
Citation: Zhao, W.; Wen, W.; Liu, K.;

Zhang, Y.; Wang, Q.; Yin, G.; Sun, B.;

Zhang, Y.; Gao, X. An Improved

Point Cloud Upsampling Algorithm

for X-ray Diffraction on Thermal

Coatings of Aeroengine Blades. Appl.

Sci. 2022, 12, 6807. https://doi.org/

10.3390/app12136807

Academic Editor: Byung-Gyu Kim

Received: 23 March 2022

Accepted: 9 May 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Improved Point Cloud Upsampling Algorithm for X-ray
Diffraction on Thermal Coatings of Aeroengine Blades
Wenhan Zhao 1,2,†, Wen Wen 1,†, Ke Liu 3,†, Yan Zhang 2, Qisheng Wang 1,*, Guangzhi Yin 3, Bo Sun 1,3,* ,
Ying Zhang 3 and Xingyu Gao 3,*

1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
15650390060@163.com (W.Z.); wenwen@sinap.ac.cn (W.W.)

2 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China;
zhangyan@shmtu.edu.cn

3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
liuk@sari.ac.cn (K.L.); yingz@sari.ac.cn (G.Y.); zhangying@sari.ac.cn (Y.Z.)

* Correspondence: wangqisheng@sinap.ac.cn (Q.W.); sunb@sari.ac.cn (B.S.); gaoxy@sari.ac.cn (X.G.)
† These authors contributed equally to this work.

Abstract: X-ray diffraction can non-destructively reveal microstructure information, including stress
distribution on thermal coatings of aeroengine blades. In order to accurately pinpoint the detection
position and precisely set the measurement geometry, a 3D camera is adopted to obtain the point
cloud data on the blade surface and perform on-site modeling. Due to hardware limitations, the
resolution of raw point clouds is insufficient. The point cloud needs to be upsampled. However, the
current upsampling algorithm is greatly affected by noise and it is easy to generate too many outliers,
which affects the quality of the generated point cloud. In this paper, a generative adversarial point
cloud upsampling model is designed, which achieves better noise immunity by introducing dense
graph convolution blocks in the discriminator. Additionally, filters are used to further process the
noisy data before using the deep learning model. An evaluation of the network and a demonstration
of the experiment show the effectivity of the new algorithm.

Keywords: point cloud upsampling; aeroengine blades; deep learning; generative adversarial network

1. Introduction

High-pressure turbine blades are the core hot-end components of aeroengines. Detect-
ing the coating surface of blades with complex shapes and cross-sections, and obtaining
surface microstructure information, including stress distribution, are of great significance
for guiding the preparation, subsequent processing, and service of turbine blades [1]. X-ray
diffraction is one of the most widely used and most accurate characterization methods for
studying the microstructure of materials. In particular, high-intensity synchrotron radiation
X-rays can perform high-sensitive, high-spatial-resolution, and high-energy resolution
analysis to obtain essential structural information such as the internal crystal structure,
stress–strain, phase transition, and defects of the thermal barrier coating [2,3].

To determine the coordinates of the measured point and the X-ray incident angle, point
cloud data are adopted to perform 3D modeling at the beamline BL14B1 [4] in the Shanghai
Synchrotron Radiation Facility (SSRF), which is shown in Figure 1. Point cloud data of
the blade’s surface are collected with a 3D camera. In the 3D model, the XYZ coordinate
information and the X-ray incidence angle are defined and the target point to be detected is
selected. Then, the normal direction of that point is calculated. According to the mapping of
the 3D model and the real samples, the blade mounted on the six-axis motorized platform
is driven to the desired position. Finally, the diffraction data are collected to analyze the
stress information.

Appl. Sci. 2022, 12, 6807. https://doi.org/10.3390/app12136807 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136807
https://doi.org/10.3390/app12136807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1932-2267
https://doi.org/10.3390/app12136807
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136807?type=check_update&version=1

Appl. Sci. 2022, 12, 6807 2 of 12

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 12

motorized platform is driven to the desired position. Finally, the diffraction data are col-
lected to analyze the stress information.

Figure 1. Point cloud used in the X-ray diffraction experiment.

However, the point cloud data generated by the 3D camera is relatively sparse and
has certain deviations, which cannot meet the accuracy requirements needed to measure
the residual stress of the target point accurately. The upsampling algorithm can process
the original data to generate dense, complete, and uniform point cloud data [5]. With the
rapid development of the deep learning method for point clouds [6–8], point cloud up-
sampling research based on deep learning has achieved state-of-the-art results, such as
PU-Net [9], EC-Net [10], MPU [11], PU-GCN [12], and PU-GAN [13]. However, the point
cloud obtained from the 3D camera contains a lot of noisy data. Inputting the raw data
directly into those models will further amplify the noises. Some subtle features will be
lost, and some new noise points and non-uniform points will be generated. If it occurs in
the region of interest (ROI) of the blade’s surface, the wrong point may be selected for the
subsequent experiment. This problem can be mitigated by the statistical outlier removal
(SOR) method [14], which can remove the scattered noise points and abnormal points in
the point cloud data.

In this work, the point cloud upsampling algorithm is applied to improve the accu-
racy of the experiment. We improve the existing deep learning model using dense graph
convolution blocks to make the generated point cloud closer to the real point cloud distri-
bution, called the graph convolution point cloud upsampling generative adversarial net-
work (GPU-GAN). In this paper, a new discriminator model is designed, which gives the
model better anti-noise ability by learning the features between points and points in the
coordinate space neighborhood. Before using the deep learning model, we use the SOR
and pass-through filter [15] to preprocess the point cloud in order to reduce noise inter-
ference and improve the operation speed. We evaluate the effectiveness of GPU-GAN by
analyzing upsampled point cloud data as well as X-ray diffraction experiments.

2. Methodology
The process of establishing the coordinates of the 3D space model is shown in Figure

2. Firstly, calibration experiments are carried out to reduce the deviation that exists in the
process of the experiment. Then, the fast cluster SOR (FCSOR) is adopted to remove noise
points, and a pass-through filter is selected to remove redundant points that are not rele-
vant to the experiment. Finally, the point cloud processed by the filter is input to the up-
sampling model, and the final point cloud is obtained.

