPM, 450 RPM, and 500 RPM) is 5,000,000.
Moreover, the number of samples for OS, IS, BS, IOS, IBS, OBS, and IOBS for all motor
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speeds (300 RPM, 400 RPM, 450 RPM, and 500 RPM) and two crack sizes (3 mm and 6 mm)
is 7,000,000.
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The original AE signal was divided into 6000 windows, and each 12,500 samples
is defined as a window. Next, we obtained the RMS feature for each window. After
resampling and extracting the RMS feature from the original AE signals of the bearing, the
proposed indirect robust smooth sliding digital twin is designed.

3.2. Proposed Robust Smooth Sliding Digital Twin

According to Figure 4, after resampling and RMS feature extraction from the original
AE signals of the bearing, the proposed indirect robust smooth sliding digital twin is
designed based on the following steps. To design the proposed scheme, we have two main
steps: (a) feature modeling using the proposed autoregressive fuzzy Gauss–Laguerre
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algorithm and (b) feature estimation using the combination of an autoregressive fuzzy
Gauss–Laguerre modeling algorithm and the proposed high-order sliding fuzzy observer.

3.2.1. Proposed Autoregressive Fuzzy Gauss–Laguerre Feature Modeling

Based on Figure 4, to design an indirect robust smooth sliding digital twin, feature
modeling is the first step. Thus, the proposed autoregressive fuzzy Gauss–Laguerre algo-
rithm is designed to model the known (normal feature signal when the speed of the motor
is 300 RPM) RMS feature signal. The proposed autoregressive fuzzy Gauss–Laguerre algo-
rithm is designed using the combination of the following techniques: (a) an autoregressive
algorithm, (b) Gaussian methods to improve the power of nonlinearity modeling, (c) a
Laguerre filter to overcome the uncertain conditions, and (d) a fuzzy algorithm to modify
the power of nonlinearity signal modeling. The autoregressive algorithm in introduced
using the following definition.

∅a(k + 1) = [C∅∅a(k) + CiSi(k)] + ea(k) + U(k)

εa(k) = (Co)
T∅a(k)

(2)

where ∅a(k) is the state of RMS feature modeling using the autoregressive algorithm, Si(k)
is the RMS feature from the original AE signals of the bearing, ea(k) is the autoregressive
error for modeling the RMS feature signal, U(k) is the unknown/uncertain state for RMS
feature modeling, εa(k) is the output function of RMS feature signal modeling using
the autoregressive technique, and (C∅, Ci, Co) are coefficients (the state of RMS feature
modeling, RMS feature from the original AE signals of bearing, and output function of
RMS feature signal modeling) of signal modeling. Furthermore, the error of autoregressive
RMS feature signal modeling is calculated from the following equation.

ea(k) = εa(k)− εa(k− 1) (3)

To reduce the error of RMS feature signal modeling using the autoregressive tech-
nique, nonlinear-based signal modeling can be very useful. Thus, the Gaussian method is
suggested to enhance the power of nonlinearity modeling. The autoregressive Gaussian
algorithm is introduced using the following definition.

∅ag(k + 1) =
[
C∅∅ag(k) + CiSi(k)

]
+ eag(k) + U(k)

εag(k) = (Co)
T
χg
−1∅ag(k)

(4)

where ∅ag(k) is the state of RMS feature modeling using the autoregressive Gaussian algo-
rithm, eag(k) is the error of the autoregressive Gaussian for modeling the RMS feature signal
g, εag(k) is the output function of RMS feature signal modeling using the autoregressive
Gaussian technique, and χg is the covariance matrix for RMS feature modeling using the
Gaussian algorithm. Furthermore, the covariance matrix (χg) for RMS feature modeling in
known conditions using the Gaussian algorithm is represented as follows.

χg = ω2e(−0.5∅ag
T B−1∅ag) + V (5)

B = diag(N)2 (6)

where ω is the variance of the RMS feature of the AE signal in known conditions, V is
the noise variance, and N is the kernel width. Additionally, the error of autoregressive
Gaussian RMS feature signal modeling is considered from the following equation.

eag(k) = εag(k)− εag(k− 1) (7)
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The next challenge of RMS feature (indirect) AE signal modeling is the robustness.
To increase the robustness of RMS feature signal modeling and reduce the error of RMS
feature signal modeling using the autoregressive Gaussian technique, the Laguerre filter
technique is combined with the autoregressive Gaussian algorithm. The autoregressive
Gauss–Laguerre procedure is defined using the following description.

∅ag−l(k + 1) =
[
C∅∅ag−l(k) + CiSi(k) + Cεεag−l(k)

]
+ eag−l(k) + U(k)

εag−l(k) = (Co)
T
χg
−1∅ag−l(k)

(8)

At this point, ∅ag−l(k) is the state of RMS feature modeling using the autoregressive
Gauss–Laguerre algorithm, eag−l(k) is the error of the autoregressive Gauss–Laguerre for
modeling the RMS feature signal, εag−l(k) is the output function of RMS feature signal
modeling using the autoregressive Gauss–Laguerre technique, and Cε is the coefficient for
RMS feature modeling using the autoregressive Gauss–Laguerre algorithm. In addition,
the error of autoregressive Gauss–Laguerre RMS feature signal modeling is considered
from the following definition.

eag−l(k) = εag−l(k)− εag−l(k− 1) (9)

Finally, to modify the power of nonlinearity signal modeling for the application of
the fuzzy algorithm in the autoregressive Gauss–Laguerre to modeling, the RMS feature
signal is announced. The autoregressive fuzzy Gauss–Laguerre method is defined using
the following explanation.

