
Citation: Ahmed, M.; Usman, S.;

Shah, N.A.; Ashraf, M.U.; Alghamdi,

A.M.; Bahadded, A.A.; Almarhabi,

K.A. AAQAL: A Machine

Learning-Based Tool for Performance

Optimization of Parallel SPMV

Computations Using Block CSR. Appl.

Sci. 2022, 12, 7073. https://doi.org/

10.3390/app12147073

Academic Editor: Agostino

Forestiero

Received: 5 May 2022

Accepted: 5 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

AAQAL: A Machine Learning-Based Tool for Performance
Optimization of Parallel SPMV Computations Using Block CSR
Muhammad Ahmed 1, Sardar Usman 2,†, Nehad Ali Shah 3 , M. Usman Ashraf 4,*,† ,
Ahmed Mohammed Alghamdi 5 , Adel A. Bahadded 6 and Khalid Ali Almarhabi 7

1 Department of Software Engineering, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan;
mahmad.riaz102@gmail.com

2 Department of Computer Science and Software Engineering, Gran Asian University Sialkot,
Sialkot 53310, Pakistan; sardar.usman@gaus.edu.pk

3 Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea; nehadali199@sejong.ac.kr
4 Department of Computer Science, Government College Women University, Sialkot 53310, Pakistan
5 Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah,

Jeddah 21493, Saudi Arabia; amalghamdi@uj.edu.sa
6 Department of Information System, Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah 21589, Saudi Arabia; dbabahaddad10@kau.edu.sa
7 Department of Computer Science, College of Computing in Al-Qunfudah, Umm Al-Qura University,

Makkah 24381, Saudi Arabia; kamarhabi@uqu.edu.sa
* Correspondence: usman.ashraf@gcwus.edu.pk
† These authors contributed equally to this work.

Abstract: The sparse matrix–vector product (SpMV), considered one of the seven dwarfs (numerical
methods of significance), is essential in high-performance real-world scientific and analytical applica-
tions requiring solution of large sparse linear equation systems, where SpMV is a key computing
operation. As the sparsity patterns of sparse matrices are unknown before runtime, we used machine
learning-based performance optimization of the SpMV kernel by exploiting the structure of the sparse
matrices using the Block Compressed Sparse Row (BCSR) storage format. As the structure of sparse
matrices varies across application domains, optimizing the block size is important for reducing the
overall execution time. Manual allocation of block sizes is error prone and time consuming. Thus,
we propose AAQAL, a data-driven, machine learning-based tool that automates the process of data
distribution and selection of near-optimal block sizes based on the structure of the matrix. We trained
and tested the tool using different machine learning methods—decision tree, random forest, gradient
boosting, ridge regressor, and AdaBoost—and nearly 700 real-world matrices from 43 application
domains, including computer vision, robotics, and computational fluid dynamics. AAQAL achieved
93.47% of the maximum attainable performance with a substantial difference compared to in practice
manual or random selection of block sizes. This is the first attempt at exploiting matrix structure using
BCSR, to select optimal block sizes for the SpMV computations using machine learning techniques.

Keywords: sparse matrices; artificial intelligence; machine learning; compressed sparse row (CSR); block
CSR; decision trees; random forest; gradient boosting; ada boost; high performance computing (HPC)

1. Introduction

The sparse matrix–vector product (SpMV) is considered to be the most important,
time-consuming, and widely used scientific kernel [1] in various scientific disciplines
such as computer graphics, computer vision [2–5], robotics [3], 3D or 2D problems [4],
acoustic problems [5,6], thermal problems, healthcare, networking, operational research,
and computational fluid dynamics (CFD).

Different features influence the efficiency of SpMV computations [7]. These include
the specifications of storage formats, sparsity patterns, and implementation of software
and hardware platforms [8]. Over the years SpMV optimization has revolved around

Appl. Sci. 2022, 12, 7073. https://doi.org/10.3390/app12147073 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147073
https://doi.org/10.3390/app12147073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1949-5643
https://orcid.org/0000-0001-7341-8625
https://orcid.org/0000-0001-7644-5039
https://orcid.org/0000-0001-5137-5054
https://orcid.org/0000-0002-3104-209X
https://doi.org/10.3390/app12147073
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/12/14/7073?type=check_update&version=2

Appl. Sci. 2022, 12, 7073 2 of 26

proposing new storage schemes (i.e., compressed sparse column (CSC), extended Block
Compressed Sparse Row (BCSR) [9], compressed sparse row (CSR) [10], diagonal, hybrid
coordinate format [9,10]), developing software libraries (i.e., Intel MKL, Trillions Project [11],
cuSPARSE [7], and Cusp [12]) and efficiently exploiting DRAM bandwidth and cache
hierarchies [13].

The main objective of wide range of proposed optimization strategies is to reduce the
overall work set of algorithms and the main advantage of blocking methods is same, as
they allow more room for optimizing the computation of the kernel.

By reducing the memory pressure, blocking methods leave more space for optimiza-
tion, focusing on the computational chunk of the kernel, such as loop unrolling and
vectorization, which can additionally improve execution.

Random selection and trial and error experimentation for choosing the optimal block
size are time consuming and error prone. Owing to the irregular structure of matrices,
random selection of the block size needs to be repeated several times for each matrix. Our
proposed solution overcome above mentioned problems associated with random selection
of block sizes by predicting near optimal block size against any sparse matrix by primarily
utilizing the structure of matrix.

The contribution of this study revolves around the idea of proposing a machine
learning-based performance optimization tool (AAQAL) for sparse matrix–vector products
in shared memory architectures using BCSR format. For this purpose, we used different
machine learning algorithms to predict the near-optimal block size and find the best
solution for SpMV computation by exploiting the structure of the matrices.

The proposed research was conducted in six phases: matrix collection, matrix con-
version to BCSR format, data set preparation (SpMV computation using BCSR), feature
extraction based on the structure of sparse matrices, machine learning-based predictive
models, and evaluations of the models using mean absolute error (MAE) and relative mean
error (RME).

For our datasets, collections of matrices were sourced from the SuiteSparse Matrix
Market Collection (UOF) [14]. We collected nearly 700 matrices from real-world problems
targeting 43 different application domains. The sparse matrices are converted to B BCSR
format, and different sparse matrix features are extracted. The minimum, maximum, and
average execution times for different block sizes of a matrix have been attained. After
preparation of our dataset, we used different base and ensemble machine learning models
to predict the near-optimal block size for the best solution of SpMV by utilizing 80% of the
dataset for training and the remaining 20% for testing.

The proposed methodology requires sparse matrix features to be extracted first, for
arbitrary sparse matrix, before it can make predictions. Our proposed tool (AAQAL)
extracts sparse matrix features and based on these features only, predicts the optimal block
size at runtime before actual execution of SpMV computation. The SpMV computation
will then be performed with the predicted block size with a manual or random selection of
block sizes (in practice) is error prone and time consuming.

The intention to use BCSR storage format for computation is to reduce the sparsity
structure and to combine the entries/elements block-wise containing certain information.
As we are dealing with sparse matrices that hold most of the elements as zeros to avoid the
problems created by sparse matrices, that is, time and space complexities, the BCSR format
is used. The main aim of the proposed method is to allow users to automatically obtain the
best configuration and performance for the implementation of SpMV calculations for any
given sparse matrix. Based on the structure of the matrix, the AAQAL predicts the block
size against any arbitrary sparse matrix. The suggested approach is primarily intended to
enhance the performance optimization of existing contributions in this regard.

Generally, the proposed approach involves three main phases: data preparation,
training, and testing. Data preparation mainly comprises the selection of raw sparse
matrices, application of BCSR storage format, feature extraction, selection of block size
with minimum, maximum, and average execution times. After collecting this dataset,

Appl. Sci. 2022, 12, 7073 3 of 26

the dataset goes forward to the training phase. All matrices from different domains are
collected through the SuiteSparse matrix market collection (UOF) [14] (see Figure 1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 27

primarily intended to enhance the performance optimization of existing contributions in
this regard.

Generally, the proposed approach involves three main phases: data preparation,
training, and testing. Data preparation mainly comprises the selection of raw sparse
matrices, application of BCSR storage format, feature extraction, selection of block size
with minimum, maximum, and average execution times. After collecting this dataset, the
dataset goes forward to the training phase. All matrices from different domains are
collected through the SuiteSparse matrix market collection (UOF) [14] (see Figure 1).

Figure 1. Data Preparation, training, and testing phases.

Matrices are converted from a matrix market format to BCSR. This conversion helped
to remove the sparsity factor from the selected dataset. Subsequently, the sparse matrix–
vector product computations were performed 2000 times with different block sizes to
avoid any anomalies, and the minimum, maximum, and average execution times are
recorded for each sparse matrix in the datasets.

Moreover, in the next phase, the selected features along with the optimal number of
block sizes are fed to the training phase. The target variable is the block size and is selected
along with the minimum execution time for SpMV computations. The training datasets
are used to train different base and ensemble predictive models, which include random
forest (RF), decision tree (DT), AdaBoost (AB), gradient boosting (GB), and ridge regressor
(RR). These models were evaluated with the help of two evaluation metrics: mean
absolute error (MAE) and relative mean error (RME).

This paper makes the following contributions.
• Propose, implement, and evaluate a machine learning-based tool (AAQAL) that

helps users to choose an optimal block size for SpMV computation in a shared
memory architecture.

• Train and test using nearly 700 real-world matrices obtained from 43 application
domains, including linear programming, 2/3D problems, computer graphics,
computer vision, and CFD.

• Perform in-depth analysis and performance evaluation using different base and
ensemble machine learning techniques and visualization.

Figure 1. Data Preparation, training, and testing phases.

Matrices are converted from a matrix market format to BCSR. This conversion helped to
remove the sparsity factor from the selected dataset. Subsequently, the sparse matrix–vector
product computations were performed 2000 times with different block sizes to avoid any
anomalies, and the minimum, maximum, and average execution times are recorded for
each sparse matrix in the datasets.