Figure 2. Overview of 3D space model coordinates. r is the upsampling rate.

Figure 1. Point cloud used in the X-ray diffraction experiment.

However, the point cloud data generated by the 3D camera is relatively sparse and
has certain deviations, which cannot meet the accuracy requirements needed to measure
the residual stress of the target point accurately. The upsampling algorithm can process
the original data to generate dense, complete, and uniform point cloud data [5]. With
the rapid development of the deep learning method for point clouds [6–8], point cloud
upsampling research based on deep learning has achieved state-of-the-art results, such as
PU-Net [9], EC-Net [10], MPU [11], PU-GCN [12], and PU-GAN [13]. However, the point
cloud obtained from the 3D camera contains a lot of noisy data. Inputting the raw data
directly into those models will further amplify the noises. Some subtle features will be
lost, and some new noise points and non-uniform points will be generated. If it occurs in
the region of interest (ROI) of the blade’s surface, the wrong point may be selected for the
subsequent experiment. This problem can be mitigated by the statistical outlier removal
(SOR) method [14], which can remove the scattered noise points and abnormal points in
the point cloud data.

In this work, the point cloud upsampling algorithm is applied to improve the accu-
racy of the experiment. We improve the existing deep learning model using dense graph
convolution blocks to make the generated point cloud closer to the real point cloud dis-
tribution, called the graph convolution point cloud upsampling generative adversarial
network (GPU-GAN). In this paper, a new discriminator model is designed, which gives
the model better anti-noise ability by learning the features between points and points in the
coordinate space neighborhood. Before using the deep learning model, we use the SOR and
pass-through filter [15] to preprocess the point cloud in order to reduce noise interference
and improve the operation speed. We evaluate the effectiveness of GPU-GAN by analyzing
upsampled point cloud data as well as X-ray diffraction experiments.

2. Methodology

The process of establishing the coordinates of the 3D space model is shown in Figure 2.
Firstly, calibration experiments are carried out to reduce the deviation that exists in the
process of the experiment. Then, the fast cluster SOR (FCSOR) is adopted to remove noise
points, and a pass-through filter is selected to remove redundant points that are not relevant
to the experiment. Finally, the point cloud processed by the filter is input to the upsampling
model, and the final point cloud is obtained.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 12

motorized platform is driven to the desired position. Finally, the diffraction data are col-
lected to analyze the stress information.

Figure 1. Point cloud used in the X-ray diffraction experiment.

However, the point cloud data generated by the 3D camera is relatively sparse and
has certain deviations, which cannot meet the accuracy requirements needed to measure
the residual stress of the target point accurately. The upsampling algorithm can process
the original data to generate dense, complete, and uniform point cloud data [5]. With the
rapid development of the deep learning method for point clouds [6–8], point cloud up-
sampling research based on deep learning has achieved state-of-the-art results, such as
PU-Net [9], EC-Net [10], MPU [11], PU-GCN [12], and PU-GAN [13]. However, the point
cloud obtained from the 3D camera contains a lot of noisy data. Inputting the raw data
directly into those models will further amplify the noises. Some subtle features will be
lost, and some new noise points and non-uniform points will be generated. If it occurs in
the region of interest (ROI) of the blade’s surface, the wrong point may be selected for the
subsequent experiment. This problem can be mitigated by the statistical outlier removal
(SOR) method [14], which can remove the scattered noise points and abnormal points in
the point cloud data.

In this work, the point cloud upsampling algorithm is applied to improve the accu-
racy of the experiment. We improve the existing deep learning model using dense graph
convolution blocks to make the generated point cloud closer to the real point cloud distri-
bution, called the graph convolution point cloud upsampling generative adversarial net-
work (GPU-GAN). In this paper, a new discriminator model is designed, which gives the
model better anti-noise ability by learning the features between points and points in the
coordinate space neighborhood. Before using the deep learning model, we use the SOR
and pass-through filter [15] to preprocess the point cloud in order to reduce noise inter-
ference and improve the operation speed. We evaluate the effectiveness of GPU-GAN by
analyzing upsampled point cloud data as well as X-ray diffraction experiments.

2. Methodology
The process of establishing the coordinates of the 3D space model is shown in Figure

2. Firstly, calibration experiments are carried out to reduce the deviation that exists in the
process of the experiment. Then, the fast cluster SOR (FCSOR) is adopted to remove noise
points, and a pass-through filter is selected to remove redundant points that are not rele-
vant to the experiment. Finally, the point cloud processed by the filter is input to the up-
sampling model, and the final point cloud is obtained.

Figure 2. Overview of 3D space model coordinates. r is the upsampling rate. Figure 2. Overview of 3D space model coordinates. r is the upsampling rate.

Calibration Experiment: The platform on which the sample is placed can be moved
along the six-axis to adjust the blade’s posture. Before the experiment, it is necessary
to calibrate the platform motion coordinate system and calculate the platform motion
parameters, which can set up the mapping relationship between the real sample and the
point cloud. There is a deviation when using the point cloud data to locate the sample and

Appl. Sci. 2022, 12, 6807 3 of 12

move it to the target point. The deviation comes from two aspects: the platform motion
deviation and the point cloud matching position deviation. The platform motion deviation
mainly comes from the stepper motor, such as the wear of the stepper motor in use and
environmental interference. Point cloud matching position deviation mainly comes from
the 3D cameras. There is a certain deviation when the 3D camera obtains the coordinate
information of the blade. The platform motion deviation can be eliminated by calculating
the difference between the theoretical position and the actual position of the object for
calibration. The platform motion deviation is calculated as follows:

eplat f orm(x, y, z, rx, ry, θ) = Pact(x, y, z, rx, ry, θ)− Ptheor(x, y, z, rx, ry, θ) (1)

where P represents the center of the object for calibration, and x, y, z, rx, ry, θ represents the
coordinates in the six degrees of freedom direction.

The object matching deviation can be eliminated by calculating the difference between
the actual and the theoretical position of the sample. The object matching deviation is
calculated as follows:

ecamera(x, y, z) = P′act(x, y, z)− P′theor(x, y, z) (2)

where P′ represents the center of the sample, and x, y, z represent the 3D coordinates of
the point.

Through the above calibration experiments, the deviation can be reduced and the
positioning accuracy of the sample can be improved. Because the calibration experiment is
the preprocess step of our research, the detail is not described here.

