
Citation: Cho, S.-H.; Agarwal, S.;

Koh, S.-J.; Jung, K.-H. Image

Forensics Using Non-Reducing

Convolutional Neural Network for

Consecutive Dual Operators.

Appl. Sci. 2022, 12, 7152. https://

doi.org/10.3390/app12147152

Academic Editor: Antonio

Fernández-Caballero

Received: 30 May 2022

Accepted: 28 June 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Image Forensics Using Non-Reducing Convolutional Neural
Network for Consecutive Dual Operators
Se-Hyun Cho 1, Saurabh Agarwal 2,3 , Seok-Joo Koh 1,* and Ki-Hyun Jung 3,*

1 School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea;
csh831219@knu.ac.kr

2 School of Engineering & Technology, Amity University, Noida 201301, Uttar Pradesh, India;
sagarwal7@amity.edu

3 Department of Cyber Security, Kyungil University, Gyeongsan 38424, Korea
* Correspondence: sjkoh@knu.ac.kr (S.-J.K.); kingjung@kiu.kr (K.-H.J.)

Abstract: Digital image forensics has become necessary as an emerging technology. Images can be
adulterated effortlessly using image tools. The latest techniques are available to detect whether an
image is adulterated by a particular operator. Most of the existing techniques are suitable for high
resolution and manipulated images by a single operator. In a real scenario, multiple operators are
applied to manipulate the image many times. In this paper, a robust moderate-sized convolutional
neural network is proposed to identify manipulation operators and also the operator’s sequence for
two operators in particular. The proposed bottleneck approach is used to make the network deeper
and reduce the computational cost. Only one pooling layer, called a global averaging pooling layer, is
utilized to retain the maximum flow of information and to avoid the overfitting issue between the
layers. The proposed network is also robust against low resolution and JPEG compressed images.
Even though the detection of the operator is challenging due to the limited availability of statistical
information in low resolution and JPEG compressed images, the proposed model can also detect an
operator with different parameters and compression quality factors that are not considered in training.

Keywords: image forensics; image operator sequence; convolutional neural network; image manipu-
lation; image forgery detection; deep learning technique

1. Introduction

Digital images are a victim of manipulation due to the ease of availability of high
precision but uncomplicated image editing tools. Image forensics is needed to detect the
source, processing history, and genuineness of the image. Numerous methods [1–3] are
provided to find the source device of the image. The mismatch of source assists in image
forgery detection as a fake image is created usually by using two or more images. Most
of the fake images look realistic by applying multiple spatial operations. The detection of
operations such as resampling [4,5], sharpening [6–8], and median filtering [9,10] can make
uncovering the image forgery easy. Many universal methods [11–21] also exist to detect the
image forgery operations simultaneously. However, universal methods can only effectively
detect a single operation on an image. In the real scenario, more than one operation is
applied to the image in general. In this paper, a sequence of operations can be detected
perfectly to unfold the processing history of the image. Few techniques [22–26] exist that
can detect the operations and the order of operations. Although the performance is not
consistent according to different operations, JPEG compression has a significant role in the
forensic analysis as the most common format. The performance in most of the existing
techniques degrades while considering JPEG compression.

In the recent era of a deep learning network, a convolutional neural network has given
propitious results in many applications. A convolutional neural network (CNN) is utilized
in the detection of median filtering, resampling, universal image manipulation, multiple
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JPEG compression, contrast enhancement, image splicing, etc. Qiu et al. [11] discovered that
some existing techniques, especially LBP [27] and SRM [28], can effectively detect different
types of image operations such as Gaussian filtering, median filtering, image resizing,
gamma correction, and compression history. The experiments are performed on large-size
images, where the experimental analysis is limited as different compression qualities and
filter sizes are combined in one data set. Bayar and Stamm [12] introduced the CNN for
the detection of additive white Gaussian noise, Gaussian filtering, median filtering, and
image resizing for the first time. In particular, a constrained design is applied in the first
layer of the proposed CNN. Experimental results are given for 227 × 227 image blocks.
However, no experimental analysis was given for low resolution and JPEG compressed
images. The proposed idea of constraint is further extended with an improved CNN
model [13], and JPEG compression is used in the experimental analysis. In the improved
CNN architecture, a constrained convolutional layer is followed by four blocks, and each
block contains a convolutional layer, batch normalization layer, ReLU layer, and pooling
layer. Further, three softmax classification layers are used, and the outputs are classified
using an extremely randomized tree classifier. The constrained convolutional layer filters
can predict the errors by subtracting the resultant value from the central value of the filter
window. The constraint is enforced during the training of each iteration. However, the
performance of the improved CNN model falls in the most cases when two operators are
applied consecutively on the image even on a large size image. Li et al. [14] selected some
sub-models from SRM by calculating the out-of-bag error. The selection process can reduce
the feature dimension noticeably. The results are analyzed for eleven image operations
of several categories like spatial filtering, image enhancement, and JPEG compression.
The proposed technique also claims good results in the detection of four anti-forensic
operations such as JPEG compression, contrast enhancement, resampling, and median
filtering. However, the performance degrades for small-size images. Boroumand and
Fridrich [15] proposed a model using CNN and multilayer perceptron (MLP) for high-
pass filtering, low-pass filtering, de-noising, and tonal adjustment that has four types
of operations. Eight convolutional layers are utilized in the proposed CNN. The MLP
classifies the images using moments that are extracted in the last part of the CNN model.
The aforementioned method is also compared with the manual feature extraction method.
The experiments are discussed for 512 × 512 size images only. Mazumdar et al. [16,17]
utilized the Siamese network for pair-wise learning. Two identical networks are used
to classify multiple operations—median filtering, Gaussian filtering, gamma correction,
additive white Gaussian noise, and image resizing. The authors claim that the proposed
method can detect a processed image for an unseen operation that is not included in the
training. The choice of a two-stream CNN architecture gives better performance than
analogous single-stream architecture [13]. However, the model capability decreases on
unknown data sets abruptly. Chen et al. [18] discussed the densely connected CNN model
for detecting eleven types of operations. Each dense block is followed by a transition layer
and pooling layer. The transition layer performs 1 × 1 convolutions to reduce the number
of feature maps and computation costs. The dataset of training and testing is the same
which can make unbiased performance evaluation difficult. Xue et al. [19] applied the
Siamese network for identifying some operations like as inclusion of text, logo, and black
block in the image. Operations also include image resampling, Gaussian noise, and Gamma
correction. The Siamese network utilized the AlexNet and ResNet-18. Uncompressed
images are considered only in experiments. Singhal et al. [20] introduced a CNN model
with two convolutional layers only to detect seven types of operations. DCT coefficients
of median filter residual are used as input in the CNN network. Large-size filters are
used in the convolutional layer. Barni et al. [21] detected image operations like median
filtering, image resizing, and histogram equalization. The features are extracted using
two neural networks [12,29]. A random feature selection approach is utilized to select the
robust features from the CNN network, and an SVM classifier is applied to find the type of
attack finally.
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Detection of image operations order is also a great concern for a deep understanding
of image processing history. Some efforts [22–26] are performed to detect the order of
operations. In [22,23], an analysis is given to find the reasons for the non-detection of
operator sequence order, where a framework based on mutual information is suggested.
The methods are not able to detect some operator sequences. JPEG compressed images
are not detectable using the previous model. Comesaña [24] discussed the theoretical
possibilities of operator order detection. Bayar and Stamm [25] discussed a CNN with
a constrained convolution layer for estimating the order of operations. Liao et al. [26]
suggested two-stream CNN, to find out the operators and their respective orders. Though
a customized preprocessing is required to apply for each operation, the method can detect
operation even for an unknown parameter on the same operation using weight transfer.