Moreover, in the next phase, the selected features along with the optimal number of
block sizes are fed to the training phase. The target variable is the block size and is selected
along with the minimum execution time for SpMV computations. The training datasets are
used to train different base and ensemble predictive models, which include random forest
(RF), decision tree (DT), AdaBoost (AB), gradient boosting (GB), and ridge regressor (RR).
These models were evaluated with the help of two evaluation metrics: mean absolute error
(MAE) and relative mean error (RME).

This paper makes the following contributions.

• Propose, implement, and evaluate a machine learning-based tool (AAQAL) that helps users
to choose an optimal block size for SpMV computation in a shared memory architecture.

• Train and test using nearly 700 real-world matrices obtained from 43 application do-
mains, including linear programming, 2/3D problems, computer graphics, computer
vision, and CFD.

• Perform in-depth analysis and performance evaluation using different base and en-
semble machine learning techniques and visualization.

To the best of our knowledge, this work is the first to exploit the structure of the
matrix to predict the near-optimal block size by using different base and ensemble ma-
chine learning predictive models. AAQAL is an Arabic word, which means “intelligent”
or “smart”.

The remainder of this paper is organized as follows. A literature review and back-
ground information related to SpMV, BCSR, and machine learning algorithms are presented

Appl. Sci. 2022, 12, 7073 4 of 26

in Section 2. Section 3 includes the proposed methodology and design. The detailed re-
sults and evaluation are presented in Section 4. Section 5 contains the conclusions of our
research and suggests possible new directions for future research work. Table 1 lists the
basic symbols used in this study.

Table 1. Symbol used in the paper.

Name Symbols Name Symbols

Nnz Number of nonzeros in the matrix. A M × N input matrix
M Number of Rows N Number of Columns
X N × 1 dense vector Y M × 1 Output vector
N Number of matrices F Sparse Matrix features
SpMV Sparse matrix–vector multiplication CSR Compressed Sparse Row
nnzb Number of non zeros per block Nb Dimension of each block
BCSR Block Compressed Sparse Row

2. Literature Review
2.1. Background

In this section, we first discuss the background on SpMV, BCSR storage format, and
machine learning to give a brief overview.

2.1.1. Sparse Matrix–Vector Product (SpMV)

The SpMV kernel is one of the seven known categorized dwarfs of numerical methods,
which have significant importance [15]. Sparse matrices are mostly populated by zero
values. The SpMV kernel is formally denoted by:

y = Ax (1)

where A is a multidimensional sparse matrix, x is the input dense vector, and Y is the
resulting output dense vector (see Table 1). The dense and sparse matrix–vector products
are shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 27

To the best of our knowledge, this work is the first to exploit the structure of the
matrix to predict the near-optimal block size by using different base and ensemble
machine learning predictive models. AAQAL is an Arabic word, which means
“intelligent” or “smart.”

The remainder of this paper is organized as follows. A literature review and
background information related to SpMV, BCSR, and machine learning algorithms are
presented in Section II. Section III includes the proposed methodology and design. The
detailed results and evaluation are presented in Section IV. Section V contains the
conclusions of our research and suggests possible new directions for future research work.
Table 1 lists the basic symbols used in this study.

Table 1. Symbol used in the paper.

Name Symbols Name Symbols
Nnz Number of nonzeros in the matrix. A M × N input matrix
M Number of Rows N Number of Columns
X N × 1 dense vector Y M × 1 Output vector
N Number of matrices F Sparse Matrix features
SpMV Sparse matrix–vector multiplication CSR Compressed Sparse Row
nnzb Number of non zeros per block Nb Dimension of each block
BCSR Block Compressed Sparse Row

2. Literature Review
2.1. Background

In this section, we first discuss the background on SpMV, BCSR storage format, and
machine learning to give a brief overview.

2.1.1. Sparse Matrix–Vector Product (SpMV)
The SpMV kernel is one of the seven known categorized dwarfs of numerical

methods, which have significant importance [15]. Sparse matrices are mostly populated
by zero values. The SpMV kernel is formally denoted by:

y = Ax (1)

where A is a multidimensional sparse matrix, x is the input dense vector, and Y is the
resulting output dense vector (see Table 1). The dense and sparse matrix–vector products
are shown in Figure 2.

Figure 2. Dense vs. sparse matrix comparison.

Unlike dense matrices, sparse matrices require an explicit representation of the
coordinates of non-zero elements and their manipulation in the sparse matrix–vector
product demand memory bandwidth. The loop structure of the sparse matrix–vector
product is more irregular than that of the dense matrix, which may lead to a less optimized
compiler-generated code. The different data structures resulted in many indirect memory

Figure 2. Dense vs. sparse matrix comparison.

Unlike dense matrices, sparse matrices require an explicit representation of the coor-
dinates of non-zero elements and their manipulation in the sparse matrix–vector product
demand memory bandwidth. The loop structure of the sparse matrix–vector product is
more irregular than that of the dense matrix, which may lead to a less optimized compiler-
generated code. The different data structures resulted in many indirect memory accesses
that add performance bottlenecks by having additional load operations and poor compiler
optimization. An efficient matrix–vector product involves multiple aspects, that is, the
matrix pattern, to determine if the number of elements in each row varies strongly from
row to row, if the sparse matrix is near a dense matrix or not. Knowing the matrix pattern, it
is easier to find the most suitable storage scheme. Another important factor is the effective
utilization of cache. The data distribution strongly depends on the matrix pattern. The use
of pointers to exploit the sparsity of the matrix is unavoidable, as they lack spatial locality

Appl. Sci. 2022, 12, 7073 5 of 26

and lead to poor cache utilization. An irregular sparse structure leads to a number of cache
misses and memory indirection, or the use of pointers requires extra load operations.

2.1.2. BCSR

The efficient storage format for sparse matrix–vector product is highly hardware-
dependent, which can be problematic for heterogeneous systems [16] and also has a variety
of sparse matrix storage formats to choose the most optimal one. An efficient matrix–vector
product involves multiple aspects, that is, the matrix pattern, to determine if the number of
elements in each row varies strongly from row to row, if the sparse matrix is near a dense
matrix or not. Knowing the matrix pattern, it is easier to find the most suitable storage
scheme. The performance of the SpMV is affected by the temporal locality (reuse data that
brought it into the memory) and spatial locality (use of every data element brought into the
memory) of an application. Temporal locality can be improved with BCRS to maximize the
data access before it is replaced in the cache.

If the sparse matrix X is made up of dense blocks of non-zeros with a regular pattern,
we can change the CSR format to BCSR for the efficient exploitation of those block patterns.
Block matrices usually result from the scattering of partial differential equations with
certain degrees of freedom associated with grid points. The matrix is then divided into
smaller blocks equal in size to the number of degrees of freedom, and each block is treated
as a dense matrix, even if there are zeros. For example, if we have nxn matrix having nb as
the dimension of block and nnzb as the nonzero per block (see Table 1), then we require
total memory given by:

nnz = nnzb× n2
b (2)

The dimension of block nd of matrix X is defined by

nd =
n
nb

(3)

2.1.3. Machine Learning

With the advancement in computer technology, storage capabilities and sensor tech-
nologies have driven us to the age of big data; the term big data has become more prominent
with a large amount of data availability. Machine learning algorithms are used most fre-
quently in these applications to extract the desired information from such a tremendous
amount of data. Machine learning is commonly used to build a model from prevailing
datasets to predict new sample data under testing. For example, many URLs are labeled
with their known reputation using analysis. This analysis is used by machine learning
algorithms to train their model to classify new URLs according to their reputation.

Machine learning sample data contain a set of characteristics and labels of the data.
In reputation analysis examples of URLs, a characteristic could be whether there is an
inclusion of unusual text in URLs such as amazon.com. In machine learning, the char-
acteristics and labels of the data set are organized in an oriented column format; hence,
each characteristic is represented by a separate column. Therefore, the operation and
analysis of the characteristics are assessed only for a specific column associated with it. The
same principle was replicated using a row-oriented format in machine learning [17–20]. In
this study, we focus on five different algorithms: decision tree (DT), random forest (RF),
gradient boosting (GB), AdaBoost, and ridge regressor to predict the near-optimal block
size for the sparse matrix.

2.2. Related Work

Over the years, different optimization techniques have been proposed, primarily focus-
ing on register/cache blocking [21,22], reordering of rows/columns [19], compression [23,24],
and introduction of new storage schemes. The storage formats are generic in nature and
thus can be used to store any structure of sparse matrix, but with certain performance
penalty. On the other hand, most storage schemes target the optimization of matrices with

Appl. Sci. 2022, 12, 7073 6 of 26

specific patterns. Numerous blocking optimization techniques have been proposed but
primarily focused on proposing new storage scheme. There is very little research conducted
on the use of machine learning for the optimization of SpMV computation, and most of
the efforts are dedicated only to automated format selection and execution time prediction
based on sparse matrix features.

In BCSR matrix is divided into blocks of fixed sizes and optimal block size is depen-
dent on structure of the matrix and underlying platform. BCSR provides many advantages
including loop unrolling per block, compressing indexing and other low-level optimiza-
tions but also requires excessive padding to fill the blocks with explicit zero values [24].
Bitmap based sparse matrix storage format [25] uses blocks of fixed size and only non-zero
elements need to be stored in values array. Bitmaps needs to be stored that encode the
non-zero structure using Bruijn sequences. Reduce memory usage resulted in the additional
computation time. Similarly Block Compressed Common Coordinate (BCCOO) storage
format [26] uses bit flags to point to start of the row. The use of bit array achieves high
compression but ultimately requires additional array to executed in parallel with SpMV
Computation. Other optimization based on BCSR [27] applicable to sparse matrices with
multiple blocks appear in recurring pattern. Variable Block Length (VBL) format [28] does
not have fixed size blocks and requires execution of additional loop in SpMV computa-
tion to proceed through each block. The Compressed sparse eXtended format (CSX) [29]
reduces the memory footprints of a sparse matrix by compressing index information using
Compressed Sparse Row Delta Unit (CSR-DU). Index reduction is achieved but on the
expense of high complexity in determining the substructures with considerable overhead.
Other optimizations in the literature include Compressed Sparse block (CSB) format [30]
and Recursive Sparse Blocks (RSB) [31], while pattern based representation (PBR) [32]
aims to reduce storage overhead and keeping locality but with additional computation
overhead. All these optimization techniques required alteration at algorithmic level on
the expense of additional data structure or extra computation. With fixed size blocking
techniques, selection of optimal block size is still not addressed in the literature. Trial
and error based manual selection of blocks size is error prone and time consuming. Even
after considerable efforts we may settle up with the block size which is not optimal. The
proposed methodology does not change the SpMV algorithm but instead use the matrix
structure only to select the optimal block size before actual execution of SpMV computation.

