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Abstract: As one of the most important processes in steel wire rope inspection, defect signal pro-
cessing is of great significance in guaranteeing safety and precision measurement. Aiming at the
weak signal detection of steel wire rope with mixed strands and noise, a combined signal processing
method based on magnetic flux leakage testing and multi-step filtering techniques are proposed
in this paper. The experiments are first introduced and performed on three typical types of steel
wire rope with diameters of 28 mm, 32 mm, 45 mm, and different wire broken defects detected
under liftoff distances of 13 mm and 20 mm; the acquired signals are then analyzed both in time and
frequency domain. According to the weak signal characterizations, the principle of the proposed
methods and algorithm are given concretely. Afterwards, comparison of signal processing results
between the traditional lowpass filtering, wavelet denoising, median filtering, and the proposed
method are presented. Finally, the influence factors of smoothing types and moving average span of
the proposed methods are investigated. The processing results of the proposed methods are shown
through short-time Fourier transform and signal-to-noise ratio analysis, which not only demonstrates
the validity and feasibility of the combined methods with the highest signal to noise ratio of 90.37 dB,
but also exhibits a great potential of precision defect detection and practical application in steel wire
rope inspection.

Keywords: weak signal; steel wire rope; improved Hilbert–Huang Transform (HHT); signal processing

1. Introduction

Steel wire rope is widely used in practical applications as loading and stretching with
high strength and toughness in complex scenes such as the elevator, mine, and crane, which
plays an important role in various engineering machinery [1,2]. However, the failure of
wire rope such as becoming broken [3], corrosion [4], and wear and fatigue [5] has caused
huge losses to the economy and human lives. Therefore, many nondestructive testing
methods [6,7] have appeared in wire rope defect inspection, for instance, the widely used
magnetic flux leakage testing method [8], metal magnetic memory, [9] and ultrasonic guided
wave detection method [10]. The defect is tinny in most cases, while the detection signals
are very weak and mixed with strand signals as a result of the spiral wire rope structures
and environmental noises [11,12], which makes the wire rope defect identification and
signal processing full of difficulty and challenges.

Generally, two main types of wire rope defects were investigated, namely, the local
fault (LF) and loss of metallic sectional area (LMA). When the wire rope was scanned
and the defect was sensed or captured by the sensor such as the inductive coil, the hall
element and magnetic resistance sensor, and different inspection signal components could
be acquired. As a consequence, a mass of signal denoising methods were proposed on
account of the complex detection and interference environment. Ju-Won Kim et al. [13]
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proposed a Hilbert transform-based enveloping and quantification magnetic flux leakage
(MFL) signal processing method for wire rope damage detection. Tian Jie et al. [14] applied a
morphological non-sampling and wavelet reconstruction-based wire rope signal processing
method in a coal mine, which filtered the noises effectively by increasing the signal-to-noise
ratio (SNR) and decreasing the elapsed time. Zhang Ou et al. [15] proposed a multilevel
wavelet and median filtering combined wire rope denoising algorithm, which not only
increased the SNR, but also enhanced the signal quality. Donglai Zhang et al. [16] presented
a new coil winding structure sensor with iron core inside, which improved the SNR almost
six times compared with traditional inductive coil, and eliminated the influence of coil cross
sectional area and liftoff effect to some extent. Other wire rope denoising methods such as
the notch filtering [17], wavelet energy [18], tone-burst wavelet [19], adaptive filtering [20],
and empirical mode decomposition-based [21] techniques were also reported, which were
frequently applied and discussed in coal mines and elevators. According to the difference of
wire rope inspection and defect sensing methods, other physical field characterizations as
well as the wire rope structures were also utilized in wire rope signal processing. Humberto
Henao et al. [22] observed the fleet angle effect in the bird caging defect detection in a
hoist winch system by indirectly analyzing the signals of stator current and load torque
of a three-phase induction machine, which was experimentally demonstrated as a new
noninvasive method in wire rope signal processing and defect inspection. Esther-Sabrina
Wacker et al. [23] obtained a surface anomaly detecting accuracy of 95% by making use of
the wire rope structure and appearance, combining with image synthesis techniques and
automatic visual inspection by the pattern recognition. Dalvir Kaur et al. [24] proposed
LF and LMA characterizations and an MFL image signal processing method by the axially
and circumferentially hall testing signals processing using feature extraction of gray level
co-occurrence matrix and back propagation (BP) network. Zuopu Zhou et al. [25] solved the
strand noise problems under a strong shaking detecting environment by using the principle
of multi-channel signal fusion and median filtering techniques for MFL images of steel wire
rope. Edmundas Kazimieras Zavadskas et al. [26] applied a multi-criteria analysis method
for wire rope inspection data by experiments of wire rope vibration in different range of
frequencies. As the artificial intelligent techniques of machine learning deeply develops,
many related studies have been reported regarding to the wire rope signal processing and
quantitative defect inspection. For instance, Li-jun Li et al. [27] proposed a discrimination
method-based multi-array weak signal processing for wire rope, which not only improved
the defect detection dimension and accuracy through binarizing local gray value of MFL
data, but also realized the quantitative analysis of defect size. Gongbo Zhou et al. [28]
proposed a convolutional neural network-based hoisting wire rope inspection method,
which could detect various faults such as the broken strand and twisted ropes automatically
in real-time, and compared with k-nearest neighbor and an artificial neural network with
back propagation. Moreover, other intelligent processing methods may also include the
artificial neural network [29], support vector machine [30], AdaBoost classifier [31], and
deep learning algorithms [32], which all improved the defect detection accuracy for steel
wire rope.