Pretreatment: We select SOR to denoise the point cloud. For each point, the average
distance d is calculated from all points in its k neighborhood. The average distance cor-
responding to each point is obtained in the input point cloud. For all points in the input
point cloud, it is assumed that each element in the distance array constitutes a Gaussian
distribution, which is determined by the mean and standard deviation of the sample. Cor-
responding points whose d value is outside the standard range (defined by the mean and
variance of the sample) can be defined as outliers and removed from the data set. Because
there are millions of points in the data sets, the method proposed by FCSOR to speed up the
calculation time is introduced [16]. For each point, the average squared Euclidean distance
of its k-nearest neighbors are calculated and the points are divided into different clusters.
Then, the average number of points in each cluster is counted and the SOR calculations are
only performed on clusters with fewer points than the average.

After performing the filtering, we use the pass-through filter to remove irrelevant data
and retain the point cloud in the area required for the experiment. Algorithm 1 shows the
detailed calculation process of the pretreatment.

µ is the denoising coefficient. When di is not within the range of d ± 3σ, the point
pi can be removed as a noise point. In the 3D point cloud denoising processing, µ can
be adjusted as needed. If µ is larger, fewer points will be deleted; if µ is smaller, more
points will be deleted [14]. The filtering effect of SOR is affected by the noise removal
coefficient µ and the number of points k in the field. In the actual application process, by
comparing the filtering effects under different parameters, the parameters with the better
effect are selected, which can remove noise points as much as possible and retain the real
value. In this paper, we define the number of clusters as 10, k as 50, and µ as 1. These
data are obtained by actual experimental testing. For different point cloud data, different
parameters need to be tested to obtain a better filter effect.

Appl. Sci. 2022, 12, 6807 4 of 12

Algorithm 1 Pretreatment

Input: Point cloud P = {pi}, pi = (xi, yi, zi)

Output: Filtered point cloud O =
{

oj

}
, oj =

(
xj, yj, zj

)
1: function Fast cluster statistic outlier removal (P)
2: Defining cluster size
3: N ← Clusternumber
4: ClusterLenth = max{xi} −min{xi}/N
5: ClusterWidth = max{yi} −min{yi}/N
6: ClusterHeight = max{zi} −min{zi}/N
7: Subdividing point cloud space into N clusters C = ck
8: for pi ∈ P do
9: di =

(
∑k

i k_nearestNeighbourDistance(pi)
)

/k
10: add pi appropriate cluster ck
11: end for
12: µµ = i/N
13: Retain clusters Cu with number of points less than µµ

14: for pi ∈ Cu do
15: di =

1
n ∑n

i di

16: σ =

√
1
n ∑n

i (di − di)
2

17: P′ =
{

pi ∈ P
∣∣∣(di − µσ

)
≤ di ≤

(
di + µσ

)}
18: end for
19: return P′

20: end function
21:
22: function Pass-through filter (P′)
23: Defining experimental area (EA)
24: xmin ← EAxmin
25: xmax ← EAxmax
26: ymin ← EAymin
27: ymax ← EAymax
28: return O =

{
p′i ∈ P′

∣∣xmin < xi < xmax, ymin < yi < ymax
}

29: end function

Upsampling: After filtering the point cloud, we use GPU-GAN to upsample the point
cloud, which is an improvement based on PU-GAN [13]. The upsampling model is divided
into two parts: the generator network and the discriminator network, as shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 12

 8: for 𝑝 ∈ 𝑃 do
 9: 𝑑 = (∑ 𝑘 _𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝))/𝑘
 10: add 𝑝 appropriate cluster 𝑐
 11: end for
 12: 𝜇 = 𝑖/𝑁
 13: Retain clusters 𝐶 with number of points less than 𝜇
 14: for 𝑝 ∈ 𝐶 do
 15: 𝑑‾ = ∑ 𝑑

 16: 𝜎 = ∑ (𝑑 − 𝑑‾)

 17: 𝑃 = {𝑝 ∈ 𝑃|(𝑑‾ − 𝜇𝜎) ≤ 𝑑 ≤ (𝑑‾ + 𝜇𝜎)}
 18: end for
 19: return 𝑃
 20: end function
 21:
 22: function Pass-through filter (𝑃)
 23: Defining experimental area (EA)
 24: 𝑥 ← 𝐸𝐴𝑥
 25: 𝑥 ← 𝐸𝐴𝑥
 26: 𝑦 ← 𝐸𝐴𝑦
 27: 𝑦 ← 𝐸𝐴𝑦
 28: return 𝑂 = {𝑝 ∈ 𝑃 |𝑥 < 𝑥 < 𝑥 , 𝑦 < 𝑦 < 𝑦 }
 29: end function 𝜇 is the denoising coefficient. When 𝑑 is not within the range of �̅� ± 3𝜎, the point 𝑝
can be removed as a noise point. In the 3D point cloud denoising processing, 𝜇 can be
adjusted as needed. If 𝜇 is larger, fewer points will be deleted; if 𝜇 is smaller, more points
will be deleted [14]. The filtering effect of SOR is affected by the noise removal coefficient 𝜇 and the number of points 𝑘 in the field. In the actual application process, by comparing
the filtering effects under different parameters, the parameters with the better effect are
selected, which can remove noise points as much as possible and retain the real value. In
this paper, we define the number of clusters as 10, 𝑘 as 50, and 𝜇 as 1. These data are ob-
tained by actual experimental testing. For different point cloud data, different parameters
need to be tested to obtain a better filter effect.

Upsampling: After filtering the point cloud, we use GPU-GAN to upsample the point
cloud, which is an improvement based on PU-GAN [13]. The upsampling model is di-
vided into two parts: the generator network and the discriminator network, as shown in
Figure 3.

Figure 3. Overview of GPU-GAN’s architecture. MLP represents multi-layer perceptron; Conv
represents convolutional layer; N is the number of points in P; r is the upsampling rate; and C, C′, Cd
are the number of feature channels.