Recently, researchers started using machine/deep-learning techniques to optimize
the performance of the SpMV kernel in both shared and distributed memory environ-
ments [33–35]. To estimate the optimal number of processes for SpMV computations of
an arbitrary sparse matrix on a distributed memory computer system, in our previous
work we [36] proposed a data-driven, machine learning method and tool known as ZAKI
for SpMV computations. Experimental data from 2000 real-world matrices were collected
from 45 heterogeneous application domains. The matrix sparsity structure was used to
predict the optimum number of processes in distributed memory environments for a given
matrix using various base and ensemble machine learning approaches [36]. In [37], the
author proposed a machine learning approach to predict the optimal storage format for the
SpMV kernel on a GPU (COO, CSR, ELL, and HYB). Support vector regression (SVR) and
multilayer perceptron neural network (MLP) were used, and the performance results of the
experiment on two separate GPUs (Fermi GTX 512 and Maxwell GTX 980 Ti) show that the
average prediction error ranges between 7% and 14% [38]. In [39], a machine learning-based
tool was proposed to automatically predict the best process mapping strategy and data
distribution based on the structure of the matrix. Barreda et al. [37] proposed high level
abstraction of the structure of sparse matrix based on fitting blocks of non-zero elements
to convolutional neural network (CNN). The results demonstrate the robustness of CNN
model and predicted the performance of CNN on intel HASWELL core and ARM A57 core.
Barreda et al. [38] proposed CNN abased model to estimate the execution time of SpMV and
energy consumption of DRAM at variable processor frequencies with over all relative error
ranges between 0.5% to 14%. Eberhardt et al. [40] proposed Block CSR based optimization

Appl. Sci. 2022, 12, 7073 7 of 26

of SpMV for sparse matrix with dense block substructures. They proposed algorithms for
both CPU intel many integrated core and GPU architectures and demonstrated that the
performance of SpMV up to 4X faster than NVIDIA and cuSPARSE, 3x faster than MKL, and
147X times faster than intel math kernel library. The machine learning based optimizations
for SpMV computation mostly focused on selection of optimal storage format, execution
time or performance prediction and some efforts dedicated to energy consumption.

Achieving higher performance usually requires carefully choosing the sparse matrix
storage format and fully utilizing the underlying system architecture [41–43]. Over the
years, SpMV’s optimization has revolved around ideas of improving memory bandwidth,
matrix representation, instruction throughput, matrix reordering, cache, and register block-
ing, etc. The structure of the matrix is an unknown entity before runtime which motivates
the idea of using machine learning based approach to predict the optimal block size before
actual execution of SpMV computation using BCSR storage format. Block sizes are selected
randomly and manual selection is time consuming and error prone. Even after trying
different combinations of block sizes (random and manual selection in practice), we may
settle with the block size which is not optimal.

To the best of our knowledge, our work is the first attempt at using machine learning
techniques to optimize the performance of the SpMV kernel using the BCSR storage format
and predict the near-optimal block size based on the structure of the matrix.

3. Materials and Methods

Our proposed methodology consists of three main phases: data preparation, feature
extraction, and predictions using different machine learning algorithms. For data prepara-
tion, we collected nearly 700 matrices from multi-disciplinary application domains. The
features were extracted by exploiting the structure of the sparse matrix. The training set
comprises different features along with the block size for which the minimum execution
time is obtained. The predictive model predicts the block size and is validated against
arbitrary matrices. Selecting the correct set of features is important for the effective imple-
mentation of a predictive model. The overfitting issue arises when the number of features
is excessively large for the training set. Therefore, dimensionality reduction and feature
selection are very important to avoid overfitting.

Let nb be the number of blocks and Ti represent the execution time of the ith matrix
where 0 < i < N and N is the total number of matrices in our dataset. Execution time of
each matrix is recorded against different number of blocks; minimum and maximum time
is recorded accordingly.

timax = max(t1, t2 ,, tnb) (4)

timin = min(t1, t2 ,, tnb) (5)

where nb is the Total number of blocks.

tiavg =
i=nb

∑
i=1

ti

nb
(6)

tiavg is calculated time when ever random block size is chosen for the execution.
For the predictions, related to performance optimization of SpMV in shared memory

system via machine learning models, we followed the subsequent key steps:

Step 1. Collection of real-world matrices from multi-disciplinary domains, sourced from
Suit Sparse matrix market Collection (UOF) [35].

Step 2. Conversion of sparse matrices from matrix market format to block CSR and SpMV
computation using different block sizes. The SpMV computations are performed
2000 times for each sparse matrix using different block sizes.

Step 3. We prepared sparse matrices dataset by recording SpMV execution time and their
corresponding block sizes (Step 4). Furthermore, we utilized them in the training
and testing process (Steps 5 and 6).

Appl. Sci. 2022, 12, 7073 8 of 26

Step 4. We have extracted set of SpMV features by utilizing the structure of the matrix
along with a block size for which the minimum execution time is obtained.

Step 5. We used different machine learning models to find the near optimal block size.
Step 6. We evaluated the accuracy of the predictive models by using two metrics, mean

absolute error and relative mean error.

SpMV computations, features extraction and training are represented in the following
proposed Algorithm 1.

Algorithm 1: Algorithm of SpMV using Block CSR

1 A : is the input matrix
2 f : is the output features
3 n: is the number of matrices
4 A′: is matrix in block CSR Format
5 nb: is the number of blocks
6 Function feature SpMV(A::in, f::out,timin ::out, nb ::out)
7 for J = 1 to J <= n do

8
convert matrix to Block CSR
A′j←Aj

9 extract required features
10 fj←extract features of A′j
11 end for

12
for k = 1 to k <= nb do

f or i = 1 to i = 2k do
13 cal_exe_time[i]←Call SPMV(A′j , x)
14 Where x is the dense vector

3.1. Creating Dataset

After collection of sparse matrices from multiple domains and their conversion from
the matrix market format to BCSR format, SpMV computation is performed on each
matrix with multiple block sizes and their execution time is recorded. SpMV operation is
performed 2k times to avoid any anomalies (execution time variations of low dimensional
matrices) and used the average execution time of 2k iterations. With 2k iterations the
execution time remained very much consistent. The dataset was labeled with block size
associated with the minimum execution time recorded against each matrix. The average
execution time was computed by taking the average time associated with multiple block
sizes. The maximum execution time is the worst-case scenario.

Our dataset comprises 43 application domains, as listed in Table 2. The column
name shows the largest matrix from each domain along with its dimensions (rows and
columns). The number of non-zero entries in the largest matrix for each domain is also
listed. These matrices are collected from multiple domains to diversify the dataset and thus
avoid the situation of being biased towards specific domains or targeting specific structure
of matrices.

Table 2. Application domains.

No. Name Non-Zero Rows Columns Domains

1 1138_bus 4054 1138 1138 Power Network Problems
2 abb313 1557 313 176 Least Squares Problem
3 arc130 1037 130 130 Materials Problem
4 bcsstk13 83,883 2003 2003 Computational Fluid Dynamics Problem
5 bcsstk12 34,241 1473 1473 Duplicate Structural Problem
6 bcsstk31 1,181,416 35,588 35,588 Structural Problem
7 bcsstk32 2,014,701 44,609 44,609 Structural Problem
8 jagmesh4 9504 1440 1440 2D/3D Problem
9 saylr4 22,316 3564 3564 Computational fluid Dynamics Problem

Appl. Sci. 2022, 12, 7073 9 of 26

Table 2. Cont.

No. Name Non-Zero Rows Columns Domains

10 rbsa480 17,088 480 480 Robotics Problem
11 Hardesty2 4,020,731 929,901 303,645 Computer Graphics/Vision Problem
12 nv2 37,475,646 1,453,908 1,453,908 Semiconductor Device Problem
13 hangGlider_3 149,532 15,561 15,561 Optimal Control Problem
14 vsp_model1_crew1_cr42_south31 379,952 45,101 45,101 Random Unweighted Graph
15 NLR 24,975,952 4,163,763 4,163,763 Undirected Graph
16 FX_March2010 301,899 1319 9498 Term/Document Graph
17 CurlCurl_0 113,343 11,083 11,083 Model Reduction Problem
18 preferential Attachment 999,970 100,000 100,000 Random Undirected Graph
19 kron_g500-logn19 43,562,265 524,288 524,288 Undirected Multigraph
20 ccc 4,194,298 1,048,56 1,048,576 Undirected Graph Sequence
21 dielFilterV2clx 25,309,272 607,232 607,232 Electromagnetics Problem
22 S20PI_n 2881 1182 1182 Eigenvalue/Model Reduction Problem
23 bp_1200 4726 822 822 Optimization Problem Sequence
24 lp_bnl2 14,996 2324 4486 Linear Programming Problem
25 onetone2 222,596 36,057 36,057 Frequency Domain Circuit Simulation Problem
26 nemeth01 725,054 9506 9506 Quantum Chemistry Problem Sequence
27 nemeth02 394,808 9506 9506 Theoretical/Quantum Chemistry Problem
28 young1c 4089 841 841 Acoustics Problem
29 shl_200 1726 663 663 Subsequent Optimization Problem
30 gemat12 33,044 4929 4929 Subsequent Power Network Problem
31 fs_760_2 5739 760 760 Subsequent 2D/3D Problem
32 impcol_a 572 207 207 Chemical Process Simulation Problem
33 beacxc 50,409 497 506 Economic Problem
34 gyro_k 1,021,159 17,361 17,361 Duplicate Model Reduction Problem
35 flowmeter0 67,391 9669 9669 Model Reduction Problem
36 Pd 13036 8081 8081 Counter Example Problem
37 GD00_c 1041 638 638 Directed Multigraph
38 thermal2 8,580,313 1,228,045 1,228,045 Thermal Problem
39 bibd_18_9 1,750,320 153 48,620 Combinatorial Problem
40 mawi_201512012 38,040,320 18,571,154 18,571,154 Undirected Weighted Graph
41 circuit_1 35,823 2624 2624 Circuit Simulation Problem
42 fs_541_1 4282 541 541 2D/3D Problem Sequence
43 Cities 1342 55 46 Weighted Bipartite Graph

3.2. Feature Extraction

After collection of the sparse matrices and performing SpMV computations with ran-
dom block sizes, we extracted some of the most relevant features that affect the performance
of SpMV computation.