However, most of the signal denoising and processing methods such as the time
domain filtering and frequency analysis only aim at the single environment, and some of
the testing results were obtained even in the laboratory condition. As the long range or
distance testing requirements are desperately needed, weak signal with low SNR processing
is full of challenges and difficulty for all the signals are mixed with defect characterizations
and strong noise features; worse still, some of their frequency bands are usually overlapped,
which all make the common signal filtering methods invalid and unavailable in wire rope
signal processing and defect recognition.

To solve the above-mentioned challenges, a combined weak signal processing method
based on improved Hilbert transform, signal differentiating, and filtering techniques are
proposed. Starting with the experimental introduction and implementation, different wire
rope signals with weak defect characterizations are analyzed and compared. Finally, the
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validity and feasibility, as well as the influence of the proposed methods, are demonstrated
and studied in the perspective of time domain and short-time Fourier transform (STFT),
which suggests that the proposed methods are full of potential in practical application for
wire rope signal processing and defect inspection, especially in complex scenes.

2. Experiments
2.1. Experimental Apparatus and Samples

Owing to the difference of wire rope structures and diameters as well as the sophis-
ticated detection environments, steel wire rope inspection signals are often mixed with
various interference features and sources. To obtain the weak signals detected from dif-
ferent sensors, liftoff distances, and broken wire sizes, three steel wire rope samples were
mainly applied and tested through an MFL testing apparatus, as illustrated in Figure 1.
Primarily, there are two types of surface defects in wire rope 1, where a one-wire broken
and a three-wire broken defect were made. Similarly, a mixed surface defect with broken
and wear characterizations was inspected on the wire rope 2, and an inner defect artificially
made in wire rope 3 was also tested, which are indicated in Figure 1a, and the diameters
of these steel wire rope samples are 28 mm, 32 mm, and 45 mm, respectively. Further,
the MFL based detector is shown in Figure 1b, where the liftoff distance and position of
the sensor element could be adjusted according to the feed-through wearing ring, and a
position encoder in the detector head can guarantee the exact location of the defect. If any
defects were scanned and encountered by the circumferentially installed magnetic sensitive
sensors inside the detector, the leaked magnetic flux would be captured by the sensor and
transformed to voltage signals. After data acquisition and signal pre-amplification by the
circuit modules, different experimental signals are displayed on the computer and further
processed in the next step.
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Figure 1. Experimental samples and apparatus. (a) Different steel wire ropes; (b) MFL detector.