∅a f g−l(k + 1) =
[
C∅∅a f g−l(k) + CiSi(k) + Cεεa f g−l(k)

]
+ ea f g−l(k) + U(k) + Cf f (k)

εa f g−l(k) = (Co)
T
χg
−1∅a f g−l(k)

(10)
Currently, ∅a f g−l(k) is the state of RMS feature modeling using the autoregressive

fuzzy Gauss–Laguerre algorithm, ea f g−l(k) is the error of the autoregressive fuzzy Gauss–
Laguerre for modeling the RMS feature signal, εa f g−l(k) is the output function of RMS
feature signal modeling using the autoregressive fuzzy Gauss–Laguerre technique, f (k)
is the fuzzy function used to improve the power of uncertain signal modeling, and Cf is
the coefficient for RMS feature modeling using the autoregressive fuzzy Gauss–Laguerre
algorithm. Furthermore, the error of autoregressive fuzzy Gauss–Laguerre RMS feature
signal modeling is considered from the subsequent description.

ea f g−l(k) = εa f g−l(k)− εa f g−l(k− 1) (11)

Algorithm 1 shows the steps to designing the proposed RMS feature modeling using
the autoregressive fuzzy Gauss–Laguerre approach.

3.2.2. Proposed Higher-Order Sliding Fuzzy Observer

After modeling the known RMS feature signal using the proposed autoregressive
fuzzy Gauss–Laguerre approach, an observation algorithm based on the proposed higher-
order sliding fuzzy technique is designed in the second step. The proposed observer is
used to estimate the RMS signal of the bearing in all conditions. To design a proposed
observer, a sliding observation algorithm is first suggested. Using a sliding observer is a
nonlinear and robust technique to estimate the signals. To improve the robustness of the
classical (second-order) sliding observer, a higher-order technique is suggested in this work.
Apart from the robustness of the high-order sliding observer, this technique suffers from
high-frequency oscillation (chattering phenomenon). To reduce the effect of chattering in
the high-order sliding observer, a fuzzy algorithm is suggested. A high-order sliding fuzzy



Appl. Sci. 2022, 12, 6770 9 of 24

observer can be used to overcome fluctuations arising in uncertain/unknown conditions.
First, the combination of the proposed autoregressive fuzzy Gauss–Laguerre RMS signal
modeling approach and second-order sliding observer is introduced as follows.

∅(a f g−l)−s(k + 1) =
[
C∅∅(a f g−l)−s(k) + CiSi(k) + Cεε(a f g−l)−s(k)

]
+ea f g−l(k) + U(a f g−l)−s(k) + Cf f (k) + Cu(s)sgnU(a f g−l)−s(k)

ε(a f g−l)−s(k) = (Co)
T
χg
−1∅(a f g−l)−s(k)

(12)

Algorithm 1: Proposed RMS feature modeling using the autoregressive fuzzy Gauss–Laguerre
approach.

1: RMS feature signal modeling using the autoregressive procedure; Equation (2)
Detail

1.1 Calculate ea(k)← εa(k)− εa(k− 1) , Equation (3)
1.2 Calculate ∅a(k + 1)← [C∅∅a(k) + CiSi(k)] + ea(k) + U(k) , Equation (2)
1.3 Calculate εa(k)← (Co)

T∅a(k) , Equation (2)

2:
Gaussian method is applied to the autoregressive approach to enhance the power of
nonlinearity modeling; Equation (4)
Detail

2.1 Calculate eag(k)← εag(k)− εag(k− 1) , Equation (7)
2.2 Calculate ∅ag(k + 1)←

[
C∅∅ag(k) + CiSi(k)

]
+ eag(k) + U(k), Equation (4)

2.3 Calculate χg ← ω2e(−0.5∅ag
T B−1∅ag) + V , Equation (5)

2.4 Calculate B← diag(N)2 , Equation (5)
2.5 Calculate εag(k)← (Co)

T
χg
−1∅ag(k) , Equation (4)

3:
Increase the robustness of RMS feature signal modeling and reduce the error of RMS feature
signal modeling using the combination of the Laguerre filter technique and autoregressive
Gaussian algorithm; Equation (8)
Detail

3.1 Calculate eag−l(k)← εag−l(k)− εag−l(k− 1) , Equation (9)

3.2
Calculate ∅ag−l(k + 1)←

[
C∅∅ag−l(k) + CiSi(k) + Cεεag−l(k)

]
+ eag−l(k) + U(k) ,

Equation (8)
3.3 Calculate εag−l(k)← (Co)

T
χg
−1∅ag−l(k) , Equation (8)

4:
To modify the power of nonlinearity signal modeling, the application of a fuzzy algorithm
in the autoregressive Gauss–Laguerre is announced; Equation (10)
Detail

4.1 Calculate ea f g−l(k)← εa f g−l(k)− εa f g−l(k− 1), Equation (11)

4.2
Calculate
∅a f g−l(k + 1)←

[
C∅∅a f g−l(k) + CiSi(k) + Cεεa f g−l(k)

]
+ ea f g−l(k) + U(k) + Cf f (k),

Equation (10)
4.3 Calculate εa f g−l(k) = (Co)

T
χg
−1∅a f g−l(k), Equation (10)

Currently, ∅(a f g−l)−s(k) is the state of RMS feature estimation using the combination
of the autoregressive fuzzy Gauss–Laguerre algorithm and second-order sliding observer,
U(a f g−l)−s(k) is the uncertainty estimation using the combination of the autoregressive
fuzzy Gauss–Laguerre algorithm and second-order sliding observer, ε(a f g−l)−s(k) is the
output function of RMS feature signal estimation using the combination of the autore-
gressive fuzzy Gauss–Laguerre algorithm and second-order sliding observer, and Cu(s)
is the coefficient of the second-order sliding observer for RMS feature estimation using
the combination of the autoregressive fuzzy Gauss–Laguerre algorithm and second-order
sliding observer. Moreover, the uncertainties using the combination of the autoregressive
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fuzzy Gauss–Laguerre algorithm and second-order sliding observer are described using
the following explanation.