These features of the sparse matrix are listed in Table 3, along with their computation
complexity, feature description, and formulae. The feature set is divided into two subsets,
that is, basic features, which have low computational complexity, and other features, which
require a full scan of the matrix and have certain associated computational complexity. The
feature column shows the name of the addressed feature, along with their description and
formula. The computational complexity of these features is listed in the last column of
Table 3.

Table 3. Sparse matrices features with definition and complexity.

Set Features Description Formula Complexity

Basics Features M Number of rows. M ∅(1)
N Number of columns. N ∅(1)
M + N row + column M + N ∅(1)
nnz Number of non zeros. Nnz ∅(1)
Density nnz

M×N
nnz

M×N ∅(1)
High Complexity Features nnz_min Minimum nnz. Min(nnz1, , nnzn) ∅(M)

nnz_max Maximum nnz Max(nnz1, , nnzn) ∅(M)

nnz_avg Average nnz 1/N
N
∑

i=1
nnzi

∅(M)

Appl. Sci. 2022, 12, 7073 10 of 26

Table 3. Cont.

Set Features Description Formula Complexity

nnz_sd Standard deviation of nonzero elements per row.
√

1/N
N
∑

i=1
(nnzi − nnz _avg)2 ∅(2M)

Bw_Avg Average column distance between the first and
the last nonzero element each row. 1/N

N
∑

i=1
Bwi

∅(M)

Bw_min Minimum column distance between the first and
the last nonzero element of each row. Min(Bw1,........Bwn) ∅(M)

Bw_max Maximum column distance between the first and
the last nonzero element of each row. Max(Bw1,........Bwn) ∅(M)

Bw_sd Standard Deviation of column distances between
the first and the last nonzero element of each row.

√
1/N

N
∑

i=1
(Bwi− Bw _avg)2 ∅(2M)

Clustering Clustering N
∑
N

i = 0 Clusi
∅(nnz)

3.3. Training and Testing Phase

Initially, all the sparse matrices are converted into Block CSR format, sparse matrix
features are extracted, and SpMV computation is performed 2000 times with different block
sizes, and the dataset is labeled with the optimal block size based on the execution time.
We selected 80 percent of the dataset for training and the remaining 20% for testing, as can
be seen in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 27

 Clustering Clustering i = 0 Clus ∅(nnz

3.3. Training and Testing Phase
Initially, all the sparse matrices are converted into Block CSR format, sparse matrix

features are extracted, and SpMV computation is performed 2000 times with different
block sizes, and the dataset is labeled with the optimal block size based on the execution
time. We selected 80 percent of the dataset for training and the remaining 20% for testing,
as can be seen in Figure 3.

Figure 3. Training and testing process.

3.4. Model Evaluation Metrics
The model with the best prediction results is selected based on mean absolute error

(MAE) and relative mean error (RME) evaluation metrics.
MAE
If y is the actual value of the i_th sample and y is the predicted value, then the

mean square error MAE can be estimated as MAE(y, y = ∑ |y − y | (7)

RME
The relative mean error (RME) is one of the most commonly used evaluation metrics

in machine learning and is the average of the percentage error of the forecast. M = ∑ (8)

• n = the number of errors;
• Σ = symbol of summation;
• A is the actual value;
• F is measure of forecast value.

4. Results and Discussion
This section presents the results and discussion based on the methodology,

implementation, and experiments shown in the previous section. Moreover, we have also
presented the description of software specifications used while implementing the
proposed solution. Execution time analysis of SpMV computation with multiple random
block sizes along with average- and worst-case scenarios are presented in Section 4.2.
Speedup achieved by using optimal block sizes and compared them with average- and
worst-case scenarios. Detailed predictive analysis, performance gain, and limitations are
presented in the subsequent sections.

Figure 3. Training and testing process.

3.4. Model Evaluation Metrics

The model with the best prediction results is selected based on mean absolute error
(MAE) and relative mean error (RME) evaluation metrics.

MAE
If yi is the actual value of the i_th sample and y̌i is the predicted value, then the mean

square error MAE can be estimated as

MAE(y,
.
ŷ =

1
nsamples

∑
nsamples−1
i=0 |yi − y̌i| (7)

RME
The relative mean error (RME) is one of the most commonly used evaluation metrics

in machine learning and is the average of the percentage error of the forecast.

M =
1
n ∑n

t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (8)

Appl. Sci. 2022, 12, 7073 11 of 26

• n = the number of errors;
• Σ = symbol of summation;
• At is the actual value;
• Ft is measure of forecast value.

4. Results and Discussion

This section presents the results and discussion based on the methodology, implemen-
tation, and experiments shown in the previous section. Moreover, we have also presented
the description of software specifications used while implementing the proposed solution.
Execution time analysis of SpMV computation with multiple random block sizes along
with average- and worst-case scenarios are presented in Section 4.2. Speedup achieved
by using optimal block sizes and compared them with average- and worst-case scenar-
ios. Detailed predictive analysis, performance gain, and limitations are presented in the
subsequent sections.

4.1. Hardware and Software Specifications

Experiments are performed on Core i5 7th generation with 4 cores, 8 GT/s bus speed,
24 GB RAM, and 1TB storage. We used the following tools to perform SpMV computations
and machine learning based predictive analysis. The software specifications are presented
in Table 4.

Table 4. Software specifications.

Software Tools/Library Version

Operating System Windows 10 pro 18,363.904
OpenMP OpenMp Openmp-5.1
Compiler Visual Studio professional 2019 Visual studio 16.5
Python Google Colab Py 3.6.7.
Scikit-Learn Sklearn 0.23.1

4.2. Execution Time Analysis of SpMV

We performed experiments on SpMV computations with multiple block sizes and
calculated the minimum, maximum, and average execution times of SpMV, as shown in
Equations (4)–(6), respectively.

Figure 4 shows the execution time comparison of the SpMV computation with various
random multiple block sizes. The minimum, maximum, and average execution times of
each matrix from the different application domains are shown in Figure 4. The dataset
was sorted by nnz (minimum to maximum). Max time is a worst-case scenario in which
the random block size is chosen with the maximum execution time. The average time
is calculated as the aggregated execution time of the SpMV computation with multiple
block sizes. The minimum execution time is the least execution time recorded against
each matrix, and the associated block sizes are chosen as the target variable. The X-axis
shows the different matrices from various application domains, and the Y-axis shows the
execution time of SpMV computations on a logarithmic scale showing clear execution time
difference between optimal and random selection of block sizes.

Appl. Sci. 2022, 12, 7073 12 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 27

4.1. Hardware and Software Specifications
Experiments are performed on Core i5 7th generation with 4 cores, 8 GT/s bus speed,

24 GB RAM, and 1TB storage. We used the following tools to perform SpMV computations
and machine learning based predictive analysis. The software specifications are presented
in Table 4.

Table 4. Software specifications.

Software Tools/Library Version

Operating System Windows 10 pro 18,363.904

OpenMP OpenMp Openmp-5.1

Compiler Visual Studio professional 2019 Visual studio 16.5

Python Google Colab Py 3.6.7.

Scikit-Learn Sklearn 0.23.1

4.2. Execution Time Analysis of SpMV
We performed experiments on SpMV computations with multiple block sizes and

calculated the minimum, maximum, and average execution times of SpMV, as shown in
Equations (4)–(6), respectively.

Figure 4 shows the execution time comparison of the SpMV computation with
various random multiple block sizes. The minimum, maximum, and average execution
times of each matrix from the different application domains are shown in Figure 4. The
dataset was sorted by nnz (minimum to maximum). Max time is a worst-case scenario in
which the random block size is chosen with the maximum execution time. The average
time is calculated as the aggregated execution time of the SpMV computation with
multiple block sizes. The minimum execution time is the least execution time recorded
against each matrix, and the associated block sizes are chosen as the target variable. The
X-axis shows the different matrices from various application domains, and the Y-axis
shows the execution time of SpMV computations on a logarithmic scale showing clear
execution time difference between optimal and random selection of block sizes.

Figure 4. Execution time comparison of SpMV computation (dataset sorted by nnz -min to max).

Figure 5 shows the comparison of execution time of the SpMV computation on the
row-sorted data set (minimum to maximum). The X-axis shows the different matrices
from various application domains sorted by row (minimum to maximum), and the Y-axis
shows the execution time of SpMV computations on a logarithmic scale.

0.0001

0.001

0.01

0.1

1
1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

Ti
m

e(
s)

(lo
gs

ca
le

e)

Nnz(min to max)

Max Time Average Time Min Time

Figure 4. Execution time comparison of SpMV computation (dataset sorted by nnz -min to max).

Figure 5 shows the comparison of execution time of the SpMV computation on the
row-sorted data set (minimum to maximum). The X-axis shows the different matrices from
various application domains sorted by row (minimum to maximum), and the Y-axis shows
the execution time of SpMV computations on a logarithmic scale.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 27

Figure 5. Execution time comparison of SpMV computation (dataset sorted by row-min to max).