In this paper, a non-reducing convolutional neural network is proposed that can assure
the maximal flow of details between layers. The specific contributions of the proposed
network can be outlined as follows:

• The proposed non-reducing CNN can detect a dual-operated image and the operation
sequence. Different types of operations such as median filtering, Gaussian blurring,
image resizing, and un-sharp masking are detected successfully.

• Multiple convolutional layers are inserted in the CNN network by adopting a bot-
tleneck approach in the proposed method. The computational requirement of the
proposed CNN is less due to fewer learning parameters. However, the proposed
method has a performance improvement by the bottleneck approach.

• To retain maximum statistical information, no pooling layer is interleaved between
the convolutional layers. Since a pooling layer can reduce the computational cost with
the sacrifice of relevant operation fingerprints that are inherited.

• To avoid the overfitting issue and boost the performance, one global averaging pooling
layer is utilized. An additional improvement of more than two percent in the detection
accuracy can achieve by using a global averaging pooling layer in most of the cases.

• The proposed method can ensure a better performance in challenging environments
with low-resolution images and dual operators manipulation without specific prepro-
cessing requirements.

The remaining paper is organized as follows. In Section 2, a problem is formulated
for the dual operator manipulation detection in multiple scenarios. The proposed non-
reducing CNN model is explained in Section 3. Detailed experimental analysis is performed
in Section 4 with comparative analysis. The important advantages of the proposed scheme
are highlighted in Section 5.

2. Detection of Image Processing Operator Sequence

In this section, three issues are discussed to address the importance of image forensics
for operator sequence. In the first, the problem of detecting image operator sequence
with its order is discussed. In the second, image processing history will be discovered for
compressed images. In the third, a challenging detection scenario is discussed in which
specification is dissimilar.

2.1. Problem Formulation

Assuming that there are two operators, α and β, in the image operation sequence,
the detection of a dual operator sequence can be understood as a multiclass classification
problem. The five classes according to processing history can be formulated:

Ω0: An image is not operated by any operator;
Ω1: An image is operated by α operator;
Ω2: An image is operated by β operator;
Ω3: The first image is operated by α then operated by β;
Ω4: The first image is operated by β then operated by α.
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Image histograms can be visualized to recognize the detection complexity of dual
operator sequence. Image histogram provides the summary of image pixels according to
their intensity. The changes in the pixel intensity are unavoidable when applying any type
of operator. A single image is considered to understand changes in the image after applying
some operator. In Figure 1, a pristine image (ORI) with 128 × 128 pixels in BOSSbase [30]
and a corresponding histogram are shown.
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Figure 1. Pristine image and histogram.

In Figure 2, histograms of the pristine image (Figure 1a) are displayed after applying
a single operator and dual operator sequence. Four operators—Gaussian blurring with
standard deviation 1.0 (GAU_1.0), median filtering with filter size 5 × 5 (MF5), un-sharp
masking sharpening with radius 3.0 (SH_3.0), up-sampling with factor 1.5 (UP_1.5) and
their two operator sequence from GAU_1.0 MF5 to UP_1.5 GAU_1.0 are considered. As
discussed above, five classes are possible while considering two operators—GAU_1.0
and MF5 for example. There is a slight difference in the histograms of Ω1 (GAU_1.0),
Ω2 (MF5), Ω3 (GAU_1.0 MF5), and Ω4 (MF5 GAU_1.0) as shown in Figure 2. A similar
pattern is also followed by other operators. The histogram of the median filtered image
is very similar to the pristine image histogram. It is due to the nonlinear behavior of the
median filter. Further, the internal statistical information becomes limited while operated
by dual operators.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 4 of 18 
 

Ω2: An image is operated by β operator; 
Ω3: The first image is operated by α then operated by β; 
Ω4: The first image is operated by β then operated by α. 

Image histograms can be visualized to recognize the detection complexity of dual 
operator sequence. Image histogram provides the summary of image pixels according to 
their intensity. The changes in the pixel intensity are unavoidable when applying any type 
of operator. A single image is considered to understand changes in the image after apply-
ing some operator. In Figure 1, a pristine image (ORI) with 128 × 128 pixels in BOSSbase 
[30] and a corresponding histogram are shown. 

  
(a) Pristine Image (b) Histogram of pristine image 

Figure 1. Pristine image and histogram. 