2.2. Time and Frequency Analysis

According to the aforementioned experiments conducted, six main original weak
signals were acquired and are presented in Figure 2. Explanatorily, signal 1 and signal 2
from Figure 2a,b were obtained from the testing sample of wire rope 1 indicated in Figure 1a
with different wire broken numbers of 1 and 3 through inductive transducer, and the sensor
liftoff distance was set as 13 mm. Signal 3 and signal 6 shown in Figure 2c,f were acquired
through the magnetic sensitive element of copper coils with different liftoff distances
of 13 mm and 20 mm for wire rope sample 2. While signal 4 and signal 5 expressed in
Figure 2d,e represent the weak original signals obtained from the inner defect of wire rope 3
with the surface liftoff distances of 13 mm and 20 mm by the sensor of inductive transducer.
From the perspective of geometric structures, a broken wire defect features sudden loss
of the metal cross-section, which leads to the change of wire rope permeability and the
magnetized field leak from the body of the tested wire rope, while almost no abnormal
magnetic flux leaks from the wire rope except for the strand signal. Therefore, the defect
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signals are usually characterized with an obvious peak or valley, while the non-damaged
wire rope is detected with strand and random noise signals, as marked in Figure 2a.
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Figure 2. Weak signals of steel wire rope with different defects and liftoff distances. (a) Signal 1 of
one-wire broken defect from sample 1 with liftoff distance of 13 mm; (b) Signal 2 of three-wire broken
defect from sample 1 with liftoff distance of 13 mm; (c) Defect signal 3 from sample 2 with liftoff
distance of 13 mm and coil sensor; (d) Defect signal 4 from sample 3 with liftoff distance of 13 mm;
(e) Defect signal 5 from sample 3 with liftoff distance of 20 mm; (f) Defect signal 6 from sample 2 with
liftoff distance of 20 mm and coil sensor. The signals 1, 2, 4, and 5 are detected with the sensor of the
inductive transducer, while signals 3 and 6 are tested with copper coils.

Apparently, under the inspection condition of big liftoff distance and other severe
environment, wire rope inspection signals are featured with the weak and low signal-to
noise-ratio (SNR). Concretely, the testing signals are shapely attenuated due to the liftoff
effect and micro defect, and the defect signals are almost overwhelmed by the wire rope
strand and other noise signals, which makes the inspection for wire rope difficult and
full of challenges. Furthermore, comparing signal 1 and 3, it can be deduced that the coil
sensor has a wider detection range than an inductive transducer for defect signals, and a
higher signal amplitude under the same liftoff distance, while the inductive transducer
is more sensitive to the magnetic leakage of defect than a coil sensor when considering
the defect features of signal 1 and 4. Consequently, judging from the time domain signals,
the testing results are susceptible to various factors such as the sensor types and precision,
liftoff distance, which also manifests that a suitable weak signal processing technique is of
great significance to high precision defect inspection.

Furthermore, the corresponding time and frequency analysis by short-time Fourier
transform (STFT) is preliminarily conducted. By moving the hamming window through
the non-stationary wire rope testing signals, the instantaneous frequency information could
be obtained, and the STFT is described as follows,

X(ω, τ) =
∫ +∞

−∞
x(t)g(t− τ)e−jωtdt (1)

where, t is the time, j is the imaginary unit, τ is the moving center time of the window
function,ω is the angular frequency, x(t) is the system input of wire rope testing signals, g(t)
represents the hamming window function, and X(ω, τ) are the STFT results in Equation (1).
Specifically, the corresponding STFT spectrum of signal 1 to signal 6 shown in Figure 2 are
presented in Figure 3, which indicates that these weak signals of wire rope are nearly under
the frequency of 250 Hz, and most of the signal components are mixed distributed under the
frequency of 50 Hz, while it is difficult to differentiate the specific frequency component of
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defect signal and the interference components, especially for the signals shown in Figure 3a–
c,e,f. Comparing these STFT spectrum and the typical time domain signals, it can be found
that the common signal filtering technique are incapable of processing these mixed and weak
signals.
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3. Principles and Methods
3.1. Principle of HHT

The steel wire rope inspection system could be viewed as a linear time invariant
system, and the Hilbert transform of the input signals containing multi-source noise could
be described as a convolution operation with the impulse response, namely,

x̂(t) = H[x(t)] = x(t) ∗ h(t) =
1
π

∫ ∞

−∞

x(τ)
t− τdτ (2)

where, t is the time, τ is the time shift, x(t) and h(t) represent the input signals of wire rope
inspection and the system impulse response, and the * means the convolution operation in
Equation (2). In other words, the Hilbert transform could also be regarded as a quadrature
filter, which processes the signals mainly in the perspective of phase domain and makes up
for the deficiency of time and frequency domain in consideration of the mixed features of
multi-source noises and the indistinguishable frequency distribution. The Fourier transform
of the system impulse response is defined as,

H(ω) =

{
−j (ω ≥ 0)
+j (ω < 0)

