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Abstract: This paper studies a cooperative encirclement interception guidance law against a maneu-
vering target that utilizes a leader–follower control scheme. The control design is decoupled into two
parts. In the line-of-sight (LOS) direction, a fixed-time distributed disturbance observer is presented
to estimate the maneuvering of the target. Based on the proposed disturbance observer, the guidance
law is designed for the followers to guarantee that each follower’s total flight time achieves consensus
with that of the leader. In the normal direction of the LOS, the control command is designed to realize
the encirclement interception with a predefined-time consensus protocol. The convergence of the
guidance algorithm is proven by the Lyapunov stability theory. Numerical simulations are provided
to demonstrate the effectiveness and superiority of the proposed cooperative-guidance law.

Keywords: cooperative guidance; encirclement interception; fixed-time consensus disturbance ob-
server; predefined-time consensus control

1. Introduction

With the development of modern high-speed strike weapons, traditional one-to-one
interception will face more difficulties against high-speed maneuvering targets. Multivehi-
cle cooperative interception has received a great deal of attention. Compared with a single
interceptor, cooperative simultaneous engagement can increase the interception coverage
area and improve the interception probability. As one of the key technologies of cooperative
engagement, the multivehicle cooperative interception guidance law has been a research
hotspot in recent years. In previous studies, the cooperative-guidance law has mainly been
divided into two parts: biased proportional navigation guidance [1–3], and multidirection-
guidance [4,5]. However, some aspects of the guidance performance have yet to be
improved, such as the maneuvering-target-capture ability and adaptive-control ability.
Therefore, the multivehicle-cooperative-interception problem is of great significance.

The biased proportional-based guidance law originates from the individual homing
guidance [6,7], in which the guidance law is designed individually, and the simultaneous
engagement is reached by setting the same desired impact time for each interceptor in
advance. Jeon et al. [6] designed an impact time control guidance (ITCG) law by biased
proportional navigation guidance. Moreover, the biased term was designed as a time-
error feedback form in the ITCG. As the earliest cooperative guidance method, ITCG laid
the foundation for the biased proportional-based guidance law. The core of the biased
proportional-based guidance law lies in the accurate estimate of the time-to-go under pure
proportional guidance. Based on this, there are two directions that have mainly been
studied. One is the improvement of the time-to-go estimation method. Jeon et al. [8]
adjusted the time-to-go estimation form in 2016, which extended ITCG to nonlinear models,
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without the limitation of small-angle assumptions. Because of its simple form and high
precision, the time-to-go estimation form in [8] is widely used. Wang et al. [9] estimated
the time-to-go of a hypersonic vehicle with a new numerical method. Another direction
is two-stage guidance. In the two-stage cooperative-guidance law, the second stage is
generally designed as the form of the time-feedback-control proportional-guidance law,
and the first stage is designed to provide the proper initial condition for the second-stage
control. Common design approaches for the first stage include consistency control [10–12],
trajectory shaping [13], and other advanced control methods [14,15]. It is worth mentioning
that most time-to-go estimation forms are established on the basis of the constant-velocity
hypothesis [8,16,17]. Moreover, most of the research on varying the velocity-time-estimation
method is proposed based on uniform varying velocity [18,19]. These assumptions about
the flight velocity reduce the applicable scope of the guidance law in real situations.