In Figure 2, histograms of the pristine image (Figure 1a) are displayed after applying 
a single operator and dual operator sequence. Four operators—Gaussian blurring with 
standard deviation 1.0 (GAU_1.0), median filtering with filter size 5 × 5 (MF5), un-sharp 
masking sharpening with radius 3.0 (SH_3.0), up-sampling with factor 1.5 (UP_1.5) and 
their two operator sequence from GAU_1.0 MF5 to UP_1.5 GAU_1.0 are considered. As 
discussed above, five classes are possible while considering two operators—GAU_1.0 and 
MF5 for example. There is a slight difference in the histograms of Ω1 (GAU_1.0), Ω2 (MF5), 
Ω3 (GAU_1.0 MF5), and Ω4 (MF5 GAU_1.0) as shown in Figure 2. A similar pattern is also 
followed by other operators. The histogram of the median filtered image is very similar 
to the pristine image histogram. It is due to the nonlinear behavior of the median filter. 
Further, the internal statistical information becomes limited while operated by dual oper-
ators. 

 
Figure 2. Image histogram for a single operator and dual operators. Figure 2. Image histogram for a single operator and dual operators.

One attempt [23] is made to detect the image resizing and Gaussian blurring operations
pair. The image features are visualized in the frequency domain. However, the results are
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not encouraging for the operator sequence. The Ω3 and Ω4 operators sequence are not
detectable. In spite that the strength of each operator varies, one operator artifacts in dual
operators sequence can be suppressed by another operator.

2.2. Effectiveness on Compressed Images

JPEG is a common format to store the images. Most of the digital devices are using
JPEG format as default in photos. In general, a fake photo is created using JPEG images.
Multiple operations are applied to create fake photos. The fake photo is required to be
stored again, which brings the double JPEG compression artifacts in the fake image. It is
obvious that double JPEG compression has occurred in the sequence of fake image creation.
Therefore, five possible classes according to JPEG quality factors Q1 and Q2 in the operator
sequence of operator α and operator β can be defined as follows:

Ω0: Image is not operated by any operator and JPEG compressed with quality factor Q1;
Ω1: Image is JPEG compressed with quality factor Q1 and operated by α operator then
JPEG compressed with quality factor Q2;
Ω2: Image is JPEG compressed with quality factor Q1 and operated by β operator then
JPEG compressed with quality factor Q2;
Ω3: Image is operated by α then JPEG compressed with quality factor Q1, and again the
image is operated by β then JPEG compressed with quality factor Q2;
Ω4: Image is operated by β then JPEG compressed with quality factor Q1, and again the
image is operated by α then JPEG compressed with quality factor Q2.

JPEG compression diminishes the artifacts of operators. Multiple operators and double
JPEG compression can raise the complexity of the problem.

2.3. Detection for Dissimilar Parameters and Compression

In existing techniques, the operator parameters of training and testing images are
the same. However, the operator parameters can be mismatched still even operator is the
same in a real scenario. In [29], an attempt is proposed to detect the various type of tonal
adjustments for unknown parameters. The proposed deep CNN model works efficiently for
JPEG compressed images. However, the results on unknown parameters of an operator are
not encouraging for using existing universal operator detectors. The constrained CNN [25]
is applied for two operator sequences—Gaussian blurring and resizing. The parameters of
Gaussian blurring and resizing are a standard deviation of 0.7, and a scaling factor of 1.2 for
training and a standard deviation of 1.0, and a scaling factor of 1.5 for testing, respectively.
The possible five classes are not classified properly, as can be seen in the confusion matrix
in the two operator sequences as shown in Figure 3.
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The requirement of robustness against dissimilar parameters is more challenging.
However, it is a more practical and real situation. In this paper, a universal operator
detector is proposed in a more real situation, in other words, for dissimilar parameters. The
proposed deep model is suitable for both single-operator and dual-operator sequences. The
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dissimilar parameters are considered in a particular range. The proposed technique can
learn features for detecting operator sequences automatically by using bottleneck CNN.
Bottleneck blocks required less computation cost, which can help in increasing the layers.
In the proposed model, there is no need for handcrafted feature extraction and selection as
required in traditional machine learning. In previous literature, customized preprocessing
is needed for different operators. In the proposed techniques, images are not required to
undergo any type of preprocessing. However, there is a need for preprocessing according
to the operator in some previous works [20,26]. The proposed CNN can highlight the
statistical anomaly and classify successfully the five classes discussed above.

3. Framework of the Proposed CNN

The CNN has proved its worthiness in many applications such as image classification,
fake face detection, image forgery detection, etc. In this paper, a robust deep architecture
is proposed to detect single and dual operators in the processed images. The proposed
architecture is effective on both compressed and non-compressed images. The proposed
CNN architecture can suppress the need for any preprocessing layer as used in some
previous techniques [20,26]. In the previous techniques, exclusive preprocessing is required
according to the operator, which is not feasible in a practical situation and restricted
the network performance for particular operators. When two operations are applied
simultaneously, the artifacts of the first operator can be diminished by the second operator.
In Figure 4, some pairs of operators are considered to check the behavior of operations on
the BOSSbase [30] image database. The normal distribution of image entropy is reflected in
the plots. There is an overlap in some places for five possible cases of two operators, where
the overlapping makes the problem challenging.
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The proposed architecture can resist the problem of operator sequence in a better way.
The CNN contains multiple layers and filters to classify the input into their respective
classes. The CNN parameters like weight and biases are updated as the network learns.
The image input layer is followed by seven blocks and four layers in the proposed CNN.
The block diagram of the proposed CNN is shown in Figure 5.
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Each block in the network has two convolutional layers, followed by the batch nor-
malization (BN) layer and the ReLU layer. No padding is used in any layer of the proposed
CNN to retain the maximum statistical information. The first convolution layer performs
1x1 point-wise convolution. The second convolution layer performs 3 × 3 depth-wise
convolution. In steganalysis [31], 1 × 1 point-wise convolution improves the results when
applied with a depth-wise convolution. The training parameters of the proposed seven
CNN blocks are 113,728. However, training parameters become 175,680 while consider-
ing a 3 × 3 size filter instead of a 1 × 1 size filter in the first convolutional layer in each
block. The computational complexity can reduce by using a 1 × 1 filter and a 3 × 3 filter,
consecutively. The performance improvement is also noticed in experiments as shown
in Figure 6. The detection accuracy using Conv 1 × 1 is 92.47% and 91.37% for Conv 3
× 3 in the first layer of each block for two operator sequences, where α = GAU_1.0 &
β = MF5 with JPEG compression Q1 = 85 & Q2 = 75. The training time using Conv 1 × 1 is
only one-third in comparison to Conv 3 × 3 training time and also has an improvement
in the detection accuracy. Therefore, there are two considerable benefits of following the
bottleneck approach.
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The abstract diagram of the bottleneck approach and internal detail of blocks can be
observed in Figure 7. The first and second convolution layer contains 64 filters of size 1 × 1
and 3 × 3 in blocks 1 and 5. Equal numbers of filters are considered as filter size 1 × 1 in
3 × 3 convolutional layers for every particular block. Convolutional layers are utilized
32 filters in block 2, block 4, and block 6. Convolutional layers are utilized 16 filters in
block 3 and block 7. The stride of one is considered in each convolution layer. The batch
normalization (BN) layer is used to increase the training pace and decrease the sensitivity
to network initialization. The BN layer can diminish the inner covariant shift [32]. The
learning parameters are updated according to the mean and variance of a mini-batch. After
the training process is completed, the final values mean and variance of the BN layer are
used for predicting the unseen data. The ReLU layer [33] replaces negative values with
zero to improve the network performance.
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Figure 7. Bottleneck approach and details of blocks.