(3)

where j is the imaginary unit, andω is the angular frequency in Equation (3). Apparently,
according to the Hilbert transform, the phase of the steel wire rope testing signal will
move −π/2 and π/2 for these positive and negative frequency signal components in phase
domain, separately, while the signal amplitude remains unchanged. Combining the spiral
structures of wire rope and the strand signals, the approximate periodic interference of
strand signals could be eliminated after further being processed by the differentiating
techniques, namely, the output signals could be expressed as,

xo = |x̂(t)| − x(t) (4)
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where t is the time in Equation (4). Due to the complexity of the weak signals of steel
wire rope in big liftoff distance defect detection, nonlinear and linear signal processing
methods such as the median filtering and moving average filtering as well as the wavelet
denoising methods are also applied and compared. Although the linear method is effective
for additive Gaussian noise and features fast calculating speed, the nonlinear filtering
method could overcome its shortcomings of blurring the signal edge.

3.2. The Proposed Method

The flow diagram of the proposed method is schematically shown in Figure 4, staring
with the data acquisition and pre-amplification for the wire rope testing signals, and
the standard Hilbert transform algorithm is applied to obtain a phase changed signal.
Then, the signals combining with the original signal are calculated by the differentiating
technique. On account of the mixed frequency features of the processed signal, further
signal denoising method based on the Fourier transform and lowpass filtering method is
applied, aiming at the low frequency and weak defect signal. The lowpass cutoff frequency
is mainly determined by the Fast Fourier Transform (FFT) analysis results. Additionally,
to obtain a higher SNR of the detection signals, the moving average technique is applied.
Generally, many factors would affect the improving of the weak detection signals, such
as the averaging method, the moving span, as well as the lowpass cut off frequency.
Obviously, different from the traditional single signal denoising method, the proposed
weak signal processing methods for steel wire rope is a combination technique which
integrates the phase transformation techniques of Hilbert transform and signal filtering
methods. Consequently, the weak signals and defect are well distinguished.
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4. Comparison and Results
4.1. Lowpass Filtering and Wavelet Denoising

First, according to the results of the time and frequency analysis aforementioned, most
of the defect signals are distributed within the low frequency band. Thus, the lowpass
filtering techniques based on Butterworth is presented, and three typical wire rope defect
signals with weak characterizations and low SNR are processed and compared. The transfer
function of the Butterworth lowpass filter could be expressed as,

|H(jω)| = 1√
1 +ω2n

(5)

where j is the imaginary unit, n is the order of the lowpass filter,ω is the normalized cut
off frequency in Equation (5). Besides, to further denoise the original wire rope detection
signals, wavelet decomposition and reconstruction techniques were also applied in the
signal denoising after the lowpass filtering. The continuous wavelet transform is defined as,

Wf(a, b) =
∫ ∞

−∞
x(t)Ψ(

t− a
b

)dt (6)

where x(t) is the time series signal, a and b represent the scale parameter and time center
parameter in Equation (6), and the mother wavelet function is,

Ψ(a, τ) =
1√
|a|
ψ(

t
a
− τ) (7)

where ψ is a wavelet function and τ is the shifting parameter of the window function in
Equation (7). As illustrated in Figure 5, three kinds of typical weak signals were randomly
chosen from the experiments. Explanatorily, the S1 signal shown in Figure 5a means that
the original signals were obtained from steel wire rope sample 1 with three-wire broken
defect under the detection condition of the big liftoff distance of 20 mm by the coil sensor.
Similarly, the signals of S2 and S3 expressed in Figure 5b,c represent that the signals were
acquired from the one-wire broken defect of wire rope sensed by the inductive transducer
under the liftoff distance of 20 mm and 13 mm, respectively. Specifically, S1 to S3 are the
expanded part for signals 2, 3, and 5 as mentioned before. The original signals in the
first line box of Figure 5a suggest that the weak wire rope inspection signals are mixed
with strand signal features, while the FFT spectrum in the second line box implies that
the original testing signals are distributed within the low frequency region smaller than
10 Hz, which also validates the time and frequency analysis results mentioned in Figure 3.
Consequently, when the lowpass cutoff frequency was set as 5 Hz, the processed signals
were shown in the third line box. Obviously, some interference signals were highlighted
and became more prominent, while the defect signals were also filtered and abridged.
After the further wavelet denoising by the wavelet of db6 (Daubechies 6 function) under
the decomposition level of 16, the final processed signals were presented in the last line
box. Obviously, the interferences of the noise signals are still prominent and difficult to
distinguish from the real defect signals; in other words, the lowpass filtering and wavelet
combined denoising methods are incapable of processing the weak wire rope signals to
some extent.
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Additionally, another two groups of wire rope weak signal processing results presented
in Figure 5b,c indicate that both the original defect signals are difficult to identify due to
the big liftoff distance and the interference of the strand as well as various noise signals in
the environment. However, the weak magnetic flux leakage signals could still be caught by
the inductive transducer. We observed by the frequency spectrum expressed in the second
line box that the lowpass filtering and wavelet denoising parameters keep consistent with
that described for these signals shown in Figure 5a. Namely, the lowpass cutoff frequency
was 5 Hz, and db6 wavelet with 16 decomposition level was also chosen. Although the
original signals shown in Figure 5c have a stronger amplitude than the signals expressed
in Figure 5b on account of the smaller liftoff distance, both the lowpass filtering signals
are mixed with strand and noise signal features, especially for the processed signal S3
illustrated in the third line box of Figure 5c. After further denoising by wavelet transform,
both the processed signals shown in the third and fourth line box keep nearly unchanged in
amplitude and frequency. Comparing the three typical signal processing results by lowpass
filtering and wavelet denoising, it could be concluded that the simple lowpass filtering and
wavelet transform combined methods are incapable of wire rope weak signal processing.