Appl. Sci. 2022, 12, 6807 5 of 12

The generator network has three components to process the input point cloud se-
quentially. The purpose of the feature extraction component is to extract features from the
input point cloud. The feature expansion component aims to expand the point feature. It
upsamples the point feature to obtain the expanded feature, and then downsamples that to
compute the difference between the features before and after upsampling. The difference is
added with the first-step expanded feature to self-correct the expanded feature. The point
set generation component returns a set of 3D coordinates from the point expansion feature
through a set of multi-layer perceptrons. Finally, rN points are generated through a farthest
point sampling step. r is the upsampling magnification. N is the number of points.

The purpose of the discriminator network is to distinguish whether the generator is
input or not to help the generator training. Inspired by AR-GCN [17], we introduce a graph
convolution module and redesign the discriminator part. Firstly, we extract global features
of the input point cloud with shape rN × c using a set of MLPs. Then, a pooling block
is used to downsample the global features to obtain features with the shape N × c. Our
introduction of a graph convolution block to further process the features and its structure
is shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12

Figure 3. Overview of GPU-GAN’s architecture. MLP represents multi-layer perceptron; Conv rep-
resents convolutional layer; 𝑁 is the number of points in 𝑃; r is the upsampling rate; and 𝐶, 𝐶 , 𝐶
are the number of feature channels.

The generator network has three components to process the input point cloud se-
quentially. The purpose of the feature extraction component is to extract features from the
input point cloud. The feature expansion component aims to expand the point feature. It
upsamples the point feature to obtain the expanded feature, and then downsamples that
to compute the difference between the features before and after upsampling. The differ-
ence is added with the first-step expanded feature to self-correct the expanded feature.
The point set generation component returns a set of 3D coordinates from the point expan-
sion feature through a set of multi-layer perceptrons. Finally, rN points are generated
through a farthest point sampling step. r is the upsampling magnification. N is the number
of points.

The purpose of the discriminator network is to distinguish whether the generator is
input or not to help the generator training. Inspired by AR-GCN [17], we introduce a
graph convolution module and redesign the discriminator part. Firstly, we extract global
features of the input point cloud with shape 𝑟𝑁 × 𝑐 using a set of MLPs. Then, a pooling
block is used to downsample the global features to obtain features with the shape 𝑁 × 𝑐.
Our introduction of a graph convolution block to further process the features and its struc-
ture is shown in Figure 4.

Figure 4. The structure of a graph convolution block.

Since the point cloud is disordered and does not have a predefined adjacency matrix,
we define the adjacency matrix 𝑁(𝑝) by using input point cloud to query the 𝑘 nearest
neighbors of 𝑝. Firstly, we calculate the Euclidean distance between each point in the point
cloud and other points, and arrive at the k-nearest neighbors of point 𝑝 . Then, the index
information of the k neighbors is recorded to obtain the adjacency matrix 𝑁(𝑝) corre-
sponding to the point 𝑝 . Finally, according to the neighborhood information defined by
the 𝑁(𝑝), the local features corresponding to each point are learned through the convolu-
tion operation. The feature calculation method is as follows:

𝐹 = 𝐹 + 𝐹 , 𝑘 ∈ 𝑁(𝑝) (3)

where 𝐹 represents the feature of point 𝑝 at layer 𝑖. To avoid the degradation problem in
deep learning network training and speed up the network’s training, we introduce a dense
connection between each graph convolutional block. Compared with residual links [18],
dense connections [19] can enable each layer to receive the features of all previous layers,
which can achieve feature reuse, improve training efficiency, and improve the perfor-
mance of the discriminator. After the graph convolution block, we process the features
through a convolutional layer, output the one-dimensional feature values of 256 points,
and arrive at the confidence value 𝐷(𝑄) via averaging them.

Figure 4. The structure of a graph convolution block.

Since the point cloud is disordered and does not have a predefined adjacency matrix,
we define the adjacency matrix N(p) by using input point cloud to query the k nearest
neighbors of p. Firstly, we calculate the Euclidean distance between each point in the
point cloud and other points, and arrive at the k-nearest neighbors of point pi. Then, the
index information of the k neighbors is recorded to obtain the adjacency matrix N(pi)
corresponding to the point pi. Finally, according to the neighborhood information defined
by the N(pi), the local features corresponding to each point are learned through the
convolution operation. The feature calculation method is as follows:

Fp
i = Fp

i +
k

∑
n=1

Fn
i , k ∈ N(p) (3)

where Fn
i represents the feature of point p at layer i. To avoid the degradation problem in

deep learning network training and speed up the network’s training, we introduce a dense
connection between each graph convolutional block. Compared with residual links [18],
dense connections [19] can enable each layer to receive the features of all previous layers,
which can achieve feature reuse, improve training efficiency, and improve the performance
of the discriminator. After the graph convolution block, we process the features through a
convolutional layer, output the one-dimensional feature values of 256 points, and arrive at
the confidence value D(Q) via averaging them.

The network is trained with a patch-based approach, which finds 200 seed positions
on each model, and then uses Poisson disk sampling at each point to generate rN points
as a patch, denoted as Q̂. N points are selected randomly from Q̂ as the input P of the

Appl. Sci. 2022, 12, 6807 6 of 12

network. The least squares loss is defined as the adversarial loss for the generator network
and the discriminator network:

min LG_adv(Q) =
1
2
[D(Q)− 1]2 (4)

min LD_adv(Q) =
1
2

[
D(Q)2 +

(
D
(
Q̂
)
− 1
)2
]

(5)

The generator fools the discriminator by minimizing LG_adv, and the discriminator dis-
tinguishes between the real point cloud Q̂ and the generated point cloud Q by minimizing
LD_adv.

In order to improve the generated point cloud quality, we introduce the uniform loss
proposed by PU-GAN [13]:

Luni
(
Sj
)
=

M

∑
j=1

(∣∣Sj
∣∣− n̂

)2

n̂
×
|Sj |

∑
j=1

(
dj,k − d̂

)2

d̂

 (6)

where M is obtained by farthest sampling the generated point cloud Q. Sj is the point
set obtained by using a ball query for each point in M with radius rd, and M is set to 50.
n̂ = Q̂× r2

d is the expected number of points in Sj. dj,k is the distance from each point in Sj

to its k nearest neighbors. d̂ =

√
2πr2

d
|Sj|
√

3
is the expected distance of the point in the uniform

point cloud to its k nearest neighbors. The deviation of Sj from n̂, dj,k from d̂ is evaluated
using a chi-squared model.