U(a f g−l)−s(k) = Cu(s1)

(
Si(k)− ε(a f g−l)−s(k)

)
+ Cu(s2)sgn

(
Si(k)− ε(a f g−l)−s(k)

)
(13)

where
(

Cu(s1) and Cu(s2)

)
are the coefficients of uncertain estimation using the combination

of the autoregressive fuzzy Gauss–Laguerre algorithm and second-order sliding observer.
To recover the robustness in the classical sliding observer, the higher-order technique is
recommended in this effort. The definition of the high-order sliding observer is introduced
using the following explanation.

λ(k) = Cα‖
(

Si(k)− ε(a f g−l)−s(k)
)
‖

0.5
+ Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

)
(14)

where λ(k) is the high-order definition for the sliding observer and (Cα and Cβ) are the
coefficients for RMS signal estimation in the high-order sliding observer. In the presence
of uncertain conditions, the estimation error increases. The twisted algorithm is used to
reduce the error of estimation in uncertain conditions. Based on the high-order technique,
the twisted algorithm is introduced as follows. Γ(k) = −(Cα‖

(
Si(k)− ε(a f g−l)−s(k)

)
‖

0.5
+ Cβsgn(Si(k)− ε(a f g−l)−s(k)))

.
Γ(k) = Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

) (15)

where
.

Γ(k) is the twisting function. Thus, the combination of the proposed autoregressive
fuzzy Gauss–Laguerre RMS signal modeling approach and high-order sliding observer is
presented as follows.

∅(a f g−l)−hs(k + 1) =
[
C∅∅(a f g−l)−hs(k) + CiSi(k) + Cεε(a f g−l)−hs(k)

]
+ea f g−l(k) + U(a f g−l)−hs(k) + Cf f (k) + Cu(s)sgn

∣∣∣U(a f g−l)−hs(k)
∣∣∣ 2

3

ε(a f g−l)−hs(k) = (Co)
T
χg
−1∅(a f g−l)−hs(k)

(16)

where ∅(a f g−l)−hs(k) is the state of RMS feature estimation using the combination of
the autoregressive fuzzy Gauss–Laguerre algorithm and high-order sliding observer,
U(a f g−l)−hs(k) is the uncertainty estimation using the combination of the autoregressive
fuzzy Gauss–Laguerre algorithm and high-order sliding observer, and ε(a f g−l)−hs(k) is the
output function of RMS feature signal estimation using the combination of the autoregres-
sive fuzzy Gauss–Laguerre algorithm and high-order sliding observer. Furthermore, the
uncertainties using the combination of the autoregressive fuzzy Gauss–Laguerre algorithm,
high-order sliding observer, and twisting algorithm are described using the following ex-
planation.

U(a f g−l)−hs(k) = Cu(s1)

(
Si(k)− ε(a f g−l)−hs(k)

)
+ Cu(s2)sgn

(
Si(k)− ε(a f g−l)−hs(k)

)
+Cα‖

(
Si(k)− ε(a f g−l)−s(k)

)
‖

0.5
+ Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

)
− Γ(k)

(17)

To condense the consequence of high-frequency oscillation in the combined autoregres-
sive fuzzy Gauss–Laguerre algorithm and high-order sliding observer, a fuzzy algorithm
is recommended. Combining the autoregressive fuzzy Gauss–Laguerre algorithm and
high-order sliding fuzzy observer (in the proposed smooth sliding digital twin) can be used
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to overcome the fluctuations arising in uncertain/unknown conditions. Consequently, the
proposed smooth digital twin is obtainable, as described by the following definition.

∅SSDT(k + 1) = [C∅∅SSDT(k) + CiSi(k) + CεεSSDT(k)]

+ea f g−l(k) + USSDT(k) + Cf f (k) + Cu(s)sgn|USSDT(k)|
2
3

εSSDT(k) = (Co)
T
χg
−1∅SSDT(k)

(18)

where ∅SSDT(k) is the state of RMS feature estimation using the proposed smooth sliding
digital twin, USSDT(k) is the uncertainty estimation using the proposed smooth sliding
digital twin, and εSSDT(k) is the output function of RMS feature signal estimation using the
proposed smooth sliding digital twin. Additionally, the uncertainties using the proposed
smooth sliding digital twin are described using the following explanation.

USSDT(k) = Cu(s1)(Si(k)− εSSDT(k)) + Cu(s2)sgn(Si(k)− εSSDT(k)) + Cα‖(Si(k)− εSSDT(k))‖0.5

+Cβsgn(Si(k)− εSSDT(k)) + CfU f (k)− Γ(k)
(19)

where U f (k) is the uncertainty estimation using the fuzzy algorithm, and Cf is the fuzzy
coefficient used to reduce the error of the uncertainty estimation and decrease the effect
of chattering. The uncertainty estimation using the fuzzy technique is defined using the
following definition.

Algorithm 2: Proposed smooth sliding digital twin approach.