4.2. Median Filtering and Moving Average Method

Aiming at the non-stationary wire rope detection signals with multi-source characteri-
zations, a nonlinear signal processing method based on median filtering and a linear signal
processing method of moving average technique were also applied to these three typical
weak signals. The median filtering method was first used regarding to the big liftoff weak
signals by replacing the signal point with the median of a certain time series. When every
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20 signal points was processed through median filter, the preliminary processing results
are shown in Figure 6, and the original weak signals of 1 to 3 correspond with the testing
signals of S1 to S3 in Figure 5.
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Explanatorily, all the original defect signals in the left side are very weak, and the
defect features become more and more difficult to recognize from signal 1 to signal 3.
Although the processed signals shown in the right side manifest that the burr noise features
are abridged and the SNR is improved in some extent, especially for the median filtering
signal 1, the weaker signals of 2 and 3 are still difficult to identify judged by the median
filtering signal of 2 and 3. Namely, the nonlinear signal processing method of median
filter could denoise the wire rope signals to some extent, the defect features of weak wire
rope signals are still overwhelmed by multi-source noises. Therefore, the single median
filtering method is also incapable of weak wire rope signal denoising as well as the feature
identification. Nevertheless, a linear signal processing method based on the moving average
technique is presented. When the moving average span is set as 200, the typical three kinds
of original signals and the processing results by moving average technique are shown in
Figure 7. Similarly, the SNR of these weak signals are improved to some extent, but the
defect features still could not be effectively identified, especially for the big liftoff wire rope
inspection signals expressed in moving average signal 2 and 3.

Combining the single nonlinear and linear weak signal processing results aforemen-
tioned through median filter and moving average technique, three typical weak wire rope
detecting signals still could not be well recognized because of the mixed interference fea-
tures of multi-source noise and wire rope strand signals, which not only demonstrated the
incapability of these single weak signal processing methods, but also indicated that the
weak wire rope signals’ processing are full of challenges and difficulties.
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4.3. The New Proposed Method
4.3.1. Hilbert–Huang Transform Combined Lowpass Filter

After further investigation for the weak wire rope inspection signals, it could be found
that almost all the defect signals resemble the sinusoidal waveform in shape. Moreover,
the defect signals always feature with a prominent amplitude in time domain and are
surrounded with continuous strand waveform simultaneously. Simple time and frequency
analysis may not be capable of recognizing these weak signals with complicated characteri-
zations. Hence, a phase transform technique based on improved Hilbert–Huang Transform
(HHT) and signal filtering methods are considered. According to the principles of the new
proposed methods explained in Section 3, the same three typical weak signals processed
through the proposed methods are presented in Figure 8.