Merely numbers of filters are changed in other blocks; the rest of the detail is similar
to block 1. After the seven blocks, the global average pooling layer is followed by a
fully connected layer, softmax layer, and classification layer. As the internal statistical
information details are very crucial and the size of the image is also small, therefore only
one global average pooling (GAP) layer is applied to prevent further information loss
in the proposed network. In steganalysis [34,35], the global average pooling layer can
enhance performance. Global average pooling is applied to achieve a single element from
each feature map. The global average pooling layer increases the efficiency of the fully
connected layer.

It is discovered in the experimental analysis that the GAP layer can increase the
detection accuracy from 1% to 3%. The GAP is applied in the end only to retain the
operation fingerprints. The GAP layer also reduces the overfitting issue [36]. The detection
accuracy with the GAP layer is 92.47% and is 90.01% without the GAP layer for operator
sequence GAU_1.0 and MF5 with JPEG compression Q1 = 85 & Q2 = 75. Therefore, there is
a benefit of more than 2% in the detection accuracy after using the GAP layer. Additionally,
as shown in Figure 8, the difference between validation and the testing accuracy is much
less while using the GAP layer and without the GAP layer. The overfitting issue is well
tackled by the GAP layer with a performance improvement.
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Experiments are also performed with multiple pooling layers, however, they lead to
poor performance in the end. Therefore, a single GAP layer is considered in the experiment
analysis section. In the proposed CNN, the GAP layer produces 16 features, as the last
convolutional layer has 16 filters. The fully connected layer combines all of the information
learned from the previous layers. The input is multiplied by the weight matrix and the
bias is added. The output size of the fully connected layer is five according to our problem,
which has five classes. The output of the fully connected layer is processed by the softmax
function. The softmax function is assigned the probability to every class. However, the sum
of all probabilities should be 1. Finally, the classification layer assigns the exclusive class
according to cross-entropy loss. Weight initialization of CNN is very crucial and can affect
performance considerably. Additionally, random values are taken for network initialization
in the previous step. However, it is not a practical solution and the performance of the
network cannot be compared due to weight initialization. Glorot and Bengio [37] suggested
a weight initialization strategy to give a better performance and fast convergence. The
approach is more suitable for a less deep network like our proposed CNN. The weights
are initialized according to the number of inputs and hidden nodes. The filter’s behavior
can be understood by analyzing as in Figure 9. In the first column, two pristine images are
shown and their corresponding filtered images are shown in 4 × 4 tiles in the second and
third columns. Second column images filtered from layer 6 kernels displayed the coarse
details, and third column images filtered from layer 15 kernels showed the fine details. The
behavior of layer kernels is changed according to the position of the layer. The information
provided by layers kernels becomes coarse to fine while traversing the network from start
to end.

The proposed network parameters are tuned with the help of exhaustive experimental
analysis. The following parameters are considered in the network design. The stochastic
gradient descent (SGD) algorithm is applied to curtail the loss function. In each iteration,
mini-batch SGD is used to calculate the gradient and revise the weight and biases. The
softmax classifier is utilized to minimize the cross-entropy between the estimated class
and true class, where the momentum quantity is taken as 0.9, the number of epochs is 30,
L2-regularization is 0.0004, and the initial learning rate is 0.001. The data is shuffled to
avoid any unfairness toward unseen data in each epoch.

In the next section, experimental results are discussed. Most of the experiments are
performed to detect the dual operator sequence. Experiments are performed together for
uncompressed and JPEG compressed images.
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4. Experimental Results

Various experiments are performed to confirm the robustness and versatility of the
proposed network. The first dataset is created using UCID [38], LIRMM [39], and Never-
compressed (NC) [40] image databases, where UCID, LIRMM and NC contain 1338, 10,000
and 5150 uncompressed color images, respectively. The center block with 256 × 256 of each
image is taken from databases. Further, 16 non-overlapping blocks of size 64 × 64 pixels
are created. In the final, 263,808 image patches of size 64 × 64 pixels are generated and
30,000 patches of size 64 × 64 pixels are selected in each operator. Five operators—Gaussian
blurring (GAU_P), median filtering of filter size 3 × 3 and 5 × 5 (MF3, MF5), un-sharp
masking sharpening (SH_P), and up-sampling (UP_P) with different parameters P—are
considered in experimental analysis. Symmetric padding is considered while applying the
operator to the image. It is important to observe that 30,000 patches are selected randomly
to get unbiased results for each operator. In the first dataset, 24,000 images are used for
training and 6000 images for validation for each class. BOSSbase [30] dataset is considered
for testing as a cross-database. It contains 10,000 uncompressed images of size 512 × 512.
A similar approach is applied to create the image patches as in the first dataset and 160,000
image patches with 64 × 64 size are created. For each operator, 15,000 patches are used for
testing. Experiments are performed using NVIDIA GTX1070 GPU with 24 GB RAM.

In the next part, the results of two operators with compressed and non-compressed im-
ages are discussed. Next, the results are shown for dissimilar parameters like compression,
and the results are compared with some state-of-the-art methods.