1:
RMS signal estimation using the combination of the proposed autoregressive fuzzy
Gauss–Laguerre RMS signal modeling approach and second-order sliding observer;
Equation (12)
Detail

1.1
Calculate
U(a f g−l)−s(k)← Cu(s1)

(
Si(k)− ε(a f g−l)−s(k)

)
+ Cu(s2)sgn

(
Si(k)− ε(a f g−l)−s(k)

)
,

Equation (13)

1.2
Calculate ∅(a f g−l)−s(k + 1)←

[
C∅∅(a f g−l)−s(k) + CiSi(k) + Cεε(a f g−l)−s(k)

]
+ ea f g−l(k)

+U(a f g−l)−s(k) + Cf f (k) + Cu(s)sgnU(a f g−l)−s(k) , Equation (12)
1.3 Calculate ε(a f g−l)−s(k)← (Co)

T
χg
−1∅(a f g−l)−s(k) , Equation (12)

2:
Improve the robustness of RMS signal estimation using the combination of the proposed
autoregressive fuzzy Gauss–Laguerre RMS signal modeling approach and high-order
sliding observer; Equation (16)
Detail

2.1 Calculate λ(k)← Cα‖
(

Si(k)− ε(a f g−l)−s(k)
)
‖

0.5
+ Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

)
,

Equation (14)

2.2 Calculate Γ(k)← −(Cα‖
(

Si(k)− ε(a f g−l)−s(k)
)
‖

0.5
+ Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

)
),

Equation (15)
2.3 Calculate

.
Γ(k)← Cβsgn

(
Si(k)− ε(a f g−l)−s(k)

)
, Equation (15)

2.4

Calculate U(a f g−l)−hs(k)← Cu(s1)

(
Si(k)− ε(a f g−l)−hs(k)

)
+

Cu(s2)sgn
(

Si(k)− ε(a f g−l)−hs(k)
)
+ Cα‖

(
Si(k)− ε(a f g−l)−s(k)

)
‖

0.5
+

Cβsgn
(

Si(k)− ε(a f g−l)−s(k)
)
− Γ(k) , Equation (17)

2.5
Calculate ∅(a f g−l)−hs(k + 1)←

[
C∅∅(a f g−l)−hs(k) + CiSi(k) + Cεε(a f g−l)−hs(k)

]
+ea f g−l(k) + U(a f g−l)−hs(k) + Cf f (k) + Cu(s)sgn

∣∣∣U(a f g−l)−hs(k)
∣∣∣ 2

3 , Equation (16)

2.6 Calculate ε(a f g−l)−hs(k)← (Co)
T
χg
−1∅(a f g−l)−hs(k) , Equation (16)
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Algorithm 2: Cont.

3:
Reduce the effect of the chattering phenomenon using the combination of the
autoregressive fuzzy Gauss–Laguerre algorithm, high-order sliding observer, and fuzzy
algorithm to design the proposed smooth sliding digital twin; Equation (18)
Detail

3.1
Calculate USSDT(k)← Cu(s1)(Si(k)− εSSDT(k)) + Cu(s2)sgn(Si(k)− εSSDT(k))

+Cα‖(Si(k)− εSSDT(k))‖0.5 + Cβsgn(Si(k)− εSSDT(k)) + CfU f (k)− Γ(k) , Equation (19)

3.2
Calculate ∅SSDT(k + 1)← [C∅∅SSDT(k) + CiSi(k) + CεεSSDT(k)] + ea f g−l(k)+

USSDT(k) + Cf f (k) + Cu(s)sgn|USSDT(k)|
2
3 , Equation (18)

3.3 Calculate εSSDT(k) = (Co)
T
χg
−1∅SSDT(k), Equation (18)

U f (k) =
∑z Uz ×Θz

∑z Θz
, Θz = ∑

z
e
(−0.5 ∑

j
(

φ(k)−µz
χg

)2)

(20)

where Uz(k) is the uncertainty, µz is a membership function used to calculate the fuzzy
estimation, and χg is the covariance matrix. Algorithm 2 shows the steps used to design the
proposed smooth sliding digital twin to overcome fluctuations arising in unknown conditions.

3.3. Bearing Anomaly Identification and Crack Size Detection

Based on Figure 4, after resampling and RMS feature extraction from the AE signal
of bearing, the RMS signal in known conditions is modeled using the proposed autore-
gressive fuzzy Gauss–Laguerre algorithm. After that, to estimate the RMS signals in all
conditions, the proposed smooth sliding digital twin based on the combination of the
proposed autoregressive fuzzy Gauss–Laguerre algorithm and high-order sliding fuzzy
observer is designed. In this part, the residual signal is generated based on the difference
between the original RMS signal and the estimated RMS signal of the bearing. The residual
signal of the proposed robust smooth sliding digital twin, (rSSDT(k)), is obtained by the
following definition.

rSSDT(k) = SAE(k)rms − εSSDT(k) (21)

After generating the residual signal, SVM is used for bearing anomaly identification
and crack size detection [8,9].

4. Experimental Results

To test the effectiveness of the proposed smooth sliding digital twin, the AE bearing
dataset is used [9]. Figure 5 illustrates the original AE signals for normal and abnormal
states. Based on this figure classification, the normal and abnormal conditions are difficult
to observe.

To reduce the complexity for modeling and estimation, the indirect observation al-
gorithm is suggested in this work. To design the indirect observer, the resampled RMS
feature is extracted from the original AE signals of the bearing and the RMS signal is
modeled and estimated. The original AE signal is divided into 6000 windows (each group
of 12,500 samples is defined as a window). Next, we obtained the RMS feature for each win-
dow. Figure 6 illustrates the resampled RMS signals for all conditions that were extracted
from the original AE signals for the bearing.