Chamfer distance (CD) [9] and Earth mover’s distance (EMD) [20] are selected to
construct the reconstruction loss to encourage the generated points to lie on the target
surface:

Lrec = ∑
qiεQ

minpj∈Q̂

∣∣∣∣qi − Pj
∣∣∣∣2

2 +
min

φ : Q→ Q̂ ∑
qiεQ
||qi − φ(qi)||2 (7)

where φ : Q→ Q̂ . is the bijection mapping.
Finally, the above losses are weighted and summed to obtain the compound loss:

LG = waLG_adv + wuLuni + wrLrec (8)

LD = LD_adv (9)

where wa, wu, wr are weights, wa is set as 1, wu is set as 20, and wr is set as 100. The
generator and discriminator are optimized alternatively.

3. Experiments
3.1. Data and Implementation Details

One hundred and twenty point clouds provided by PU-GAN [13] plus three blade
surface point clouds are used for training. Then, 200 patches are cropped from each 3D
model as the input of the network for a total of 24,600 patches, and the number of points N
per patch is 256. Each patch is composed of low-resolution point clouds and ground truth
point clouds sampled by Poisson disks. The batch size is set to 32. The upsampling rate r is
set to 4. The Adam algorithm [21] with a two time-scale update rule (TTUR) [22] is adopted
to train the network. The learning rate of the generator is 0.001, and the learning rate of the
discriminator is 0.0001. After 30,000 iterations, the learning rate is gradually reduced by a
decay rate of 0.8 per 30,000 iterations until 10−6. The network is implemented on NVIDIA
GeForce RTX 2080Ti GPU and Intel Xeon Gold 5218 CPU using TensorFlow [23] on the
Ubuntu 16.04 system.

In order to reduce the interference of noise and reduce the amount of data, we use the
pass-through filter to prune parts of the point cloud that are not relevant to the experiment

Appl. Sci. 2022, 12, 6807 7 of 12

and use FCSOR to remove noise values from point clouds. For FCSOR, we set the noise
denoising coefficient µ to 1 and the number of points k in the neighborhood to 50. The
software framework is developed using the C++ programming language based on the
Point Cloud Library (PCL) [24].

The 3D camera, Sizector HD40, which is designed with phase-shifting structured light
technology, produced by Shanghai ShengXiang Industrial Detection Technology, is selected
to obtain point cloud data for evaluating the algorithm’s performance. The point cloud
data used in the X-ray diffraction experiment are acquired by Sizector 3D R600 and also
produced by Shanghai ShengXiang Industrial Detection Technology. The experimental
hardware setup is shown in Figure 5. The robot holds the 3D camera through an adaptor.
The blade sample is positioned on the goniometer platform of the diffractometer.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 12

In order to reduce the interference of noise and reduce the amount of data, we use
the pass-through filter to prune parts of the point cloud that are not relevant to the exper-
iment and use FCSOR to remove noise values from point clouds. For FCSOR, we set the
noise denoising coefficient 𝜇 to 1 and the number of points 𝑘 in the neighborhood to 50.
The software framework is developed using the C++ programming language based on the
Point Cloud Library (PCL) [24].

The 3D camera, Sizector HD40, which is designed with phase-shifting structured
light technology, produced by Shanghai ShengXiang Industrial Detection Technology, is
selected to obtain point cloud data for evaluating the algorithm’s performance. The point
cloud data used in the X-ray diffraction experiment are acquired by Sizector 3D R600 and
also produced by Shanghai ShengXiang Industrial Detection Technology. The experi-
mental hardware setup is shown in Figure 5. The robot holds the 3D camera through an
adaptor. The blade sample is positioned on the goniometer platform of the diffractometer.

Figure 5. The hardware of the experimental setup.

Meshlab [25] is used for point cloud visualization, which is an open-source, portable,
and extensible 3D geometry processing system, mainly used for interactive processing
and unstructured editing of 3D triangular meshes.

3.2. Evaluation Metrics
Following previous point cloud sampling work, we utilize the standard chamfer dis-

tance (CD) [9] and Earth mover’s distance (EMD) [20] to measure the difference between 𝑄 and 𝑄, for which smaller is better. CD can calculate the average of the distance between
the generated point cloud point and the nearest point in the ground truth. EMD measures
the minimum cost of turning generated point cloud into the ground truth. The noise con-
tained in the input point cloud can interfere with the accuracy of CD and EMD. Because
the point cloud data of the blade are too dense and contain many delicate wavy surfaces,
it was difficult to reconstruct high-quality mesh data, so we did not choose the commonly
used point-to-surface distance.

The noise contained in the input point cloud interferes with the accuracy of CD and
EMD, so we report an F-score [17] to further evaluate the model performance, for which
larger is better. F-score defines point cloud upsampling as a classification problem, eval-
uating precision and recall by examining the percentage of points in 𝑄 or 𝑄 that are able
to find another neighbor within a certain threshold 𝜏.

Figure 5. The hardware of the experimental setup.

Meshlab [25] is used for point cloud visualization, which is an open-source, portable,
and extensible 3D geometry processing system, mainly used for interactive processing and
unstructured editing of 3D triangular meshes.

3.2. Evaluation Metrics

Following previous point cloud sampling work, we utilize the standard chamfer
distance (CD) [9] and Earth mover’s distance (EMD) [20] to measure the difference between
Q and Q̂, for which smaller is better. CD can calculate the average of the distance between
the generated point cloud point and the nearest point in the ground truth. EMD measures
the minimum cost of turning generated point cloud into the ground truth. The noise
contained in the input point cloud can interfere with the accuracy of CD and EMD. Because
the point cloud data of the blade are too dense and contain many delicate wavy surfaces, it
was difficult to reconstruct high-quality mesh data, so we did not choose the commonly
used point-to-surface distance.

The noise contained in the input point cloud interferes with the accuracy of CD
and EMD, so we report an F-score [17] to further evaluate the model performance, for
which larger is better. F-score defines point cloud upsampling as a classification problem,
evaluating precision and recall by examining the percentage of points in Q or Q̂ that are
able to find another neighbor within a certain threshold τ.