The pre-processing or format conversion cost is highlighted in Figure 6, which shows
execution time comparison with and without including the conversion time of CSR to
BCSR format. The X-axis shows matrices in our dataset sorted on number of rows from
minimum to maximum. Depending on the structure, CSR performs well for some matrices
but overall BSCR (including conversion cost) shows better performance against matrices,
included in our dataset.

Figure 6. Execution time comparison of CSR and BCSR (with and without format conversion time).

4.3. Speedup
Figures 7 and 8 show the speed up of the entire dataset sorted on rows and the

number of non-zeros, respectively. The speedup average and speedup maximum are
calculated using Equations (9) and (10), respectively. The X-axis shows the number of
matrices in our entire data set, and the Y-axis shows speedup against the average and
worst-case scenarios. SpeedUp = (9)

SpeedUp = tt (10)

0.0001

0.001

0.01

0.1

1

1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

Ti
m

e(
s)

(lo
gs

ca
le

)

Row(min to max)

Max Time Average Time Min Time

0.00001

0.0001

0.001

0.01

0.1

1

10

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

Ti
m

e(
s)

Lo
gS

ca
le

CSR vs(BCSR+Conversion)

BCSR SpMV Execution CSR Execution Conversion+ BCSR SpMV Execution

Figure 5. Execution time comparison of SpMV computation (dataset sorted by row-min to max).

The pre-processing or format conversion cost is highlighted in Figure 6, which shows
execution time comparison with and without including the conversion time of CSR to
BCSR format. The X-axis shows matrices in our dataset sorted on number of rows from
minimum to maximum. Depending on the structure, CSR performs well for some matrices
but overall BSCR (including conversion cost) shows better performance against matrices,
included in our dataset.

Appl. Sci. 2022, 12, 7073 13 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 27

Figure 5. Execution time comparison of SpMV computation (dataset sorted by row-min to max).

The pre-processing or format conversion cost is highlighted in Figure 6, which shows
execution time comparison with and without including the conversion time of CSR to
BCSR format. The X-axis shows matrices in our dataset sorted on number of rows from
minimum to maximum. Depending on the structure, CSR performs well for some matrices
but overall BSCR (including conversion cost) shows better performance against matrices,
included in our dataset.

Figure 6. Execution time comparison of CSR and BCSR (with and without format conversion time).

4.3. Speedup
Figures 7 and 8 show the speed up of the entire dataset sorted on rows and the

number of non-zeros, respectively. The speedup average and speedup maximum are
calculated using Equations (9) and (10), respectively. The X-axis shows the number of
matrices in our entire data set, and the Y-axis shows speedup against the average and
worst-case scenarios. SpeedUp = (9)

SpeedUp = tt (10)

0.0001

0.001

0.01

0.1

1

1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

Ti
m

e(
s)

(lo
gs

ca
le

)

Row(min to max)

Max Time Average Time Min Time

0.00001

0.0001

0.001

0.01

0.1

1

10

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

Ti
m

e(
s)

Lo
gS

ca
le

CSR vs(BCSR+Conversion)

BCSR SpMV Execution CSR Execution Conversion+ BCSR SpMV Execution

Figure 6. Execution time comparison of CSR and BCSR (with and without format conversion time).

4.3. Speedup

Figures 7 and 8 show the speed up of the entire dataset sorted on rows and the number
of non-zeros, respectively. The speedup average and speedup maximum are calculated
using Equations (9) and (10), respectively. The X-axis shows the number of matrices in our
entire data set, and the Y-axis shows speedup against the average and worst-case scenarios.

SpeedUpavg =
tiavg

timin
(9)

SpeedUpmax =
timax

timin
(10)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 27

Figure 7. Speedup row sorted dataset (min to max).

Figure 8. Speedup nnz sorted dataset (min to max).

The X-axis shows the application domains, while the Y-axis shows the execution time
on a logarithmic scale. The execution time is calculated by taking the sum of all execution
times of each domain recorded against multiple blocks. Figure 9a,c,e show the execution
time comparison of different application domains in the same numerological order, as
listed in Table 3. Similarly, Figure 9b,d,f show the speedup achieved using the entire
dataset. Speedup against the worst-case scenario is represented in blue while speedup
against the randomly chosen block size is shown as average speed up in red.

(a)

Figure 7. Speedup row sorted dataset (min to max).

The X-axis shows the application domains, while the Y-axis shows the execution time
on a logarithmic scale. The execution time is calculated by taking the sum of all execution
times of each domain recorded against multiple blocks. Figure 9a,c,e show the execution
time comparison of different application domains in the same numerological order, as listed
in Table 3. Similarly, Figure 9b,d,f show the speedup achieved using the entire dataset.
Speedup against the worst-case scenario is represented in blue while speedup against the
randomly chosen block size is shown as average speed up in red.

Appl. Sci. 2022, 12, 7073 14 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 27

Figure 7. Speedup row sorted dataset (min to max).

Figure 8. Speedup nnz sorted dataset (min to max).

The X-axis shows the application domains, while the Y-axis shows the execution time
on a logarithmic scale. The execution time is calculated by taking the sum of all execution
times of each domain recorded against multiple blocks. Figure 9a,c,e show the execution
time comparison of different application domains in the same numerological order, as
listed in Table 3. Similarly, Figure 9b,d,f show the speedup achieved using the entire
dataset. Speedup against the worst-case scenario is represented in blue while speedup
against the randomly chosen block size is shown as average speed up in red.

(a)

Figure 8. Speedup nnz sorted dataset (min to max).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 27

Figure 7. Speedup row sorted dataset (min to max).

Figure 8. Speedup nnz sorted dataset (min to max).

The X-axis shows the application domains, while the Y-axis shows the execution time
on a logarithmic scale. The execution time is calculated by taking the sum of all execution
times of each domain recorded against multiple blocks. Figure 9a,c,e show the execution
time comparison of different application domains in the same numerological order, as
listed in Table 3. Similarly, Figure 9b,d,f show the speedup achieved using the entire
dataset. Speedup against the worst-case scenario is represented in blue while speedup
against the randomly chosen block size is shown as average speed up in red.

(a)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 27

(b)

(c)

(d)

(e)

Figure 9. Cont.

Appl. Sci. 2022, 12, 7073 15 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 27

(b)

(c)

(d)

(e)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 27

(f)

Figure 9. Domain wise execution time comparison (a–c) and speedup (d–f).

Figure 10 shows speedup of our proposed methodology against CSR (with and
without) including format conversion time from CSR to BCSR). The speedup of BCSR
execution (only) is represented in blue and red color represents the speedup of BCSR
execution + format conversion time. Overall BCSR (including conversion time) showed
speedup of 1.27 compared to CSR execution.

Figure 10. Speedup of BCSR (with and without format conversion time) against CSR.

4.4. Predictive Analysis
We used five machine learning-based predictive models: decision tree (DT), random

forest (RF), ridge regressor (RR), AdaBoost (AB), and gradient boosting (GB).
Our proposed method predicts the near-optimal block size based on the structure of

the matrix, which is an unknown entity until runtime. Fourteen sparse matrix features are
extracted and divided into three categories: full feature set (including all fourteen
features), and basic and important feature sets. Basic features have the lowest
computational complexity and do not require a full scan of the matrix. We calculated the
feature score of all machine learning models and labeled them as important features, as
shown in Figure 11. Important features are selected using Scikit-Learn built-in feature
importance metric and score is calculated against each machine learning algorithm used

1

10

100

1000

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

Speed Up

Speed Up BCSR Speed Up Conversion+BCSR

Figure 9. Domain wise execution time comparison (a–c) and speedup (d–f).

Figure 10 shows speedup of our proposed methodology against CSR (with and with-
out) including format conversion time from CSR to BCSR). The speedup of BCSR execution
(only) is represented in blue and red color represents the speedup of BCSR execution +
format conversion time. Overall BCSR (including conversion time) showed speedup of 1.27
compared to CSR execution.

4.4. Predictive Analysis

We used five machine learning-based predictive models: decision tree (DT), random
forest (RF), ridge regressor (RR), AdaBoost (AB), and gradient boosting (GB).

Our proposed method predicts the near-optimal block size based on the structure of
the matrix, which is an unknown entity until runtime. Fourteen sparse matrix features
are extracted and divided into three categories: full feature set (including all fourteen
features), and basic and important feature sets. Basic features have the lowest computational
complexity and do not require a full scan of the matrix. We calculated the feature score of

Appl. Sci. 2022, 12, 7073 16 of 26

all machine learning models and labeled them as important features, as shown in Figure 11.
Important features are selected using Scikit-Learn built-in feature importance metric and
score is calculated against each machine learning algorithm used in this study. Common
features with highest feature importance score are selected as important features.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 27

(f)

Figure 9. Domain wise execution time comparison (a–c) and speedup (d–f).

Figure 10 shows speedup of our proposed methodology against CSR (with and
without) including format conversion time from CSR to BCSR). The speedup of BCSR
execution (only) is represented in blue and red color represents the speedup of BCSR
execution + format conversion time. Overall BCSR (including conversion time) showed
speedup of 1.27 compared to CSR execution.

Figure 10. Speedup of BCSR (with and without format conversion time) against CSR.

4.4. Predictive Analysis
We used five machine learning-based predictive models: decision tree (DT), random

forest (RF), ridge regressor (RR), AdaBoost (AB), and gradient boosting (GB).
Our proposed method predicts the near-optimal block size based on the structure of

the matrix, which is an unknown entity until runtime. Fourteen sparse matrix features are
extracted and divided into three categories: full feature set (including all fourteen
features), and basic and important feature sets. Basic features have the lowest
computational complexity and do not require a full scan of the matrix. We calculated the
feature score of all machine learning models and labeled them as important features, as
shown in Figure 11. Important features are selected using Scikit-Learn built-in feature
importance metric and score is calculated against each machine learning algorithm used

1

10

100

1000
1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

Speed Up

Speed Up BCSR Speed Up Conversion+BCSR

Figure 10. Speedup of BCSR (with and without format conversion time) against CSR.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 27

in this study. Common features with highest feature importance score are selected as
important features.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Sc
or

e

Features (A)

Ada Boost

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Sc
or

e

Features (B)

Decision Tree

Figure 11. Cont.