In the next step, the resampled RMS signal in known conditions (based on Table 2,
using the normal state when the motor speed is 300 RPM) is modeled. To test the power of
the indirect AE signal modeling using the proposed autoregressive fuzzy Gauss–Laguerre
algorithm, this technique is compared with the autoregressive Gauss–Laguerre technique
and autoregressive Gaussian method. Figure 7 illustrates the errors of RMS signal modeling
using the proposed autoregressive fuzzy Gauss–Laguerre algorithm, autoregressive Gauss–
Laguerre technique, and autoregressive Gaussian method. Based on this figure, the error
of the proposed autoregressive fuzzy Gauss–Laguerre algorithm is less than the other
two methods.
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The other challenges of signal modeling are related to stability and robustness. To
test the stability and robustness of the proposed autoregressive fuzzy Gauss–Laguerre
algorithm, autoregressive Gauss–Laguerre technique, and autoregressive Gaussian method,
the signal modeling errors are checked in normal conditions when the motor speeds are
300 RPM, 400 RPM, 450 RPM, and 500 RPM. Figure 8 illustrates the stability and robustness
in the proposed autoregressive fuzzy Gauss–Laguerre algorithm, autoregressive Gauss–
Laguerre technique, and autoregressive Gaussian method.
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Figure 8. Robustness and stability of RMS signal modeling using the proposed autoregressive fuzzy
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method for normal conditions.

Based on this figure the error of the proposed autoregressive fuzzy Gauss–Laguerre
algorithm is less than the other two techniques. Based on Figure 8, the proposed autore-
gressive fuzzy Gauss–Laguerre algorithm and autoregressive Gauss–Laguerre technique
are more robust than the autoregressive Gaussian method. According to the results in
Figures 7 and 8, the proposed autoregressive fuzzy Gauss–Laguerre algorithm is suggested
for RMS signal modeling. To test the power of RMS (indirect) signal estimation, the pro-
posed smooth sliding digital twin is compared with the high-order sliding digital twin and
sliding digital twin. Figure 9 illustrates the residual signals of the proposed smooth sliding
digital twin.
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According to this figure, the difference between signal levels in different classes is
much better than in Figure 6. This increases the anomaly detection and identification
performance. Based on this figure the level of the residual signal in NS is less than the faulty
conditions. Thus, the performance of fault detection in the proposed algorithm is perfect.
Furthermore, the difference between residual signals in different anomaly condition is
completely different. This makes the quality of the anomaly signal diagnosis excellent
in this case. Figures 10 and 11 show the residual of RMS signals in the higher-order
sliding digital twin and sliding digital twin, respectively. Based on Figures 10 and 11, the
high-frequency oscillation in the high-order sliding digital twin is less than in the sliding
digital twin. This means that the high-order technique can reduce the high-frequency
oscillation. According to Figure 10, it is difficult to distinguish between OBS and IOS, as
well as between NS and IS, using high-order sliding digital twin. In addition, based on
Figure 11, the challenging area in sliding digital twin are between NS and IS, between BS
and OS, and between IBS and OBS. Thus, in the challenging area we have overlapping.
According to Figures 9–11, the difference between signal levels in different classes in the
proposed smooth sliding digital twin (Figure 9) is much better than in the high-order
sliding digital twin (Figure 10) or sliding digital twin (Figure 11) because in this method the
signals are much more recognizable in different states (faults) than the other two techniques.
Thus, based on these figures, the performance of RMS residual signal classification in the
proposed smooth sliding digital twin is better than the other two methods. To test the
power of the classification accuracy in the proposed algorithm, the proposed smooth sliding
digital twin (proposed algorithm), high-order sliding digital twin, and sliding digital twin
are compared. Based on Figure 4, the SVM technique is used for anomaly bearing RMS
(indirect) signal diagnosis and crack size identification. In this paper, 25% of the RMS
residual signals for the proposed smooth sliding digital twin, high-order sliding digital
twin, and sliding digital twin are used for testing, while 75% are used for training. Details
about training and testing for crack diagnosis and crack size identification are presented
in Table 3.
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Table 3. The number of samples for training and testing for crack diagnosis and crack size identification.

Conditions Number of Training (Samples) Number of Testing (Samples)

Anomaly Diagnosis

NS 300 100
OS, IS, BS, IOS, IBS,

OBS, IOBS 600 200

Crack size identification in the (OS), (IS), (BS), (IOS), (IBS), (OBS), and (IOBS)

Crack sizes: 3 mm and
6 mm 300 100

Figures 12–14 illustrate the confusion matrices for the combination of the proposed
smooth sliding digital twin and SVM, combination of the high-order sliding digital twin
and SVM, and combination of the sliding digital twin and SVM.
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In addition, the averaged accuracy values of anomaly diagnosis based on the combina-
tion of the proposed smooth sliding digital twin and SVM, combination of the high-order
sliding digital twin and SVM, and combination of the sliding digital twin and SVM are
illustrated in Table 4.
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Table 4. Comparison between the combination of the proposed smooth sliding digital twin and SVM,
high-order sliding digital twin and SVM, and sliding digital twin and SVM for anomaly diagnosis.