Specifically, the signals displayed in Figure 8a are the original weak signal S1, the
Hilbert transformed signal, the differential signal, frequency spectrum. and the lowpass
filtering signal in sequence. After the signal differentiation between the original signal
and Hilbert transformed signal, the defect signal features become more remarkable, which
could be observed from the third line box, despite that the differential signals being very
weak and mixed with some noise. Furthermore, the frequency spectrum in the fourth
line box shows that the differential signals are all in a low frequency band, and most of
the components fall within the frequency region lower than 50 Hz. Therefore, further
signal denoising techniques by Butterworth lowpass filtering method was applied, and
when the cutoff frequency was 5 Hz, the processing results were shown in the last line
box. Apparently, the defect signals were characterized with four obvious peak waves and
the non-damaged signals were featured with a smooth baseline or a slight fluctuation,
which manifests that the defect on the wire rope can be well inspected and distinguished.
Comparing with the traditional nonlinear and linear denoising methods mentioned above,
the proposed method is capable of weak wire rope signal inspection and shows great
potential in high precision defect detection.
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The other two kinds of defect detection signals are expressed in Figure 8b,c, respec-
tively. Similar to the processing results presented in Figure 8a, although the original signals
of S2 and S3 are very weak both in amplitude and SNR, the basic defect features are prelim-
inarily extracted after the signal differentiating, as shown in the third line box. According
to the further frequency analysis by FFT, the frequency components and distribution of
the differentiating signals presented in the fourth line box manifests that the processed
signals are still featuring with low frequencies smaller than 100 Hz, especially for the defect
characteristics gathering under 50 Hz. Judged from the lowpass filtering signal expressed
in the last line box, five signal peaks with small burr noise could be observed obviously,
namely, the weak signals could be distinguished preliminarily both for the original weak
signals of S2 and S3. Comparing the signal processing results illustrated in Figure 8a with
those expressed in Figure 8b,c, it could be deduced that the bigger the defect is, the higher
the SNR and the smaller the signal span are. Consequently, further signal smooth filtering
methods are required regarding weaker and bigger liftoff signals.

4.3.2. Influence of Smooth Filtering Methods

Accordingly, six types of smooth filtering functions and methods were used and
compared regarding to the processed signal of S1, as shown in Figure 9. Explanatorily,
the legend of original and moving represent the lowpass filtering signal of S1 which is
to be further processed with its smooth filtering processed signals by moving average
method. The legend of lowess and loess in the third and fourth line box means that the
signals were processed by weighted linear least squares with first-order polynomial model
and second-order polynomial model, respectively, while the sgolay means the smoothing
signals processed by the Savitzky–Golay filtering method. Similarly, the rlowess and rloess
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represent the signals processed by robust lowess and loess methods, separately. Obviously,
the signals processed by the moving average method become smoother in the amplitude
and shape, and the micro fluctuation of the interference signals become smaller, as well
as the signals processed by local regression techniques of lowess and loess. However, the
signals processed by rlowess methods shown in the penultimate line box indicate that the
signal amplitudes become weaker compared with these signal processing results mentioned
above. The signals processed by rloess method expressed in the last line box were also
featured with high SNR and distinct signal peaks. According to these signal processing
results filtered by smoothing techniques, it could be found that almost all the smoothing
and averaging methods were available for the original lowpass filtered signals except the
rlowess method. Consequently, the typical moving average method was chosen as the
smooth filtering technique in the proposed algorithm.
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4.3.3. Influence of the Span in the Moving Average Method

As mentioned above, when the moving average method was applied, the parameter of
signal span should also be investigated. The influences of different moving average spans
on the smooth filtering signals are presented in Figure 10. When the moving spans were
set as 10, 50, 100, 200, 500, 1000, the averaging results for the lowpass filtered signal of S2
illustrated in Figure 8b manifested that as the moving average parameter of span increases,
the processing signals became smoother, and the micro interferences also became weaker
and smaller. Nevertheless, when the signal averaging span was less than 100, the smoothing
results shown in the second to the fourth line box indicated that the processed signals were
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nearly the same with the original signal, namely, little changes could be observed for these
signals both in waveform shape and amplitude. When the averaging span was bigger
than 500, some of the signal defect characterizations were also eliminated and reduced,
especially for the signal amplitudes, and only little signal fluctuations were observed.
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Figure 10. Signals processed by different moving average spans.