Appl. Sci. 2022, 12, 7073 17 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 27

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Sc
or

e

Features (C)

Gradient Boosting

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sc
or

e

Features (D)

Random Forest

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Sc
or

e

Features (E)

Ridge Regression

Figure 11. Feature’s score (A) GB, (B) AB, (C) RF, (D) DT, and (E) RR.

We have drawn graphs for the actual versus predicted values (AAQAL). Actual values
were obtained from the observed values in our data set. Figure 12A–E show the AAQAL
versus actual observations marked as blue, while the AAQAL values are shown in red.

Appl. Sci. 2022, 12, 7073 18 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 27

Figure 11. Feature’s score (A) GB, (B) AB, (C) RF, (D) DT, and (E) RR.

We have drawn graphs for the actual versus predicted values (AAQAL). Actual
values were obtained from the observed values in our data set. Figure 12A–E show the
AAQAL versus actual observations marked as blue, while the AAQAL values are shown
in red.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sc
or

e

Features (D)

Random Forest

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Sc
or

e

Features (E)

Ridge Regression

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 27

Figure 12. Actual vs. Predicted Values (A) GB, (B) DT, (C) RF, (D) RR, and (E) AB.

Figure 13A shows the mean absolute errors of different machine learning-based
predictive models based on the full feature set. We calculated the mean absolute errors
with basic features, important features, and all 14 sparse matrix features. Figure 13B
shows the MAE comparison of different predictive models using basic features, which are
calculated based on their feature importance graphs. Figure 13C shows the MEA
comparison with important sparse matrix features. With the full feature set, DT
outperformed the others with an error rate of 12.26. RF and GB both showed almost
similar performance with error rates of 15.36 and 16.94, respectively. With the basic
features set, RF performed better than all other models and showed an error rate of 14,
while RR underperformed in all three cases. RF, DT, and GB show competitive
performance with important features (based on the feature importance graph shown in
Figure 11) and show error rates of 13.23, 14.14, and 14.98, respectively.

(A)

Figure 12. Actual vs. Predicted Values (A) GB, (B) DT, (C) RF, (D) RR, and (E) AB.

Figure 13A shows the mean absolute errors of different machine learning-based pre-
dictive models based on the full feature set. We calculated the mean absolute errors with
basic features, important features, and all 14 sparse matrix features. Figure 13B shows the
MAE comparison of different predictive models using basic features, which are calculated
based on their feature importance graphs. Figure 13C shows the MEA comparison with
important sparse matrix features. With the full feature set, DT outperformed the others
with an error rate of 12.26. RF and GB both showed almost similar performance with error
rates of 15.36 and 16.94, respectively. With the basic features set, RF performed better than
all other models and showed an error rate of 14, while RR underperformed in all three
cases. RF, DT, and GB show competitive performance with important features (based on
the feature importance graph shown in Figure 11) and show error rates of 13.23, 14.14, and
14.98, respectively.

Appl. Sci. 2022, 12, 7073 19 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 27

Figure 12. Actual vs. Predicted Values (A) GB, (B) DT, (C) RF, (D) RR, and (E) AB.

Figure 13A shows the mean absolute errors of different machine learning-based
predictive models based on the full feature set. We calculated the mean absolute errors
with basic features, important features, and all 14 sparse matrix features. Figure 13B
shows the MAE comparison of different predictive models using basic features, which are
calculated based on their feature importance graphs. Figure 13C shows the MEA
comparison with important sparse matrix features. With the full feature set, DT
outperformed the others with an error rate of 12.26. RF and GB both showed almost
similar performance with error rates of 15.36 and 16.94, respectively. With the basic
features set, RF performed better than all other models and showed an error rate of 14,
while RR underperformed in all three cases. RF, DT, and GB show competitive
performance with important features (based on the feature importance graph shown in
Figure 11) and show error rates of 13.23, 14.14, and 14.98, respectively.

(A)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 27

(B)

(C)

Figure 13. MAE Comparisons of (A) full, (B) basic, and (C) important sparse matrix features.

4.5. MAE and RME Comparison of Different Predictive Models
The RME comparison of the predictive models is shown in Figure 14. We calculated

the relative mean errors with full features set, basic features, and important sparse matrix
features. Figure 14A shows the RME of all 14 sparse matrix features, while Figures 12C
and 14B show the basics and important features, respectively. With the full and basic
features set, DT, RF, and GB show almost similar performance, while RR underperforms
in both cases.

Figure 13. MAE Comparisons of (A) full, (B) basic, and (C) important sparse matrix features.

4.5. MAE and RME Comparison of Different Predictive Models

The RME comparison of the predictive models is shown in Figure 14. We calcu-
lated the relative mean errors with full features set, basic features, and important sparse
matrix features. Figure 14A shows the RME of all 14 sparse matrix features, while
Figures 12C and 14B show the basics and important features, respectively. With the full

Appl. Sci. 2022, 12, 7073 20 of 26

and basic features set, DT, RF, and GB show almost similar performance, while RR under-
performs in both cases.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 27

Figure 14. RME Comparisons of (A) all, (B) basic, and (C) important sparse matrix features.

4.6. Performance Gain
This section explains the performance gain and execution time of the proposed tool.

Figure 15A shows the plot of the performance gain for all 14 sparse matrix features. The
details of these sparse matrix features are listed in Table 3. Actual time is an idle case
scenario and represents the least execution time associated with the target variable. The
performance achieved is calculated against the best-case scenario, which is the actual time.
The average represents the performance achieved when a random block size is selected
for each matrix and is calculated as the average execution time for different block sizes.
The maximum is the worst-case scenario with the maximum execution time. Among all

Figure 14. RME Comparisons of (A) all, (B) basic, and (C) important sparse matrix features.

4.6. Performance Gain

This section explains the performance gain and execution time of the proposed tool.
Figure 15A shows the plot of the performance gain for all 14 sparse matrix features. The
details of these sparse matrix features are listed in Table 3. Actual time is an idle case
scenario and represents the least execution time associated with the target variable. The
performance achieved is calculated against the best-case scenario, which is the actual time.
The average represents the performance achieved when a random block size is selected

Appl. Sci. 2022, 12, 7073 21 of 26

for each matrix and is calculated as the average execution time for different block sizes.
The maximum is the worst-case scenario with the maximum execution time. Among all
predictive models, DT performed better than the other models and achieved nearly 73% of
the maximum possible performance gain.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 27

predictive models, DT performed better than the other models and achieved nearly 73%
of the maximum possible performance gain.

Figure 15B shows the actual, maximum, average, and predicted time (AAQAL),
which also includes cases in which our prediction is incorrect. For any incorrect prediction
of block sizes, we used the execution time associated with the nearby block size. The Y-
axis shows the execution time on the logarithmic scale, and the X-axis shows the sparse
matrices in our dataset.

Figure 15. Performance gain (A) and execution time comparison (B) with all features (Test set).

Figure 16A shows a graph of the performance gain with basic features. The details of
the basic features are listed in Table 3. The basic features are those with low computational
complexity. With basic features, AAQAL achieved almost 92% of the actual value, while
random selection of block sizes could achieve only 51.88%. The performance difference
between the random selection of block sizes and AAQAL is almost 40%.

Figure 16B shows the execution time comparison of the test set. The predicted time
(AAQAL) was based on the basic feature set. The X-axis of the graph shows the execution
time on a logarithmic scale, and the Y-axis shows different sparse matrices in our test set.

Figure 15. Performance gain (A) and execution time comparison (B) with all features (Test set).

Figure 15B shows the actual, maximum, average, and predicted time (AAQAL), which
also includes cases in which our prediction is incorrect. For any incorrect prediction of
block sizes, we used the execution time associated with the nearby block size. The Y-axis
shows the execution time on the logarithmic scale, and the X-axis shows the sparse matrices
in our dataset.

Figure 16A shows a graph of the performance gain with basic features. The details of
the basic features are listed in Table 3. The basic features are those with low computational
complexity. With basic features, AAQAL achieved almost 92% of the actual value, while
random selection of block sizes could achieve only 51.88%. The performance difference
between the random selection of block sizes and AAQAL is almost 40%.

Figure 16B shows the execution time comparison of the test set. The predicted time
(AAQAL) was based on the basic feature set. The X-axis of the graph shows the execution
time on a logarithmic scale, and the Y-axis shows different sparse matrices in our test set.

Figure 17A shows the plot of the performance gain with the set of important features.
Important features are based on the feature importance graph and include nnz-max, rows
and columns, rows, columns, clustering, and bw-max. Our proposed method achieved a
performance of up to 93.47%. The performance difference between our proposed tool and
the random selection of block sizes is almost 31.27%. The comparison of the execution time
of our proposed tool based on an important feature set is shown in Figure 17B.

Appl. Sci. 2022, 12, 7073 22 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 27

Figure 16. Performance gain with basic features (A) and execution time comparison (B) with basic
features (test set).

Figure 17A shows the plot of the performance gain with the set of important features.
Important features are based on the feature importance graph and include nnz-max, rows
and columns, rows, columns, clustering, and bw-max. Our proposed method achieved a
performance of up to 93.47%. The performance difference between our proposed tool and
the random selection of block sizes is almost 31.27%. The comparison of the execution
time of our proposed tool based on an important feature set is shown in Figure 17B.

Figure 16. Performance gain with basic features (A) and execution time comparison (B) with basic
features (test set).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 27

Figure 16. Performance gain with basic features (A) and execution time comparison (B) with basic
features (test set).