States Proposed Smooth Sliding
Digital Twin and SVM (%)

High-Order Sliding Digital
Twin and SVM (%)

Sliding Digital Twin and
SVM (%)

NS 100 100 100
BS 99 91 89
IS 97 92 88
OS 98 92 87
IBS 96 90 86
IOS 96 88 89
OBS 98 91 90
IOBS 98 90 87

Average accuracy 97.75 91.75 89.5
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Based on these figures and Table 4, when the crack sizes are 3 mm and 6 mm and the
motor speeds are 300 RPM, 400 RPM, 450 RPM, and 500 RPM, the average values of the
anomaly diagnosis based on the combination of the proposed smooth sliding digital twin
and SVM, combination of the high-order sliding digital twin and SVM, and combination
of the sliding digital twin and SVM are 97.75%, 91.75%, and 89.5%, respectively. Thus,
the anomaly diagnosis performance for the combination of the proposed smooth sliding
digital twin is much better than the other two techniques. Based on Figure 13 and Table 4,
the critical anomaly diagnosis parts in the combined high-order sliding digital twin and
SVM are the IOS and OBS. Moreover, based on Figure 14 and Table 4, the critical anomaly
diagnosis parts in the combined sliding digital twin and SVM are the BS, OS, IBS, and OBS.

Furthermore, based on Figure 4, after diagnosis the anomalies, the crack sizes (3 mm or
6 mm) in the BS, IS, OS, IBS, IOS, OBS, and IOBS can be identified using the combination of
the proposed smooth sliding digital twin and SVM, combination of the high-order sliding
digital twin and SVM, and combination of the sliding digital twin and SVM. This means
that the crack size in all (BS, IS, OS, IBS, OBS, IOS, IOBS) conditions is 3 mm or 6 mm.
High resolution at this stage leads to more accurate identification of crack size in bearings.
Figures 15–21 show the power of the crack size identification using the combination of
the proposed smooth sliding digital twin and SVM, combination of the high-order sliding
digital twin and SVM, and combination of the sliding digital twin and SVM for the BS, IS,
OS, IBS, IOS, OBS, and IOBS conditions, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 24 
 

Based on these figures and Table 4, when the crack sizes are 3 mm and 6 mm and the 
motor speeds are 300 RPM, 400 RPM, 450 RPM, and 500 RPM, the average values of the 
anomaly diagnosis based on the combination of the proposed smooth sliding digital twin 
and SVM, combination of the high-order sliding digital twin and SVM, and combination 
of the sliding digital twin and SVM are 97.75%, 91.75%, and 89.5%, respectively. Thus, the 
anomaly diagnosis performance for the combination of the proposed smooth sliding dig-
ital twin is much better than the other two techniques. Based on Figure 13 and Table 4, the 
critical anomaly diagnosis parts in the combined high-order sliding digital twin and SVM 
are the IOS and OBS. Moreover, based on Figure 14 and Table 4, the critical anomaly di-
agnosis parts in the combined sliding digital twin and SVM are the BS, OS, IBS, and OBS. 

Furthermore, based on Figure 4, after diagnosis the anomalies, the crack sizes (3 mm 
or 6 mm) in the BS, IS, OS, IBS, IOS, OBS, and IOBS can be identified using the combination 
of the proposed smooth sliding digital twin and SVM, combination of the high-order slid-
ing digital twin and SVM, and combination of the sliding digital twin and SVM. This 
means that the crack size in all (BS, IS, OS, IBS, OBS, IOS, IOBS) conditions is 3 mm or 6 
mm. High resolution at this stage leads to more accurate identification of crack size in 
bearings. Figures 15–21 show the power of the crack size identification using the combi-
nation of the proposed smooth sliding digital twin and SVM, combination of the high-
order sliding digital twin and SVM, and combination of the sliding digital twin and SVM 
for the BS, IS, OS, IBS, IOS, OBS, and IOBS conditions, respectively. 

 
Figure 15. The accuracy of crack size identification for ball residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 16. The accuracy of crack size identification for inner residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

Figure 15. The accuracy of crack size identification for ball residual of RMS signals using proposed
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 24 
 

Based on these figures and Table 4, when the crack sizes are 3 mm and 6 mm and the 
motor speeds are 300 RPM, 400 RPM, 450 RPM, and 500 RPM, the average values of the 
anomaly diagnosis based on the combination of the proposed smooth sliding digital twin 
and SVM, combination of the high-order sliding digital twin and SVM, and combination 
of the sliding digital twin and SVM are 97.75%, 91.75%, and 89.5%, respectively. Thus, the 
anomaly diagnosis performance for the combination of the proposed smooth sliding dig-
ital twin is much better than the other two techniques. Based on Figure 13 and Table 4, the 
critical anomaly diagnosis parts in the combined high-order sliding digital twin and SVM 
are the IOS and OBS. Moreover, based on Figure 14 and Table 4, the critical anomaly di-
agnosis parts in the combined sliding digital twin and SVM are the BS, OS, IBS, and OBS. 

Furthermore, based on Figure 4, after diagnosis the anomalies, the crack sizes (3 mm 
or 6 mm) in the BS, IS, OS, IBS, IOS, OBS, and IOBS can be identified using the combination 
of the proposed smooth sliding digital twin and SVM, combination of the high-order slid-
ing digital twin and SVM, and combination of the sliding digital twin and SVM. This 
means that the crack size in all (BS, IS, OS, IBS, OBS, IOS, IOBS) conditions is 3 mm or 6 
mm. High resolution at this stage leads to more accurate identification of crack size in 
bearings. Figures 15–21 show the power of the crack size identification using the combi-
nation of the proposed smooth sliding digital twin and SVM, combination of the high-
order sliding digital twin and SVM, and combination of the sliding digital twin and SVM 
for the BS, IS, OS, IBS, IOS, OBS, and IOBS conditions, respectively. 