Appl. Sci. 2022, 12, 6807 8 of 12

Deviation [17] is also used to measure the difference between the generated point
cloud and the ground truth, and the normalized uniformity coefficient (NUC) [9] is used to
measure the uniformity, for which smaller is better.

3.3. Analysis and Comparison of Experimental Results

GPU-GAN, MPU and PU-GAN’s upsampling results are qualitatively and quanti-
tatively compared. For MPU and PU-GAN, we use their public code and retrain their
networks using our training data. Since the blade samples are very expensive and the
quantity is limited, we use four blades, and each blade takes three sets of point cloud
data from different angles. We sample 25% points using the uniform downsampling
method from the ground truth as the input. We choose representative point clouds to show
qualitative results.

Quantitative results: As shown in Table 1, GPU-GAN achieves significant improve-
ments over MPU and PU-GAN under most metrics for data with noisy points. Even for
dense blade point clouds, the NUC stays the lowest for all different p, indicating that
GPU-GAN can generate more uniform points. It should be noted that for the EMD, the
result of GPU-GAN is higher than that of PU-GAN, but lower than that of MPU because
the points generated by MPU are too concentrated near the real point, which makes the
EMD calculation result of MPU low. For the standard (std) of deviation, the result of MPU
is several times higher than that of PU-GAN and GPU-GAN, because there are so many
outliers in the point cloud that they interfere with the results. For the point cloud processed
with filter, GPU-GAN shows superior performance too. For model training and testing
time, GPU-GAN takes more time than MPU and PU-GAN, which is due to the complex
model structure. Compared to GPU-GAN’s improvement in upsampling, these increased
time costs are acceptable. The test point cloud has about 900,000 points, and after filtering,
there are about 700,000 points.

Table 1. Quantitative comparisons with the state-of-the-arts.

Method CD EMD
F-Score NUC with Different p Deviation Time

τ = 0.01 τ = 0.02 0.2% 0.4% 0.6% mean std Trian
(h)

Test
(min)

MPU 0.026 0.888 0.091 0.495 19.087 10.807 8.225 0.021 0.068 15.7 42.1
PU-GAN 0.032 1.357 0.258 0.564 17.967 9.641 6.753 0.018 0.017 19.2 55.6

GPU-GAN 0.024 1.126 0.328 0.649 17.855 9.505 6.522 0.016 0.023 21.1 56.3
Filter + MPU 0.016 0.362 0.106 0.583 13.201 9.869 5.772 0.019 0.009 - 29.3

Filter + PU-GAN 0.016 0.447 0.293 0.654 12.317 8.909 4.845 0.016 0.009 - 38.5
Filter + GPU-GAN 0.014 0.405 0.375 0.753 12.295 8.866 4.792 0.014 0.008 - 38.9

Qualitative results: Figure 6 shows the qualitative upsampling results of MPU,
GPU-GAN, and PU-GAN. The raw data contain a lot of noise points, which cannot be
avoided in experiments. After upsampling the input point cloud, MPU generates fewer
outliers, and the surrounding point cloud shows a striped distribution, as shown in the
blue rectangle in Figure 6f, which means that the points generated by the MPU are too
concentrated near the real points, making upsampling less effective. Although PU-GAN
generates more uniform points, it learns the characteristics of noisy points and generates
more outliers, as shown in Figure 6g. GPU-GAN improves this phenomenon and constrains
the generated points near the real surface, as shown in Figure 6h. It can be observed that
the noise-prone holes in Figure 6 significantly reduce outliers. In Figure 6, we remove
some elements, because the X-ray diffraction experiment only needs the point cloud data
of the blade surface, and only a smaller part may be retained during the actual experiment.
Figure 7 shows the effect of adding filters on the upsampling results. The filter can effec-
tively remove noise interference, reduce the amount of data, and improve the running rate
of the algorithm.

Appl. Sci. 2022, 12, 6807 9 of 12Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 12

Figure 6. Qualitative comparisons with PU-GAN. (a–d) are the ground truth and the upsampling
point cloud of MPU, PU-GAN, GPU-GAN respectively. (e–h) are the point clouds at the outlet of
the air-cooling channel enlarged corresponding to (a–d) point cloud respectively.

Figure 7. Comparison of results after adding filters.

3.4. X-ray Diffraction Experiment
The X-ray diffraction (XRD) experiment on the thermal coatings of the aeroengine

blade reflects the necessity of the upsampling algorithm. The experiment is carried out on
the beamline BL14B1 at Shanghai Synchrotron. The 3D camera used is the Sizector 3D
R600. Compared with the HD40, this camera has a larger standard field of view (XY) and
z-axis measurement range and the ability to resist ambient light interference. However,
the point cloud it generates is not dense enough, and experiments can only be performed
at a scale of 1 mm (X–Y axis). We use the upsampling algorithm to upsample the collected
point cloud and construct a 3D space motion coordinate system by generating the point
cloud. The measurement accuracy at the X–Y axis can reach 0.5 mm.

As mentioned in Seq.2 Calibration Experiment, the mapping relationship between
the real sample and the point cloud is set up first. Then, we select five points in the original
point cloud, and another four points from the upsampled point cloud for experiments.
These four points are located between the five points of the original point cloud. The dif-
fraction data are collected by the Rayonix MX225 CCD detector, and processed by the
Fit2D software [18]. The location diagram of those diffraction points and the integration
result of the XRD data are shown in Figure 8.

Figure 6. Qualitative comparisons with PU-GAN. (a–d) are the ground truth and the upsampling
point cloud of MPU, PU-GAN, GPU-GAN respectively. (e–h) are the point clouds at the outlet of the
air-cooling channel enlarged corresponding to (a–d) point cloud respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 12

Figure 6. Qualitative comparisons with PU-GAN. (a–d) are the ground truth and the upsampling
point cloud of MPU, PU-GAN, GPU-GAN respectively. (e–h) are the point clouds at the outlet of
the air-cooling channel enlarged corresponding to (a–d) point cloud respectively.

Figure 7. Comparison of results after adding filters.