Figure 17A shows the plot of the performance gain with the set of important features.
Important features are based on the feature importance graph and include nnz-max, rows
and columns, rows, columns, clustering, and bw-max. Our proposed method achieved a
performance of up to 93.47%. The performance difference between our proposed tool and
the random selection of block sizes is almost 31.27%. The comparison of the execution
time of our proposed tool based on an important feature set is shown in Figure 17B.

Figure 17. Cont.

Appl. Sci. 2022, 12, 7073 23 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 27

Figure 17. Performance gain random forest with important features (A) and execution time
comparison with important features (test Set).

4.7. Limitations
An efficient parallelization of SpMV requires optimal and balanced distribution of

input matrix to processors with minimum inter-processor communication by exploiting
the properties of sparse matrices and underlying machine architecture. As a result,
different storage formats were proposed to efficiently utilized computation resources and
to minimize overall communication and execution cost. Most of the storage schemes are
customized to target the optimization of the sparse matrices with specific patterns. The
overall work set of SpMV algorithm is reduced with blocking as these methods need to
maintain single index per block. Selection of appropriate block size is not straight forward.
Fixed size blocks require padding and variable size blocking requires additional data
structure.

Manual process of trial-and-error block size is error prone and time consuming.
Different sparse matrices have different structures which is an unknown entity before
runtime, thus we used machine learning based optimization of SpMV kernel using BCSR.
The cost associated with format conversion from CSR to BCSR increases with irregular
patterns of non-zero elements which ultimately requires excessive padding. The variable
blocking requires processing of additional data structures. The proposed methodology
works with fixed size blocking and becomes more complex with variable block size and
increasing number of cores and threads. We have experimented with, around 700 small
to medium scale sparse matrices. The overall performance of the proposed methodology
can be improved by increasing the data set size (sparse matrices of any dimension) and
including more sparse features with low computation complexity. For the ease of
implementation, we have considered only square sparse matrices and features are
extracted from real world sparse matrices that require some computations to be
performed to prepare dataset for training machine learning algorithms. Some of these
features requires a full scan of sparse matrix and have computation complexity of Θ (M)
and their standard deviation with complexity Θ (2M). There is a need to incorporate
advance heuristics and performance models to accurately predict complex scenarios with
variable block sizes that also adapt to modern multi-core architectures.

5. Conclusions
The multiplication of SpMV is ranked among the most significant and extensively

utilized scientific kernels that arise in various scientific problems, such as computer
graphics or computer vision, problems in robotics, 3D and 2D problems, acoustic
problems, research in the surgical field, thermodynamics problems, medical care, and

Figure 17. Performance gain random forest with important features (A) and execution time compari-
son (B) with important features (test Set).

4.7. Limitations

An efficient parallelization of SpMV requires optimal and balanced distribution of
input matrix to processors with minimum inter-processor communication by exploiting
the properties of sparse matrices and underlying machine architecture. As a result, dif-
ferent storage formats were proposed to efficiently utilized computation resources and to
minimize overall communication and execution cost. Most of the storage schemes are cus-
tomized to target the optimization of the sparse matrices with specific patterns. The overall
work set of SpMV algorithm is reduced with blocking as these methods need to maintain
single index per block. Selection of appropriate block size is not straight forward. Fixed
size blocks require padding and variable size blocking requires additional data structure.

Manual process of trial-and-error block size is error prone and time consuming. Dif-
ferent sparse matrices have different structures which is an unknown entity before runtime,
thus we used machine learning based optimization of SpMV kernel using BCSR. The cost
associated with format conversion from CSR to BCSR increases with irregular patterns of
non-zero elements which ultimately requires excessive padding. The variable blocking
requires processing of additional data structures. The proposed methodology works with
fixed size blocking and becomes more complex with variable block size and increasing
number of cores and threads. We have experimented with, around 700 small to medium
scale sparse matrices. The overall performance of the proposed methodology can be im-
proved by increasing the data set size (sparse matrices of any dimension) and including
more sparse features with low computation complexity. For the ease of implementation,
we have considered only square sparse matrices and features are extracted from real world
sparse matrices that require some computations to be performed to prepare dataset for
training machine learning algorithms. Some of these features requires a full scan of sparse
matrix and have computation complexity of Θ (M) and their standard deviation with
complexity Θ (2M). There is a need to incorporate advance heuristics and performance
models to accurately predict complex scenarios with variable block sizes that also adapt to
modern multi-core architectures.

5. Conclusions

The multiplication of SpMV is ranked among the most significant and extensively uti-
lized scientific kernels that arise in various scientific problems, such as computer graphics
or computer vision, problems in robotics, 3D and 2D problems, acoustic problems, research
in the surgical field, thermodynamics problems, medical care, and tissues. Several engi-
neering, economic, social, and scientific projects require solutions to sparse linear equation

Appl. Sci. 2022, 12, 7073 24 of 26

systems. Some common exemplary applications are thermodynamics problems, computer
graphics, robotics, life sciences, research, smart phones, computer work, transportation,
social media analytics, and autonomous vehicles. Therefore, SpMV is considered to be the
most vital and time-taking kernel for iterative solutions of sparse linear equation systems.
The performance of SpMV calculation is affected by a series of factors. Among these
categories, some common factors are matrix properties, storage format, and operation of
hardware and software platforms. Improvement in the application performance is always
a challenge when dealing with multicore architectures because of the diversity and het-
erogeneity of these architectures. Over the years, numerous sparse matrix storage formats
have been proposed and are highly dependent on the structure of the matrix. BCSR is
considered to be the most promising one because it reduces the indexing structure to store
sparse matrices.

In this paper, we proposed a machine learning-based performance optimization of
SpMV on the underlying shared memory architecture. We exploited the structure of
matrices by extracting relevant features and predicting the optimal block size for SpMV
computation. To achieve this, we utilized nearly 700 real-world matrices associated with
43 application domains. We used five different base and ensemble machine learning
methods, including gradient boosting, decision tree, random forest, ridge regressor, and
AdaBoost. DT showed the lowest MAE, while RF showed the lowest RME among all
feature sets. Our proposed tool, AAQAL, achieved an ideally attainable performance of
almost 93.5%. The difference between the random selection of block sizes and our proposed
tool is approximately 40% against the ideally achievable performance. The manual process
on hit and trial basis for the optimal block size is time consuming and error prone.

In the future, we will enhance the proposed approach by incorporating different
learning models, adding more features with low computation complexity and increasing
the dataset size, both in terms of size and dimensionality. The proposed methodology
requires some modifications to cater more complex scenarios, i.e., variable size blocking,
decomposition method (to avoid padding), etc. Currently we are working on improving
the proposed methodology to minimize format conversion and features extraction cost by
incorporating features that requires low preprocessing. We are also planning to extend our
proposed methodology to a distributed memory environment with hybrid MPI/OpenMP
programming models.

Author Contributions: Funding acquisition, A.M.A.; Investigation, K.A.A.; Methodology, M.A.;
Project administration, M.U.A.; Resources, N.A.S.; Supervision, S.U.; Visualization, A.A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, Saudi Arabia, under Grant No. (RG-11-611-43).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This project was funded by the Deanship of Scientific Research (DSR), King
Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. (RG-11-611-43). The authors therefore,
gratefully acknowledge DSR technical and financial support. We would like to thanks also the all the
helping bodies from Leads, GCWUS, and Grand Asian University for assisting us to carry out this
research work.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 7073 25 of 26

References
1. Xie, K.; Lee, C.-R.; Liu, F.-Y. Performance Optimization of SpMV on Spark. In Proceedings of the 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 689–694.
2. García, C.G.; Meana-Llorián, D.; G-Bustelo, B.C.P.; Lovelle, J.M.C.; Garcia-Fernandez, N. Midgar: Detection of people through

computer vision in the Internet of Things scenarios to improve the security in Smart Cities, Smart Towns, and Smart Homes.
Future Gener. Comput. Syst. 2017, 76, 301–313. [CrossRef]

3. Rahman, A.; Jin, J.; Cricenti, A.; Rahman, A.; Palaniswami, M.; Luo, T. Cloud-enhanced robotic system for smart city crowd
control. J. Sens. Actuator Netw. 2016, 5, 20. [CrossRef]

4. Aliaga, D.G. 3D design and modeling of smart cities from a computer graphics perspective. Int. Sch. Res. Not. 2012, 2012, 728913.
[CrossRef]

5. Zappatore, M.; Longo, A.; Bochicchio, M.A. Crowd-sensing our smart cities: A platform for noise monitoring and acoustic urban
planning. J. Commun. Softw. Syst. 2017, 13, 53–67. [CrossRef]

6. Bello, J.P.; Mydlarz, C.; Salamon, J. Sound analysis in smart cities. In Computational Analysis of Sound Scenes and Events; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 373–397.

7. NVIDIA. [Online]. 2016. Available online: https://developer.nvidia.com/cusparse (accessed on 4 May 2022).
8. Mehmood, R.; Crowcroft, J. Parallel Iterative Solution Method for Large Sparse Linear Equation Systems; University of Cambridge,

Computer Laboratory: Cambridge, UK, 2005.
9. Asanovic, K.; Bodik, R.; Demmel, J.; Keaveny, T.; Keutzer, K.; Kubiatowicz, J.; Morgan, N.; Patterson, D.; Sen, K.; Wawrzynek, J. A

view of the parallel computing landscape. Commun. ACM 2009, 52, 56–67. [CrossRef]
10. Sun, H.; Gainaru, A.; Shantharam, M.; Raghavan, P. Selective Protection for Sparse Iterative Solvers to Reduce the Resilience

Overhead. In Proceedings of the 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), Porto, Portugal, 9–11 September 2020; pp. 141–148.

11. Zheng, C.; Gu, S.; Gu, T.-X.; Yang, B.; Liu, X.-P. BiELL: A bisection ELLPACK-based storage format for optimizing SpMV on GPUs.
J. Parallel Distrib. Comput. 2014, 74, 2639–2647. [CrossRef]

12. Kourtis, K.; Goumas, G.; Koziris, N. Optimizing sparse matrix-vector multiplication using index and value compression. In
Proceedings of the 5th Conference on Computing Frontiers, Ischia, Italy, 5–7 May 2008; pp. 87–96.