 
Figure 15. The accuracy of crack size identification for ball residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 16. The accuracy of crack size identification for inner residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 
Figure 16. The accuracy of crack size identification for inner residual of RMS signals using proposed
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.



Appl. Sci. 2022, 12, 6770 19 of 24Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 17. The accuracy of crack size identification for outer residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 18. The accuracy of crack size identification for inner-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 19. The accuracy of crack size identification for outer-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

Figure 17. The accuracy of crack size identification for outer residual of RMS signals using proposed
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 17. The accuracy of crack size identification for outer residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 18. The accuracy of crack size identification for inner-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 19. The accuracy of crack size identification for outer-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

Figure 18. The accuracy of crack size identification for inner-ball residual of RMS signals using
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 17. The accuracy of crack size identification for outer residual of RMS signals using proposed 
smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 18. The accuracy of crack size identification for inner-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 19. The accuracy of crack size identification for outer-ball residual of RMS signals using pro-
posed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 
Figure 19. The accuracy of crack size identification for outer-ball residual of RMS signals using
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.



Appl. Sci. 2022, 12, 6770 20 of 24Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 24 
 

 
Figure 20. The accuracy of crack size identification for inner-outer residual of RMS signals using 
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 21. The accuracy of crack size identification for inner-outer-ball residual of RMS signals using 
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

It can be seen from the figures that in the proposed method in all (BS, IS, OS, IBS, 
OBS, IOS, and IOBS) faulty conditions, the signal is very separable for 3-mm and 6-mm 
crack sizes. According to the above figures, the crack size identification performance for 
the proposed smooth sliding digital twin is better than the other two methods; the power 
and accuracy of estimation in the proposed smooth sliding digital twin is much better 
than in the high-order sliding digital twin and sliding digital twin because in the proposed 
method the signals are much more recognizable for 3 mm and 6 mm in different states 
(faults) than the other two techniques. Based on Figures 9–11 and 15–21, the proposed 
smooth sliding digital twin has an excellent performance for fault diagnosis and crack size 
identification. These figures provide additional evidence that the crack size diagnosis per-
formance is superior in the proposed technique. Furthermore, Table 5 compares the crack 
size identification accuracies for the combination of the proposed smooth sliding digital 
twin and SVM, combination of the high-order sliding digital twin and SVM, and combi-
nation of the sliding digital twin and SVM. 

  

Figure 20. The accuracy of crack size identification for inner-outer residual of RMS signals using
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 24 
 

 
Figure 20. The accuracy of crack size identification for inner-outer residual of RMS signals using 
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

 
Figure 21. The accuracy of crack size identification for inner-outer-ball residual of RMS signals using 
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin. 

It can be seen from the figures that in the proposed method in all (BS, IS, OS, IBS, 
OBS, IOS, and IOBS) faulty conditions, the signal is very separable for 3-mm and 6-mm 
crack sizes. According to the above figures, the crack size identification performance for 
the proposed smooth sliding digital twin is better than the other two methods; the power 
and accuracy of estimation in the proposed smooth sliding digital twin is much better 
than in the high-order sliding digital twin and sliding digital twin because in the proposed 
method the signals are much more recognizable for 3 mm and 6 mm in different states 
(faults) than the other two techniques. Based on Figures 9–11 and 15–21, the proposed 
smooth sliding digital twin has an excellent performance for fault diagnosis and crack size 
identification. These figures provide additional evidence that the crack size diagnosis per-
formance is superior in the proposed technique. Furthermore, Table 5 compares the crack 
size identification accuracies for the combination of the proposed smooth sliding digital 
twin and SVM, combination of the high-order sliding digital twin and SVM, and combi-
nation of the sliding digital twin and SVM. 

  

Figure 21. The accuracy of crack size identification for inner-outer-ball residual of RMS signals using
proposed smooth sliding digital twin, high-order sliding digital twin, and sliding digital twin.

It can be seen from the figures that in the proposed method in all (BS, IS, OS, IBS,
OBS, IOS, and IOBS) faulty conditions, the signal is very separable for 3-mm and 6-mm
crack sizes. According to the above figures, the crack size identification performance for
the proposed smooth sliding digital twin is better than the other two methods; the power
and accuracy of estimation in the proposed smooth sliding digital twin is much better
than in the high-order sliding digital twin and sliding digital twin because in the proposed
method the signals are much more recognizable for 3 mm and 6 mm in different states
(faults) than the other two techniques. Based on Figures 9–11 and 15–21, the proposed
smooth sliding digital twin has an excellent performance for fault diagnosis and crack
size identification. These figures provide additional evidence that the crack size diagnosis
performance is superior in the proposed technique. Furthermore, Table 5 compares the
crack size identification accuracies for the combination of the proposed smooth sliding
digital twin and SVM, combination of the high-order sliding digital twin and SVM, and
combination of the sliding digital twin and SVM.
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Table 5. Crack size identification accuracy of the residual RMS signals using the combination of the
proposed smooth sliding digital twin and SVM, the combination of the high-order sliding digital
twin and SVM, and the combination of the sliding digital twin and SVM.