To solve the problem mentioned above, the multidirection-guidance method has been
proposed in recent years. Similar to the traditional angle-constrained guidance law in
line-of-sight (LOS) coordinate systems, a control in the normal direction of the LOS is
designed to confirm the convergence of the LOS rate. Besides the control command in
the normal direction of the LOS, the multidirection-guidance method adds the guidance
law in the LOS direction to control the flight time. Therefore, the multidirection-guidance
method can realize both the time constraint and the angle constraint. Consistency control
is generally applied to guidance in the LOS direction. By exchanging information among
vehicles via a communication network, the time-to-go of each vehicle can reach a consen-
sus with a consensus protocol. Lin et al. [20] introduced the fixed-time control technique
into the multidirection-guidance method to improve the convergence rate of the system.
Zhou et al. [21] considered the data transmission in a discrete-time communication net-
work. In order to adapt to this more realistic engagement situation, the time-estimation
method was refined into a discretized form. However, the works proposed above focused
on cooperative guidance against fixed targets or nonmaneuvering targets [6–21]. Less
research has been conducted on cooperative guidance against maneuvering targets [22–25].
Dong et al. [22] designed an extended state observer (ESO) in both directions to estimate the
uncertain disturbance caused by target maneuvers. In [23], to ensure the fast convergence of
the time-to-go and reduce the impact of disturbances, super-twisting sliding-mode control
was applied in LOS-direction guidance. Liang et al. [24] designed a fixed-time consensus
protocol, which further improved the convergence rate of time. Cong et al. [25] proposed a
distributed-model predictive-control-guidance law with the virtual-leader method to solve
the three-dimensional cooperative-interception problem. Nevertheless, to the best of the
authors’ knowledge, the multidirection-guidance method in the existing works controls the
impact time individually. The impact angle of each vehicle is settled before launch, which
prevents autonomous coordination.

As an effective tactic, encirclement guidance has received significant attention in
recent years. Different methods have been proposed for surrounding the target from
multiple angles. Yu et al. [26] propose a distributed cooperative encirclement hunting
guidance law for multiple vehicles based on time-varying formation-tracking-control
theories. However, the vehicles in [26] cannot attack the target simultaneously. In [27],
encirclement interception for a fixed target is realized by a biased proportional-based
guidance law.

In light of the aforementioned observations, this paper comes up with a novel cooperative-
guidance law with a constrained impact angle and simultaneous attack. The main contribu-
tions of this paper are as follows:

• Compared with other cooperative-guidance laws [6–21] and encirclement-interception
methods [27] that are aimed at a stationary target, this paper presents a new way to
realize encirclement interception against a maneuvering target by utilizing a leader–
follower topology. During the interception, the followers are arranged around the
leader. The vehicles are separated by fixed LOS angles. The guidance law for the lead-
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ers is designed to intercept the target at a certain impact angle. Meanwhile, the cooper-
ative guidance law for the followers is designed with variable LOS-angle constraints;

• A fixed-time distributed disturbance observer (DDOB) was designed to compensate for
the insufficient target-maneuver information involved in the guidance law. Compared
with the traditional disturbance observer in [22], our distributed disturbance observer
has a better performance in distributed cooperative interception;

• A predefined-time consensus guidance (PTCG) law was designed to control the impact
angle of the vehicles. Compared with [22–25], the proposed PTCG introduces the
communication-consistency control into the guidance law in the normal direction of
the LOS, which improves the adaptive-control ability. Furthermore, the proposed
PTCG can ensure that the LOS angles of the followers converge to the desired values in
the prescribed time. The convergence time is set as the total flight time, which reduces
the control input saturation.

The remainder of this paper is organized as follows. Some necessary preliminary
knowledge is provided in Section 2. The problem formulation is presented in Section 3.
Section 4 presents the design of our cooperative-guidance law and the stability analysis.
Numerical simulations are provided in Section 5 to demonstrate its effectiveness and
superiority. Finally, conclusions are presented in Section 6.

2. Preliminaries

This section provides a brief introduction to graph theory, ESO theory, finite-time
convergence theory, and fixed-time convergence theory.

2.1. Some Key Definitions

To posit the surrounding interception problem, a few terminologies need to be defined.
An extended state observer (ESO) [28] is a state observer that comes up against an

uncertainty estimation. It is the key link toward the active disturbance-rejection control.
Through the ESO, we are able to cancel the total disturbance in the design of the controller.

The time to go (tgo) [29] is defined as the time that remains for each vehicle to intercept
the target. If t f is the time of interception, then tgo = t f − t, where t is the present time.
Both t and t f are defined with respect to the same reference.