3.4. X-ray Diffraction Experiment
The X-ray diffraction (XRD) experiment on the thermal coatings of the aeroengine

blade reflects the necessity of the upsampling algorithm. The experiment is carried out on
the beamline BL14B1 at Shanghai Synchrotron. The 3D camera used is the Sizector 3D
R600. Compared with the HD40, this camera has a larger standard field of view (XY) and
z-axis measurement range and the ability to resist ambient light interference. However,
the point cloud it generates is not dense enough, and experiments can only be performed
at a scale of 1 mm (X–Y axis). We use the upsampling algorithm to upsample the collected
point cloud and construct a 3D space motion coordinate system by generating the point
cloud. The measurement accuracy at the X–Y axis can reach 0.5 mm.

As mentioned in Seq.2 Calibration Experiment, the mapping relationship between
the real sample and the point cloud is set up first. Then, we select five points in the original
point cloud, and another four points from the upsampled point cloud for experiments.
These four points are located between the five points of the original point cloud. The dif-
fraction data are collected by the Rayonix MX225 CCD detector, and processed by the
Fit2D software [18]. The location diagram of those diffraction points and the integration
result of the XRD data are shown in Figure 8.

Figure 7. Comparison of results after adding filters.

3.4. X-ray Diffraction Experiment

The X-ray diffraction (XRD) experiment on the thermal coatings of the aeroengine
blade reflects the necessity of the upsampling algorithm. The experiment is carried out
on the beamline BL14B1 at Shanghai Synchrotron. The 3D camera used is the Sizector 3D
R600. Compared with the HD40, this camera has a larger standard field of view (XY) and
z-axis measurement range and the ability to resist ambient light interference. However, the
point cloud it generates is not dense enough, and experiments can only be performed at
a scale of 1 mm (X–Y axis). We use the upsampling algorithm to upsample the collected
point cloud and construct a 3D space motion coordinate system by generating the point
cloud. The measurement accuracy at the X–Y axis can reach 0.5 mm.

As mentioned in Seq.2 Calibration Experiment, the mapping relationship between the
real sample and the point cloud is set up first. Then, we select five points in the original
point cloud, and another four points from the upsampled point cloud for experiments.
These four points are located between the five points of the original point cloud. The
diffraction data are collected by the Rayonix MX225 CCD detector, and processed by the
Fit2D software [18]. The location diagram of those diffraction points and the integration
result of the XRD data are shown in Figure 8.

Appl. Sci. 2022, 12, 6807 10 of 12Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 12

Figure 8. Relative position and intensity information of different points. (a) is the blade point
cloud, (b) is the detection point, and (c) is the diffraction data corresponding to each detection
point.

The black points (A/C/E/G/I) are selected in the original point cloud, and the red
points (B/D/F/H) are selected in the generated point cloud. The interval between them is
500 μm. Figure 8b is the diagram showing locations of those points only on the x axis. By
observing data curve E, F, and G in Figure 8c, the diffraction peak appears at ~31° (2𝜃)
and shows a trend of the diffraction signal weakening and then enhancing. This conclu-
sion cannot be drawn without the information measured at the F point. The supplemented
points from upsampling the data cloud can effectively complement the integrity of the
original point cloud data and can obtain more continuous and complete experiment re-
sults.

Further processing of the X-ray diffraction data can obtain more information on the
thermal coatings of the blade, for example, the evolution of the stress on the coatings. The
diffraction experiment here shows the effectivity of our upsampling method. The further
data processing and results are not discussed here.

4. Conclusions
A 3D camera is useful to accurately define the X-ray incidence angle in X-ray experi-

ments, but it is met with the problems of insufficient resolution and too many noisy points.
This paper proposes a new upsampling method, GPU-GAN, which improves the upsam-
pling algorithm based on the PU-GAN and dense graph convolution method. The exper-
imental results show that our method can conduct experiments more efficiently and ac-
curately. In addition, our method can save hardware expenses, so that low-resolution 3D
cameras can also meet experimental needs.

However, current deep learning models are not ideal for upsampling data with a
large number of noise points. In addition, because the blade point cloud data are too large,
the time for the algorithm to run once is also unacceptable. In future work, we will collect
more blade data and add it to the data set for training. We are also considering extracting
regional point cloud data required for experiments and streamlining the network struc-
ture to reduce program running time.

Author Contributions: Methodology, W.Z.; writing—original draft, W.Z.; software, W.Z. and Y.Z.
(Ying Zhang); supervision, Y.Z. (Yan Zhang) and B.S.; writing—review and editing, Y.Z. (Yan
Zhang), X.G. and B.S.; data curation, K.L.; validation, K.L., W.W. and G.Y.; funding acquisition,
W.W.; investigation, Q.W.; project administration, X.G. and B.S.; conceptualization, X.G. All authors
have read and agreed to the published version of the manuscript.

Figure 8. Relative position and intensity information of different points. (a) is the blade point cloud,
(b) is the detection point, and (c) is the diffraction data corresponding to each detection point.

The black points (A/C/E/G/I) are selected in the original point cloud, and the red
points (B/D/F/H) are selected in the generated point cloud. The interval between them
is 500 µm. Figure 8b is the diagram showing locations of those points only on the x axis.
By observing data curve E, F, and G in Figure 8c, the diffraction peak appears at ~31◦ (2θ)
and shows a trend of the diffraction signal weakening and then enhancing. This conclusion
cannot be drawn without the information measured at the F point. The supplemented
points from upsampling the data cloud can effectively complement the integrity of the
original point cloud data and can obtain more continuous and complete experiment results.

Further processing of the X-ray diffraction data can obtain more information on the
thermal coatings of the blade, for example, the evolution of the stress on the coatings. The
diffraction experiment here shows the effectivity of our upsampling method. The further
data processing and results are not discussed here.

4. Conclusions

A 3D camera is useful to accurately define the X-ray incidence angle in X-ray ex-
periments, but it is met with the problems of insufficient resolution and too many noisy
points. This paper proposes a new upsampling method, GPU-GAN, which improves the
upsampling algorithm based on the PU-GAN and dense graph convolution method. The
experimental results show that our method can conduct experiments more efficiently and
accurately. In addition, our method can save hardware expenses, so that low-resolution 3D
cameras can also meet experimental needs.

However, current deep learning models are not ideal for upsampling data with a large
number of noise points. In addition, because the blade point cloud data are too large, the
time for the algorithm to run once is also unacceptable. In future work, we will collect
more blade data and add it to the data set for training. We are also considering extracting
regional point cloud data required for experiments and streamlining the network structure
to reduce program running time.