4.1. Detection of Dual Operators Sequence for Similar Specification

In this section, the robustness of the proposed technique is discussed on two operator
sequences under multiple parameters of operators. The specification is the same as used in
CNN model training. The detection accuracy of the two operator sequences is given for the
possible five classes as discussed in Section 2.1. Ω0 class denotes the pristine image, Ω1
class denotes images operated by operator α, Ω2 class denotes images operated by operator
β, Ω3 class denotes images first operated by operator α than operator β, and Ω4 class
denotes images first operated by operator β than operator α. There are 15,000 images of
the five classes in the testing set. It can be noticed from the Confusion matrix of operators,
Gaussian blurring with standard deviation 1.0 (GAU_1.0) sequence, and median filtering of
filter size 3 × 3 (MF3) as shown in Figure 10, where the proposed CNN network can classify
two operator sequence images with good accuracy. The experimental results show that 991
GAU_1.0 operated images out of 15,000 GAU_1.0 operated images are misclassified in class
Ω4, which is first operated by MF3 and then operated by GAU_1.0.



Appl. Sci. 2022, 12, 7152 11 of 18

Appl. Sci. 2022, 11, x FOR PEER REVIEW 11 of 18 
 

4.1. Detection of Dual Operators Sequence for Similar Specification 
In this section, the robustness of the proposed technique is discussed on two operator 

sequences under multiple parameters of operators. The specification is the same as used 
in CNN model training. The detection accuracy of the two operator sequences is given for 
the possible five classes as discussed in Section 2.1. Ω0 class denotes the pristine image, 
Ω1 class denotes images operated by operator α, Ω2 class denotes images operated by 
operator β, Ω3 class denotes images first operated by operator α than operator β, and Ω4 
class denotes images first operated by operator β than operator α. There are 15,000 images 
of the five classes in the testing set. It can be noticed from the Confusion matrix of opera-
tors, Gaussian blurring with standard deviation 1.0 (GAU_1.0) sequence, and median fil-
tering of filter size 3 × 3 (MF3) as shown in Figure 10, where the proposed CNN network 
can classify two operator sequence images with good accuracy. The experimental results 
show that 991 GAU_1.0 operated images out of 15,000 GAU_1.0 operated images are mis-
classified in class Ω4, which is first operated by MF3 and then operated by GAU_1.0. 

 
Figure 10. Confusion matrix of GAU_1.0 and MF3 operator sequence. 

The detailed results of the detection accuracy for different operator pairs are shown 
in Table 1. Gaussian blurring with standard deviation 0.7 (GAU_0.7), 1.0 (GAU_1.0), me-
dian filtering of filter size 3 × 3 (MF3), 5 × 5 (MF5), un-sharp masking sharpening with 
radius 2.0 (SH_2.0), 3.0 (SH_3.0), up-sampling with factor 1.2 (UP_1.2) and 1.5 (UP_1.5) 
operators are considered, where pairs of operators are represented in Table 1 for α and β. 
The average detection accuracy of five classes is more than 92% in all of the cases. The 
operator sequence with operator SH_2.0 or SH_3.0 is more challenging when compared 
with other operators, as shown in Table 1. The internal statistical information of an image 
is highly affected after applying un-sharp masking than other operators, as can be seen in 
Figure 4. 

Table 1. Operator sequence detection with similar specifications.  

α = GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7 
β = MF3 MF5 SH_2.0 SH_3.0 UP_1.2 UP_1.5 MF3 MF5 SH_2.0 SH_3.0 UP_1.2 UP_1.5 
0 99.51 99.45 95.47 98.06 99.77 99.79 98.61 98.59 94.64 93.41 99.33 99.17 
1 93.29 98.45 91.16 95.84 82.97 94.90 98.15 99.07 94.97 94.47 94.40 99.59 
2 99.05 94.39 93.08 90.41 99.13 99.57 94.02 82.37 90.87 91.47 95.23 95.53 
3 97.65 97.71 99.74 99.90 99.85 99.89 94.30 92.33 98.43 96.99 99.36 99.31 
4 98.95 99.07 81.94 83.79 93.67 96.41 99.66 99.78 86.56 90.13 99.86 99.86 

Average Accuracy 97.69 97.81 92.28 93.60 95.07 98.11 96.95 94.43 93.09 93.30 97.63 98.69 
α = MF3 MF3 MF3 MF3 MF5 MF5 MF5 MF5 SH_2.0 SH_2.0 SH_3.0 SH_3.0 
β = SH_2.0 SH_3.0 UP_1.2 UP_1.5 SH_2.0 SH_3.0 UP_1.2 UP_1.5 UP_1.2 UP_1.5 UP_1.2 UP_1.5 
0 94.97 94.49 85.03 93.01 88.33 92.24 71.71 83.12 93.41 96.06 98.29 96.51 
1 99.43 99.30 99.82 99.87 99.45 98.76 99.65 99.69 95.95 94.34 90.56 92.81 
2 92.91 92.95 98.68 98.81 93.15 93.57 99.65 99.57 87.76 95.05 91.37 83.06 
3 96.77 97.13 99.69 99.57 91.99 95.56 99.67 99.79 94.37 78.05 90.59 95.59 
4 85.36 87.63 91.06 98.83 79.06 85.27 80.23 87.37 99.91 99.80 99.76 99.00 

Average Accuracy 93.89 94.30 94.85 98.02 90.40 93.08 90.18 93.91 94.28 92.66 94.11 93.39 

Ω0 Ω1 Ω2 Ω3 Ω4

Ω0 14927 28 36 4 5

Ω1 6 13994 3 6 991

Ω2 18 3 14857 121 1

Ω3 4 65 185 14647 99

Ω4 1 149 2 5 14843

Figure 10. Confusion matrix of GAU_1.0 and MF3 operator sequence.

The detailed results of the detection accuracy for different operator pairs are shown in
Table 1. Gaussian blurring with standard deviation 0.7 (GAU_0.7), 1.0 (GAU_1.0), median
filtering of filter size 3 × 3 (MF3), 5 × 5 (MF5), un-sharp masking sharpening with radius
2.0 (SH_2.0), 3.0 (SH_3.0), up-sampling with factor 1.2 (UP_1.2) and 1.5 (UP_1.5) operators
are considered, where pairs of operators are represented in Table 1 for α and β. The average
detection accuracy of five classes is more than 92% in all of the cases. The operator sequence
with operator SH_2.0 or SH_3.0 is more challenging when compared with other operators,
as shown in Table 1. The internal statistical information of an image is highly affected after
applying un-sharp masking than other operators, as can be seen in Figure 4.