13. Grossman, M.; Thiele, C.; Araya-Polo, M.; Frank, F.; Alpak, F.O.; Sarkar, V. A survey of sparse matrix-vector multiplication
performance on large matrices. arXiv 2016, arXiv:1608.00636.

14. Pinar, A.; Heath, M.T. Improving performance of sparse matrix-vector multiplication. In Proceedings of the SC’99: Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing, Portland, OR, USA, 14–19 November 1999; p. 30.

15. Kourtis, K.; Goumas, G.; Koziris, N. Improving the performance of multithreaded sparse matrix-vector multiplication using
index and value compression. In Proceedings of the 2008 37th International Conference on Parallel Processing, Portland, OR,
USA, 9–12 September 2008; pp. 511–519.

16. HSA: Heterogeneous System Architecture. Available online: http://hsafoundation.com/ (accessed on 12 April 2022).
17. Siddiqui, N.; Yousaf, F.; Murtaza, F.; Ehatisham-ul-Haq, M.; Ashraf, M.U.; Alghamdi, A.M.; Alfakeeh, A.S. A highly nonlinear

substitution-box (S-box) design using action of modular group on a projective line over a finite field. PLoS ONE 2020, 15, e0241890.
[CrossRef]

18. Tariq, S.; Ahmad, N.; Ashraf, M.U.; Alghamdi, A.M.; Alfakeeh, A.S. Measuring the Impact of Scope Changes on Project Plan
Using EVM. IEEE Access 2020, 8, 154589–154613. [CrossRef]

19. Manzoor, A.; Ahmad, W.; Ehatisham-ul-Haq, M.; Hannan, A.; Khan, M.A.; Ashraf, M.U.; Alghamdi, A.M.; Alfakeeh, A.S. Inferring
Emotion Tags from Object Images Using Convolutional Neural Network. Appl. Sci. 2020, 10, 5333. [CrossRef]

20. Shinan, K.; Alsubhi, K.; Alzahrani, A.; Ashraf, M. Machine Learning-Based Botnet Detection in Software-Defined Network: A
Systematic Review. Symmetry 2021, 13, 866. [CrossRef]

21. Im, E.-J.; Yelick, K.A. Optimizing Sparse Matrix Vector Multiplication on SMP. In Proceedings of the PPSC, San Antonio, TX, USA,
22–24 March 1999.

22. Im, E.-J.; Yelick, K. Optimizing sparse matrix computations for register reuse in SPARSITY. In Proceedings of the International
Conference on Computational Science, San Francisco, CA, USA, 28–30 May 2001; pp. 127–136.

23. Willcock, J.; Lumsdaine, A. Accelerating sparse matrix computations via data compression. In Proceedings of the 20th annual
International Conference on Supercomputing, Cairns, Australia, 28 June–1 July 2006; pp. 307–316.

24. Razzaq, J.; Berrendorf, R.; Hack, S.; Weierstall, M.; Mannuss, F. Fixed and variable sized block techniques for sparse matrix vector
multiplication with general matrix structures. In Proceedings of the Tenth International Conference on Advanced Engineering
Computing and Applications in Sciences, Venice, Italy, 9–13 October 2016.

25. Kannan, R. Efficient sparse matrix multiple-vector multiplication using a bitmapped format. In Proceedings of the 20th Annual
International Conference on High Performance Computing, Bengaluru, India, 18–21 December 2013; pp. 286–294.

26. Yan, S.; Li, C.; Zhang, Y.; Zhou, H. yaSpMV: Yet another SpMV framework on GPUs. ACM Sigplan Not. 2014, 49, 107–118.
[CrossRef]

27. Vuduc, R.W.; Moon, H.-J. Fast sparse matrix-vector multiplication by exploiting variable block structure. In Proceedings of the
International Conference on High Performance Computing and Communications, Munich, Germany, 13–15 September 2006;
pp. 807–816.

http://doi.org/10.1016/j.future.2016.12.033
http://doi.org/10.3390/jsan5040020
http://doi.org/10.5402/2012/728913
http://doi.org/10.24138/jcomss.v13i2.373
https://developer.nvidia.com/cusparse
http://doi.org/10.1145/1562764.1562783
http://doi.org/10.1016/j.jpdc.2014.03.002
http://hsafoundation.com/
http://doi.org/10.1371/journal.pone.0241890
http://doi.org/10.1109/ACCESS.2020.3018169
http://doi.org/10.3390/app10155333
http://doi.org/10.3390/sym13050866
http://doi.org/10.1145/2692916.2555255

Appl. Sci. 2022, 12, 7073 26 of 26

28. Karakasis, V.; Goumas, G.; Koziris, N. Perfomance models for blocked sparse matrix-vector multiplication kernels. In Proceedings
of the 2009 International Conference on Parallel Processing, Vienna, Austria, 22–25 September 2009; pp. 356–364.

29. Karakasis, V.; Gkountouvas, T.; Kourtis, K.; Goumas, G.; Koziris, N. An extended compression format for the optimization of
sparse matrix-vector multiplication. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 1930–1940. [CrossRef]

30. Buluç, A.; Fineman, J.T.; Frigo, M.; Gilbert, J.R.; Leiserson, C.E. Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks. In Proceedings of the Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures, Calgary, AB, Canada, 11–13 August 2009; pp. 233–244.

31. Martone, M.; Filippone, S.; Tucci, S.; Gepner, P.; Paprzycki, M. Use of hybrid recursive csr/coo data structures in sparse matrix-
vector multiplication. In Proceedings of the International Multiconference on Computer Science and Information Technology,
Wisla, Poland, 18–20 October 2010; pp. 327–335.

32. Belgin, M.; Back, G.; Ribbens, C.J. Pattern-based sparse matrix representation for memory-efficient SMVM kernels. In Proceedings
of the 23rd International Conference on Supercomputing, Yorktown Heights, NY, USA, 8–12 June 2009; pp. 100–109.

33. Hannan, A.; Hussain, F.; Ali, N.; Ehatisham-Ul-Haq, M.; Ashraf, M.U.; Alghamdi, A.M.; Alfakeeh, A.S. A decentralized hybrid
computing consumer authentication framework for a reliable drone delivery as a service. PLoS ONE 2021, 16, e0250737. [CrossRef]

34. Fayyaz, S.; Sattar, M.K.; Waseem, M.; Ashraf, M.U.; Ahmad, A.; Hussain, H.A.; Alsubhi, K. Solution of combined economic
emission dispatch problem using improved and chaotic population-based polar bear optimization algorithm. IEEE Access 2021, 9,
56152–56167. [CrossRef]

35. Hirra, I.; Ahmad, M.; Hussain, A.; Ashraf, M.U.; Saeed, I.A.; Qadri, S.F.; Alghamdi, A.M.; Alfakeeh, A.S. Breast Cancer
Classification From Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access 2021, 9, 24273–24287.
[CrossRef]

36. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A.; Altowaijri, S.M. ZAKI: A smart method and tool for automatic performance
optimization of parallel SpMV computations on distributed memory machines. Mob. Netw. Appl. 2019, 1–20. [CrossRef]

37. Xiao, G.; Li, K.; Chen, Y.; He, W.; Zomaya, A.Y.; Li, T. CASpMV: A customized and accelerative SPMV framework for the sunway
TaihuLight. IEEE Trans. Parallel Distrib. Syst. 2019, 32, 131–146. [CrossRef]

38. Anzt, H.; Tsai, Y.M.; Abdelfattah, A.; Cojean, T.; Dongarra, J. Evaluating the Performance of NVIDIA’s A100 Ampere GPU for
Sparse and Batched Computations. In Proceedings of the 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), Atlanta, GA, USA, 12 November 2020; pp. 26–38.

39. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A. ZAKI+: A machine learning based process mapping tool for SpMV computations
on distributed memory architectures. IEEE Access 2019, 7, 81279–81296. [CrossRef]

40. Davis, T.A.; Hu, Y. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 2011, 38, 1–25. [CrossRef]
41. Ashraf, M.U.; Eassa, F.A.; Albeshri, A.A.; Algarni, A. Performance and power efficient massive parallel computational model for

HPC heterogeneous exascale systems. IEEE Access 2018, 6, 23095–23107. [CrossRef]
42. Alsubhi, K.; Alsolami, F.; Algarni, A.; Albassam, E.; Khemakhem, M.; Eassa, F.; Jambi, K.; Ashraf, M.U. A Tool for Translating

sequential source code to parallel code written in C++ and OpenACC. In Proceedings of the 2019 IEEE/ACS 16th International
Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–8.

43. Ashraf, M.U.; Eassa, F.A.; Osterweil, L.J.; Albeshri, A.A.; Algarni, A.; Ilyas, I. AAP4All: An Adaptive Auto Parallelization of
Serial Code for HPC Systems. Intell. Autom. Soft Comput. 2021, 29, 615–639. [CrossRef]

http://doi.org/10.1109/TPDS.2012.290
http://doi.org/10.1371/journal.pone.0250737
http://doi.org/10.1109/ACCESS.2021.3072012
http://doi.org/10.1109/ACCESS.2021.3056516
http://doi.org/10.1007/s11036-019-01318-3
http://doi.org/10.1109/TPDS.2019.2907537
http://doi.org/10.1109/ACCESS.2019.2923565
http://doi.org/10.1145/2049662.2049663
http://doi.org/10.1109/ACCESS.2018.2823299
http://doi.org/10.32604/iasc.2021.019044

	Introduction
	Literature Review
	Background
	Sparse Matrix–Vector Product (SpMV)
	BCSR
	Machine Learning

	Related Work

	Materials and Methods
	Creating Dataset
	Feature Extraction
	Training and Testing Phase
	Model Evaluation Metrics

	Results and Discussion
	Hardware and Software Specifications
	Execution Time Analysis of SpMV
	Speedup
	Predictive Analysis
	MAE and RME Comparison of Different Predictive Models
	Performance Gain
	Limitations

	Conclusions
	References