Author Contributions: Methodology, W.Z.; writing—original draft, W.Z.; software, W.Z. and Y.Z.
(Ying Zhang); supervision, Y.Z. (Yan Zhang) and B.S.; writing—review and editing, Y.Z. (Yan Zhang),
X.G. and B.S.; data curation, K.L.; validation, K.L., W.W. and G.Y.; funding acquisition, W.W.; investi-
gation, Q.W.; project administration, X.G. and B.S.; conceptualization, X.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by funds the National Key Research and Development Program
of China (2017YFA0403400) and the National Science Foundation of China (U1932201).

Data Availability Statement: Data not yet publicly available.

Appl. Sci. 2022, 12, 6807 11 of 12

Acknowledgments: We thank the staff from beamline BL14B1, the Experimental Auxiliary System,
and the Data Center of Shanghai Synchrotron Radiation Facility (SSRF) for on-site assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Padture, N.P.; Gell, M.; Jordan, E.H.J.S. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284.

[CrossRef]
2. Schulz, U.; Leyens, C.; Fritscher, K.; Peters, M.; Saruhan-Brings, B.; Lavigne, O.; Dorvaux, J.-M.; Poulain, M.; Mévrel, R.;

Caliez, M.J.A.S.; et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol.
2003, 7, 73–80. [CrossRef]

3. Drakopoulos, M.; Connolley, T.; Reinhard, C.; Atwood, R.; Magdysyuk, O.; Vo, N.; Hart, M.; Connor, L.; Humphreys, B.;
Howell, G. I12: The joint engineering, environment and processing (JEEP) beamline at diamond light source. J. Synchrotron Radiat.
2015, 22, 828–838. [CrossRef] [PubMed]

4. Siddiqui, S.F.; Knipe, K.; Manero, A.; Meid, C.; Wischek, J.; Okasinski, J.; Almer, J.; Karlsson, A.M.; Bartsch, M.;
Raghavan, S.J.R.o.S.I. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under
thermal gradients. Rev. Sci. Instrum. 2013, 84, 083904. [CrossRef] [PubMed]

5. Tie-Ying, Y.; Wen, W.; Guang-Zhi, Y.; Xiao-Long, L.; Mei, G.; Yue-Liang, G.; Li, L.; Yi, L.; He, L.; Xing-Min, Z. Introduction of the
X-ray diffraction beamline of SSRF. Nucl. Sci. Tech. 2015, 26, 20101-020101. [CrossRef]

6. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta-
tion. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 77–85. [CrossRef]

7. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5105–5114.

8. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds.
Acm Trans. Graph. 2019, 38, 1–12. [CrossRef]

9. Yu, L.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.-A. Pu-net: Point cloud upsampling network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2790–2799. [CrossRef]

10. Yu, L.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.-A. Ec-net: An edge-aware point set consolidation network. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 386–402. [CrossRef]

11. Yifan, W.; Wu, S.; Huang, H.; Cohen-Or, D.; Sorkine-Hornung, O. Patch-based progressive 3d point set upsampling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5958–5967.
[CrossRef]

12. Qian, G.; Abualshour, A.; Li, G.; Thabet, A.; Ghanem, B. PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
[CrossRef]

13. Li, R.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.-A. Pu-gan: A point cloud upsampling adversarial network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 7203–7212. [CrossRef]

14. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D point cloud based object maps for household environments.
Robot. Auton. Syst. 2008, 56, 927–941. [CrossRef]

15. Miknis, M.; Davies, R.; Plassmann, P.; Ware, A. Near real-time point cloud processing using the PCL. In Proceedings of the 2015
International Conference on Systems, Signals and Image Processing (IWSSIP), Singapore, 10–12 September 2015; pp. 153–156.
[CrossRef]

16. Balta, H.; Velagic, J.; Bosschaerts, W.; De Cubber, G.; Siciliano, B. Fast statistical outlier removal based method for large 3D point
clouds of outdoor environments. IFAC-PapersOnLine 2018, 51, 348–353. [CrossRef]

17. Wu, H.; Zhang, J.; Huang, K. Point cloud super resolution with adversarial residual graph networks. arXiv Prepr. 2019, arXiv:02111.
[CrossRef]

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

19. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [CrossRef]

20. Fan, H.; Su, H.; Guibas, L.J. A point set generation network for 3d object reconstruction from a single image. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, London, UK, 21–26 July 2017; pp. 605–613. [CrossRef]

21. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv Prepr. 2014, arXiv:1412.6980. [CrossRef]
22. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to

a local nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 6629–6640.

http://doi.org/10.1126/science.1068609
http://doi.org/10.1016/S1270-9638(02)00003-2
http://doi.org/10.1107/S1600577515003513
http://www.ncbi.nlm.nih.gov/pubmed/25931103
http://doi.org/10.1063/1.4817543
http://www.ncbi.nlm.nih.gov/pubmed/24007076
http://doi.org/10.13538/j.1001-8042/nst.26.020101
http://doi.org/10.1109/CVPR.2017.16
http://doi.org/10.1145/3326362
http://doi.org/10.1109/CVPR.2018.00295
http://doi.org/10.1007/978-3-030-01234-2_24
http://doi.org/10.1109/CVPR.2019.00611
http://doi.org/10.1109/CVPR46437.2021.01151
http://doi.org/10.1109/ICCV.2019.00730
http://doi.org/10.1016/j.robot.2008.08.005
http://doi.org/10.1109/IWSSIP.2015.7314200
http://doi.org/10.1016/j.ifacol.2018.11.566
http://doi.org/10.48550/arXiv.1908.02111
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1109/CVPR.2017.264
http://doi.org/10.48550/arXiv.1412.6980

Appl. Sci. 2022, 12, 6807 12 of 12

23. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. {TensorFlow}:
A System for {Large-Scale} Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

24. Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics
and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [CrossRef]

25. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. Meshlab: An open-source mesh processing tool.
In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; pp. 129–136. [CrossRef]

http://doi.org/10.1109/ICRA.2011.5980567
http://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

	Introduction
	Methodology
	Experiments
	Data and Implementation Details
	Evaluation Metrics
	Analysis and Comparison of Experimental Results
	X-ray Diffraction Experiment

	Conclusions
	References