Table 1. Operator sequence detection with similar specifications.

α = GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_1.0 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7 GAU_0.7

β = MF3 MF5 SH_2.0 SH_3.0 UP_1.2 UP_1.5 MF3 MF5 SH_2.0 SH_3.0 UP_1.2 UP_1.5

Ω0 99.51 99.45 95.47 98.06 99.77 99.79 98.61 98.59 94.64 93.41 99.33 99.17

Ω1 93.29 98.45 91.16 95.84 82.97 94.90 98.15 99.07 94.97 94.47 94.40 99.59

Ω2 99.05 94.39 93.08 90.41 99.13 99.57 94.02 82.37 90.87 91.47 95.23 95.53

Ω3 97.65 97.71 99.74 99.90 99.85 99.89 94.30 92.33 98.43 96.99 99.36 99.31

Ω4 98.95 99.07 81.94 83.79 93.67 96.41 99.66 99.78 86.56 90.13 99.86 99.86

Average
Accu-
racy

97.69 97.81 92.28 93.60 95.07 98.11 96.95 94.43 93.09 93.30 97.63 98.69

α = MF3 MF3 MF3 MF3 MF5 MF5 MF5 MF5 SH_2.0 SH_2.0 SH_3.0 SH_3.0

β = SH_2.0 SH_3.0 UP_1.2 UP_1.5 SH_2.0 SH_3.0 UP_1.2 UP_1.5 UP_1.2 UP_1.5 UP_1.2 UP_1.5

Ω0 94.97 94.49 85.03 93.01 88.33 92.24 71.71 83.12 93.41 96.06 98.29 96.51

Ω1 99.43 99.30 99.82 99.87 99.45 98.76 99.65 99.69 95.95 94.34 90.56 92.81

Ω2 92.91 92.95 98.68 98.81 93.15 93.57 99.65 99.57 87.76 95.05 91.37 83.06

Ω3 96.77 97.13 99.69 99.57 91.99 95.56 99.67 99.79 94.37 78.05 90.59 95.59

Ω4 85.36 87.63 91.06 98.83 79.06 85.27 80.23 87.37 99.91 99.80 99.76 99.00

Average
Accu-
racy

93.89 94.30 94.85 98.02 90.40 93.08 90.18 93.91 94.28 92.66 94.11 93.39

As shown in Figure 11, the behavior of operators can also be visualized in the plot of
mini-batch loss. The curve of α = GAU_0.7 & β = UP_1.2 becomes stable shortly with fewer
peaks and valleys in the curve if compared with α = GAU_0.7 and β = SH_2.0. Similar
attributes of stability are also followed by UP_1.5.
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Figure 11. Mini-batch loss analysis.

The JPEG format is widely used when the visual quality remains good even after the
compression in a real scenario as the default format. Therefore, three steps are considered
in the detection of operator sequences in compressed images. In the first, the image is
JPEG compressed with quality factor Q1. The operator sequence is applied to compressed
images in step 2. In step 3, JPEG compression is applied with quality factor Q2. Detailed
discussion regarding JPEG compression is given in Section 2.2. The confusion matrix of
five class classifications on compressed images with Q1 = 75 and Q2 = 85 is shown in
Figure 12. Two operators, Gaussian blurring with standard deviation 1.0 (GAU_1.0) and
up-sampling with factor 1.5 (UP_1.5) are considered. The performance of the proposed
CNN can degrade on compressed images in comparison to the uncompressed images.
However, while considering the small image size (64 × 64) and low compression quality
factors, the performance is satisfactory.
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Figure 12. Confusion matrix of GAU_1.0 and UP_1.5 operator sequence with Q1 = 75, Q2 = 85.

In Table 2, the results are shown for compressed images. The number of images
for training, validation, and testing is similar to be considered in uncompressed images.
Multiple compression quality factors are considered to visualize in the real scenario for
Q1 = Q2, Q1 < Q2, and Q1 > Q2. The difference between quality factors Q1 and Q2 are
also varied from 5 to 20. Compression omits the artifacts of the operator. Still, the average
detection accuracy is nearly 90% in most of the cases. Even for α = GAU_0.8 and β = MF3,
the detection accuracy is more than 95%. Two cases are considered for α = GAU_1.0 and
β = MF5 on Q1 = 75 and Q2 = 85 as a first case and Q1 = 85 and Q2 = 75 as a second
case. As can be seen in Table 2, the detection accuracy is 94.66 in the first case and 92.47
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in the second. The high value of Q2 in the first case is the reason for its better detection
accuracy in comparison to the second case. The artifacts of operators are better traceable
for a high-quality factor compression.

Table 2. Operator sequence detection on compressed images with similar specifications.