Finally, the time-frequency joint analysis by short-time Fourier transform is presented
in Figure 11. Specifically, the original signals of S1, S2, and S3 after the processing of
HHT and differentiating are shown in Figure 11a–c, while the signals after the final step of
smooth filtering are presented in Figure 11d–f, respectively.
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Figure 11. STFT analysis of the different processed signals. (a) STFT of HHT processed signal S1;
(b) STFT of HHT processed signal S2; (c) STFT of HHT processed signal S3; (d) STFT of smoothing
processed signal S1; (e) STFT of smoothing processed signal S2; (f) STFT of smoothing processed
signal S3.
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Comparing the STFT results of signal S1 expressed in Figure 11a,d, although the defect
characterizations are still mixed with signal noises judged by the spectrum illustrated in
Figure 11a, the spectrum of the signal defect could be apparently observed in Figure 11d
when processed by the proposed methods after the smooth filtering by moving average
technique. In other words, there are four signal strength enhancement regions in Figure 11d,
which is exactly corresponding to the original defect features and numbers of signal S1
aforementioned in Figure 5a. Similarly, despite the mixed components of defect and interfer-
ence signals expressed in Figure 11b after the signal processing by HHT and differentiating,
the final smooth filtering processed signal S2 expressed in Figure 11e are distinguished
with five signal enhancement regions, which is the reflection of the wire rope defects. As for
the processing results of the original weak signal S3, both the HHT processed and the final
smooth filtered signal spectrum presented in Figure 11c,f are featured with five obvious
signal enhancement regions, which not only verified the accuracy of the STFT analysis
technique, but also demonstrated the validity and feasibility of the proposed weak defect
signal processing method. The final signal-to-noise ratio of these signals were calculated
according to the formula as follows,

SNR = 10log10(Ps/Pn) (8)

where Ps and Pn are the power of the defect signal and noise signal, respectively. The de-
tailed SNR results calculated by Equation (8) and comparison by different signal processing
methods mentioned in Section 4 are shown in Table 1.

Table 1. SNR (dB) results by different signal processing techniques.

Signal

Method
LP-WA Median Wiener

Proposed Method

HHT LP MA

S1 43.7742 45.9040 32.1887 1.8256 23.6263 80.6473
S2 45.9942 45.9440 32.1642 0.8415 24.4783 90.3688
S3 40.8502 45.6552 31.9675 1.1997 23.9081 79.1788

Obviously, although the conventional signal processing methods such as the LP-WA,
median filtering, and wiener filtering method could denoise the original steel wire rope
signals to some extent, the SNR are the highest when they were processed by the proposed
algorithm through the successive techniques such as the HHT, lowpass filtering, and
moving average, which also demonstrated the validity and feasibility of the proposed weak
signal processing methods for steel wire rope.

5. Discussion

Although a shorter liftoff distance makes a better detection signal, it may cause
impact, wear, and abrasion between the tested wire rope surface and inner wall of the
detector, especially for online wire rope detection when they are operated under high-
speed conditions. Therefore, long length defect detection is urgently needed especially
in complicated application scenarios, as well as weak signal detection and compensation
methods. Moreover, when the defect signals are not so weak under short liftoff distance
testing conditions, higher SNR can still be obtained through our improved HHT and
filtering techniques. Further, the new proposed HHT and filtering combined method are
also capable of weak signal processing for other ferromagnetic objects including steel
pipe, oil tank, steel rail other than wire rope under bigger liftoff distance, and complex
application environment. However, the feasibility of this study for other types of wire rope
defects such as LMA (including wire rope abrasion and corrosion) is still waiting to be
validated. Further work may continue to focus on the weak signal recognition and further
improvement of the SNR for more types of wire rope defect detection.
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6. Conclusions

Owing to the requirement of wire rope weak signal processing, an improved Hilbert–
Huang Transform and filtering techniques combined method was proposed in this work.
The complexity of wire rope structure and the interference environment make the elec-
tromagnetic nondestructive testing signals of wire rope mix with various components,
especially for the strand and noise signals, which are featured with similar and overlapped
frequency components. By conducting the magnetic flux leakage testing experiments for
three typical kinds of wire rope defects under different big liftoff distances, various weak
signals mixed with background interferences and noise were obtained and analyzed in the
perspective of time-frequency joint domain, while the results manifested that the common
single filtering method is incapable of distinguishing these weak defect signals with the
noises. Consequently, the basic principles of the Hilbert transform and filtering combined
weak signal processing method was introduced. Further comparison of signal processing
techniques between the traditional lowpass filtering, wavelet denoising, median filtering
methods, and the proposed new method indicates that the weak signal characterizations are
difficult to identify by the former methods, while the later proposed new method showed
that it was effective in weak wire rope signal processing and defect identification by the
obvious defect characterizations of signal peak in time domain, and the signal strength
enhancement region through STFT analysis. All in all, the comparison results demonstrated
the feasibility and validity of the proposed method which also has a great potential in
practical application of wire rope inspection.
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