State Crack Sizes (mm) Proposed Smooth Sliding
Digital Twin and SVM (%)

High-Order Sliding Digital
Twin and SVM (%)

Sliding Digital Twin
and SVM (%)

BS
3 98 90 85
6 98 92 86

IS
3 97 88 86
6 98 92 88

OS
3 98 90 88
6 96 91 89

IBS
3 98 89 85
6 98 92 86

OBS
3 97 90 83
6 99 93 85

IOS
3 97 90 86
6 99 91 88

IOBS
3 98 92 85
6 98 92 86

Average accuracy of size identification 97.78 90.86 86.14

According to the above table, the crack size identification accuracies of the combination
of the proposed smooth sliding digital twin approach and SVM, combination of the high-
order sliding digital twin and SVM, and combination of the sliding digital twin and SVM
are 97.78%, 90.86%, and 86.14%, respectively. Thus, the proposed smooth sliding digital
twin has improved the crack size identification accuracy by 6.92 and 11.64 percentage
points compared to the high-order sliding digital twin and sliding digital twin, respectively.

Therefore, according to Tables 4 and 5, the accuracy of anomaly diagnosis and crack
size classification in the combination of the proposed smooth sliding digital twin and SVM
are 97.75% and 97.78%, respectively. These values are 91.75% and 90.86%, respectively, for
the combination of the high-order sliding digital twin and SVM and 89.5% and 86.14%,
respectively, for the combination of the sliding digital twin and SVM. Thus, based on
these two tables, the proposed smooth sliding digital twin has improved the accuracy of
anomaly diagnosis and crack size classification by 6 and 6.92 percentage points compared
to the high-order sliding digital twin and 8.25 and 11.64 percentage points compared to the
sliding digital twin. In the next part, to validate the effectiveness of the proposed smooth
sliding digital twin, this approach is compared with following three existing methods
including Kalman filter approach [8], classical feedback backstepping observer [9], and
variable structure observer [17].

In [8], the authors have used the combination of mathematical-based signal modeling,
support vector regression with Laguerre algorithm, and Kalman filter for bearing fault
diagnosis. In this approach, the authors used the mathematical approach and identification
technique for signal modeling. This approach is complex for modeling and estimation, as
well. In addition, in [9], the combination of support vector regression, Gaussian Process
Regression, and feedback backstepping observer was suggested for fault diagnosis in the
bearing. The main challenge in this approach was stability and robustness. Furthermore,
variable structure observer has used for bearing fault diagnosis in [17]. However, the
nonlinear autoregression technique was used for system modeling, this technique suffers
from high frequency oscillation. To validate the proposed approach further, we calculate the
average diagnostic accuracy for (see Table 6) under various operating conditions. Table 6
present the diagnostic accuracy of the proposed smooth sliding digital twin algorithm,
Kalman filter (KF) approach [8], classical feedback backstepping (CFB) observer [9], and
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variable structure [VS] observer [17] for fault diagnosis in bearing. The diagnostic accuracy
is reported as the percentage of correct detection in all data. As shown in Table 6, the
proposed smooth sliding digital twin fault diagnosis method outperforms the state-of-
the-arts KF observer, CFB observer, and VS technique, yielding average performance
improvements of 6.25%, 5.5%, and 6.5%, respectively. This performance improvement can
be further validated by the fact that our proposed smooth sliding digital twin method is
highly sufficient to identify the fault in the bearing.

Table 6. Comparison between the proposed smooth sliding digital twin, Kalman filter (KF) [8],
classical feedback backstepping (CFB) observer [9], and variable structure (VS) observer [17] for
anomaly diagnosis.

States Proposed Smooth Sliding
Digital Twin and SVM (%) KF [8] (%) CFB [9] (%) VS [17] (%)

NS 100 100 100 100
BS 99 88 90 91
IS 97 89 88 90
OS 98 89 92 87
IBS 96 90 90 88
IOS 96 92 92 92
OBS 98 90 91 93
IOBS 98 94 95 89

Average accuracy 97.75 91.5 92.25 91.25

5. Conclusions

In this research, a proposed smooth sliding digital twin was used for anomaly diag-
nosis and crack size identification in bearings based on the AE signals. First, the RMS
feature signal was extracted from the AE signals to increase the signal modeling accuracy.
Then, the normal RMS feature signal was modeled using the autoregressive fuzzy Gauss–
Laguerre approach. This technique is robust and can model the normal RMS signal with
high accuracy. Next, a smooth digital twin was proposed for RMS signal estimation in
different conditions. This method was designed by combining the proposed modeling
algorithm with the proposed estimation scheme. Apart from stability and robustness of
the sliding mode digital twin, it has a high-frequency oscillation challenge. To overcome
this challenge, a high-order and super-twisting technique was suggested. Furthermore, the
fuzzy technique was used with the high-order sliding digital twin to improve the flexibility
of signal estimation. Moreover, the combination of the smooth sliding digital twin and
SVM was proposed for anomaly diagnosis and crack size identification. The power of the
proposed smooth sliding digital twin for anomaly diagnosis and crack size identification
was compared with those of the high-order sliding digital twin and sliding digital twin.
The proposed smooth sliding digital twin was shown to improve the accuracy of anomaly
diagnosis by 6 and 8.25 percentage points compared to the high-order sliding digital twin
and sliding digital twin, respectively. Furthermore, the proposed algorithm has enhanced
the accuracy of crack size identification by 6.92 and 11.64 percentage points compared to
the high-order sliding digital twin and sliding digital twin, respectively. Although the
proposed method has a reliable response under unknown conditions, it can be improved
in future work by utilizing the parallel combination of the digital twin and deep-learning
approach. Moreover, the robust algorithms for modeling and estimation are used to reduce
the effect of noise and uncertain conditions. With this combination, the performance of
signal estimation and reliability can be improved.
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