α β Compression Ω0 Ω1 Ω2 Ω3 Ω4 Average
Accuracy

GAU_1.0 MF5 Q1 = 90, Q2 = 70 99.13 92.56 86.89 91.96 92.80 92.67

GAU_1.0 MF5 Q1 = 75, Q2 = 85 98.91 94.27 88.14 92.85 99.13 94.66

GAU_1.0 MF5 Q1 = 85, Q2 = 75 96.44 90.07 89.03 90.58 96.24 92.47

GAU_1.0 UP_1.5 Q1 = 75, Q2 = 85 98.93 84.09 98.77 97.60 68.21 89.52

GAU_1.0 UP_1.5 Q1 = 85, Q2 = 85 97.29 73.14 97.83 91.58 81.52 88.27

GAU_0.9 UP_1.2 Q1 = 70, Q2 = 90 99.81 89.87 97.55 93.32 66.23 89.35

GAU_0.8 MF3 Q1 = 70, Q2 = 90 99.59 95.76 94.67 95.72 91.45 95.44

MF5 UP_1.5 Q1 = 75, Q2 = 85 97.28 78.22 98.35 96.29 79.21 89.87

MF5 UP_1.5 Q1 = 85, Q2 = 75 97.39 76.70 97.97 96.79 71.89 88.15

SH_2.0 UP_1.2 Q1 = 80, Q2 = 90 97,63 95.23 94,82 84.17 90.12 89.84

SH_3.0 UP_1.5 Q1 = 80, Q2 = 90 98.21 96.97 94.56 83.67 89.45 92.57

SH_3.0 UP_1.5 Q1 = 75, Q2 = 85 98.22 98.23 96.25 85.45 80.41 91.71

In this paper, all experiments are performed for the detection of two operator se-
quences except for single operator detection, as shown in Table 3. In Set 1, pristine images
and images operated with four different operations—un-sharp masking, up-sampling,
median filtering, and Gaussian blurring—are classified. The average detection accuracies
for uncompressed images and compressed images with Q = 85 are 97.09% and 88.62%,
respectively. Set 2 is constructed with the same operators as in Set 1, but with different
parameter settings. In Set 2, the performance is also up to the mark.

Table 3. Single operator detection.

Set Single Operator Uncompressed Compression Q = 85

Set 1

ORI 89.15 85.93

SH_2.0 97.01 82.14

UP_1.2 99.91 83.37

MF5 99.81 98.82

GAU_7.0 99.56 92.84

Average Accuracy 97.09 88.62

Set 2

ORI 97.39 90.81

SH_3.0 90.70 83.08

UP_1.5 99.99 90.92

MF3 99.81 95.11

GAU_1.0 99.93 95.17

Average Accuracy 97.56 91.02

4.2. Detection of Dual Operators Sequence for Dissimilar Specification

Operators have the same parameter settings in training and testing for the experimen-
tal analysis above. However, operators may be the same, but the parameters of operators
may vary in the real scenario. To assess the robustness of the proposed method against
dissimilar specifications of operators, some experiments are performed. As can be seen
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in the first row of Table 4, four values of standard deviation for Gaussian blurring {0.7,
0.8, 0.9, 1.0} are considered for training. A total of 60,000 images are used in training
operated by Gaussian blurring and 15,000 images are operated by the four Gaussian blur-
ring parameters. A total of 40,000 images are used to test operated by Gaussian blurring
for 1334 images and operated by 300 Gaussian blurring parameters like the range of the
parameters from 0.701 to 0.900. Therefore, a total of 300,000 images are used for training,
and 200,000 are used for testing the detection of five-class classification problems of two
operator sequence. Similarly, parameters are defined in Table 4 for other operators. The
performance of the proposed CNN model is also excellent in dissimilar specifications. One
scenario of compressed images with Q1 = 80 and Q2 = 90 is also displayed in Table 4 for
operators α = GAU and β = UP. There is some reduction in the detection accuracy even still
it is greater than 94%.

Table 4. Detection for dissimilar operator specifications.

Operator Training Testing Compression Ω0 Ω1 Ω2 Ω3 Ω4 Average Accuracy

α GAU = {0.7, 0.8, 0.9, 1.0} GAU = {0.701, 0.702, . . . , 0.899, 0.900}
No 99.11 96.75 99.47 99.73 95.07 98.02

β UP = {1.5, 1.6, 1.7, 1.8} UP = {1.500, 1.501, . . . , 1.799, 1.800}

α GAU = {0.7, 0.8, 0.9, 1.0} GAU = {0.701, 0.702, . . . , 0.899, 0.900} Q1 = 80
99.39 96.49 86.06 94.16 96.35 94.49

β UP = {1.5, 1.6, 1.7, 1.8} UP = {1.500, 1.501, . . . , 1.799, 1.800} Q2 = 90

α GAU = {0.7, 0.8, 0.9, 1.0} GAU = {0.701, 0.702, . . . , 0.899, 0.900}
No 99.59 88.32 98.72 98.52 96.63 96.36

β MF3, MF5 MF3, MF5

α GAU_1.0 GAU_1.0
No 99.84 95.30 98.17 96.71 99.09 97.82

β UP = {1.4, 1.5, . . . , 1.9} UP = {1.400, 1.401, . . . , 1.899, 1.900}

Here, some results are discussed for dissimilar compression factors on training and
testing images. In the first row of Table 5, the JPEG compression quality factors for training
images are Q1 = 85 and Q2 = 75 and Q1 = 80 and Q2 = 75 for testing images. The other
operator parameters are the same for training and testing. In that case, there is still 92.40%
detection accuracy. However, the performance deteriorates when the compression quality
factor difference is more than 5. The performance of the proposed model is robust for
quality factor difference 5 in training and testing images.

Table 5. Detection for dissimilar JPEG compression quality factors.

Operator Compression
Ω0 Ω1 Ω2 Ω3 Ω4

Average
Accuracyα β Training Testing

GAU_1.0 MF5 Q1 = 85, Q2 = 75 Q1 = 80, Q2 = 75 94.73 91.17 89.25 90.44 96.41 92.40

GAU_1.0 MF5 Q1 = 75, Q2 = 85 Q1 = 85, Q2 = 75 94.26 76.25 87.84 56.56 84.90 79.96

GAU_1.0 MF5 Q1 = 85, Q2 = 75 Q1 = 90, Q2 = 75 97.22 90.55 89.04 88.31 91.59 91.34

GAU_1.0 UP_1.5 Q1 = 85, Q2 = 85 Q1 = 75, Q2 = 85 87.03 72.22 99.51 91.44 80.77 86.19

GAU_1.0 UP_1.5 Q1 = 75, Q2 = 85 Q1 = 85, Q2 = 85 91.95 79.01 92.78 97.96 65.57 85.45

MF5 UP_1.5 Q1 = 85, Q2 = 75 Q1 = 75, Q2 = 85 78.54 80.41 98.15 70.97 96.62 84.94

SH_3.0 UP_1.5 Q1 = 80, Q2 = 90 Q1 = 75, Q2 = 85 90.64 99.30 61.39 83.93 86.01 84.26

SH_3.0 UP_1.5 Q1 = 75, Q2 = 85 Q1 = 80, Q2 = 90 93.58 86.78 99.08 69.63 69.92 83.80

4.3. Comparative Analysis

The proposed CNN can classify two operators and their sequence in low resolution,
compressed, and uncompressed images. The detailed experimental analysis is discussed
above. Here, the results of the proposed scheme are compared with some other state-of-
the-art techniques. In the CNN model [13], a constrained convolutional layer is introduced,
unlike other traditional models. Different size filters, 7 × 7, 5 × 5, and 3 × 3 are used in
the convolutional layer. In our experimental analysis, small-size filters are more suitable
for detecting an image processing operation as shown in Figure 13. Bayar and Stamm [25]
applied a modified constrained convolution layer on image residual for better results. The
results are improved after modification, but still, there is a gap in the performance due
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to a lower number of convolutional layers and large-size filters. Liao et al. [26] proposed
the two-stream CNN model. The results of the two-stream model are impressive. The
idea of detection of operator sequence is also a milestone in the research. The two-stream
model can detect known as operators with unknown specifications. The computational
cost is very high due to a large number of layers and customized preprocessing that
need to be applied for the detection of different operators and compressed images. Our
proposed network is moderate in size and requires less computation due to the bottleneck
approach. The bottleneck approach can reduce the learning parameters and allow for
increasing the network depth. Results are compared in Figure 13 for multiple scenarios.
Both uncompressed and compressed types of images are considered in the comparison.
The operators α, β, and compression status are shown in the first, second, and third row in
Figure 13.
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Further, a detailed comparative analysis is performed with the method [26] because it is
comparable with the proposed method. The other compared methods [13,25] performance
is quite low as displayed in Figure 13. In Table 6, the average classification error of five class
classifications is presented. The performance of Liao et al. [26] is inferior to our proposed
architecture due to several reasons. Primarily, Liao’s CNN contains multiple pooling layers
that lose vital statistical information. Large size kernels have also reduced the performance.
In the proposed CNN, a non-reducing approach is followed to retain inherited fingerprints
as many as possible. The minimum reduction in classification error is for α = MF5 &
β = UP_1.5, i.e., 2.25% and the highest reduction in classification error is for α = SH_2.0 &
β = UP_1.2, i.e., 9.22% of the proposed scheme. Therefore, there is substantial improvement
in detection performance.

In Table 7, a comparative analysis is given for JPEG compressed images. For uncom-
pressed images, the performance of the proposed CNN is already found superior to Liao’s
CNN. Multiple compression factors are considered for unbiased analysis. The bottleneck
approach allows fourteen convolution layers without the extra burden on computational
cost. The classification error of Liao et al. [26] is less than the proposed scheme only in one
case, i.e., α = GAU_1.0 & β = UP_1.5. Otherwise, the proposed CNN outperforms with a
good score. The average classification error of the proposed method is less and exclusive of
specific preprocessing.
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Table 6. Comparative analysis for uncompressed images.

Operator Classification Error (%) Operator Classification Error (%)

α β Proposed Liao et al. [26] α β Proposed Liao et al. [26]

GAU_1.0 MF3 02.31 07.39 MF3 SH_2.0 06.11 14.24

GAU_1.0 MF5 02.19 05.98 MF3 SH_3.0 05.70 13.81

GAU_1.0 SH_2.0 07.72 13.25 MF3 UP_1.2 05.15 10.83

GAU_1.0 SH_3.0 06.40 11.49 MF3 UP_1.5 01.98 07.49

GAU_1.0 UP_1.2 04.93 08.79 MF5 SH_2.0 09.60 18.02

GAU_1.0 UP_1.5 01.89 03.77 MF5 SH_3.0 06.92 15.49

GAU_0.7 MF3 03.05 08.26 MF5 UP_1.2 09.82 13.37

GAU_0.7 MF5 05.57 08.01 MF5 UP_1.5 06.09 08.34

GAU_0.7 SH_2.0 06.91 13.31 SH_2.0 UP_1.2 05.72 14.94

GAU_0.7 SH_3.0 06.70 12.70 SH_2.0 UP_1.5 07.34 11.67

GAU_0.7 UP_1.2 02.37 06.23 SH_3.0 UP_1.2 05.89 13.54

GAU_0.7 UP_1.5 01.31 05.95 SH_3.0 UP_1.5 06.61 10.84

Table 7. Comparative analysis of compressed images.

Operator
Compression

Classification Error (%)

α β Proposed Liao et al. [26]

GAU_1.0 UP_1.5 Q1 = 75, Q2 = 85 10.48 09.80

GAU_1.0 UP_1.5 Q1 = 85, Q2 = 85 11.73 14.68

GAU_1.0 MF5 Q1 = 90, Q2 = 70 07.33 16.35

GAU_1.0 MF5 Q1 = 75, Q2 = 85 05.34 11.82

GAU_1.0 MF5 Q1 = 85, Q2 = 75 07.53 15.93

GAU_0.9 UP_1.2 Q1 = 70, Q2 = 90 10.65 14.12

MF5 UP_1.5 Q1 = 75, Q2 = 85 10.13 13.25

MF5 UP_1.5 Q1 = 85, Q2 = 75 11.85 21.75

MF3 GAU_0.8 Q1 = 70, Q2 = 90 04.56 12.70

SH_2.0 UP_1.2 Q1 = 80, Q2 = 90 10.16 14.65

SH_3.0 UP_1.5 Q1 = 80, Q2 = 90 07.43 13.55

5. Conclusions

Digital images have turned out to be the most accepted representation of information.
The latest technologies have empowered naive users to create fake images effortlessly.
Though, multiple operations have been performed to construct a real-looking fake image.
The detection of manipulation operations has assisted to find the fake image. At present,
deep learning approaches have been taken into the place of handcrafted feature extraction
methods. A convolutional neural network has been suggested to preserve the authenticity
of images. Thus, most techniques have been suggested for single operator detection so
far. Very few techniques have been discussed to identify the dual operators and the
order of operators. The proposed deep learning model could detect consecutive dual
operators on the image and its corresponding order precisely. The bottleneck approach
has been applied in the model to increase the layers and reduced the parameters. Unlike
previous networks, one single global averaging pooling layer has been utilized to reduce
the information loss and overfitting problem. The proposed model has been performed
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robustly against challenging scenarios like low-resolution images and compression in the
exhaustive experimental analysis.
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