2.2. Graph Theory

Suppose that there are N vehicles participating in a cooperative-attack mission. The
information communication among multiple vehicles can be described with an interaction
digraph [22]. Let G (M, E, A) denote a communication graph. G (M, E, A) consists of a node
(M = {M1, M2, M3, . . . , MN}), an edge (E ⊆

{
(Mi, Mj); Mi, Mj ∈ M

}
), and the weighted

adjacency matrix (A =
[
aij
]
∈ Rn×n). The adjacency element (aij) satisfies aij > 0 if and

only if information is exchanged between Mi and Mj. If there is a directed path between
any two distinct nodes, the directed graph is strongly connected. The in-degree of the

node (vi) is defined as di =
n
∑

j=1
aij. The diagonal matrix obtained from the di as diagonal

entries is called the diagonal in-degree matrix (D). Finally, the graph Laplacian matrix is
obtained as L = D−A. The Laplacian matrix (L =

[
lij
]
∈ Rn×n) of the directed graph (G)

is defined by:

lij =


n
∑

k=1
aik, j = i

−aij, j 6= i
(1)

where R denotes the fields of real numbers.
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2.3. ESO Theory

Lemma 1. Consider the high-order nonlinear system:

.
xk(t) = xk+1(t), k = 1, 2, . . . , n− 1
.
xn(t) = u(t) + f (x(t), t)
y(t) = x1(t)

(2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn is the state variable, u(t) ∈ R is the control input,

and f (x(t), t) is the uncertainty disturbance. If d( f (x(t), t))/dt is bounded, one can denote
xn+1(t) = f (x(t), t) as an extended state. The ESO [30] can be modeled a:

.
x̂k(t) = x̂k+1(t) + β0k(x1(t)− x̂1(t)) k = 1, 2, . . . , n− 1
.
x̂n(t) = u(t) + x̂n+1(t) + β0n(x1(t)− x̂1(t)).
x̂n+1(t) = β0(n+1)(x1(t)− x̂1(t))
y(t) = x1(t)

(3)

where x̂(t) = [x̂1(t), x̂2(t), . . . , x̂n+1(t)]
T ∈ Rn+1 is the estimation of states. With

β =
[

β01, β02, . . . , β0(n+1)

]T
being a proper vector, the estimation error (xn+1(t)− x̂n+1(t)) could

be arbitrarily small.

2.4. Finite-Time Convergence Theory

Lemma 2. Consider a nonlinear control system:

.
x(t) = f (t, x(t), u(t)), x(0) = x0 (4)

where x = [x1, x2, . . . , xn]
T ∈ Rn, u = [u1, u2, . . . , um]

T ∈ Rm.

Suppose there exists a continuous, differentiable, positive definite, and radially un-
bounded function: V : Rn → R+ ∪ {0} , V(0) = 0. The origin of the system (4) is a globally
finite-time convergent equilibrium when it satisfies [31]:

.
V(x, t) + αVγ(x, t) < 0 (5)

where α > 0, 0 < γ < 1, and the settling-time function satisfies:

T(x0) ≤
V1−γ(x0)

α(1− γ)
(6)

2.5. Fixed-Time Convergence Theory

Lemma 3. Consider a nonlinear control system (4). Suppose there exists a continuous, differentiable,
positive definite function: V : Rn → R+ ∪ {0} , V(0) = 0. The origin of the system (4) is a fixed-
time convergent equilibrium if it is a finite-time convergent equilibrium [31] and:

.
V ≤

{
−rµV1−µ, V ≤ 1
−rvV1+v, V ≥ 1

(7)

where 0 < µ < 1, v > 0, rµ > 0, rv > 0, and the settling-time function satisfies:

T(x0) ≤ Tmax ≤
1

µrµ
+

1
vrv

(8)

Notations. Define the function sign(x)by sign(x) = x
|x| if x 6= 0, and by sign(x) = 0 if x = 0.

Define sigα(x) = |x|αsign(x).
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3. Problem Formulation

In this paper, the combat scenario of multiple 2D vehicles intercepting a maneuvering
target is studied. The goal is to simultaneously intercept the target by deploying multiple
interceptors. Consider a group of N intercepting vehicles: Mi, i ∈ {1, 2, 3, . . . , N} denote
the interceptors and T denotes the target. The planar one-to-one engagement between the
ith interceptor and a target may be depicted as in Figure 1. Both the interceptors and the
target are assumed to be point masses, and their velocity vectors are denoted by vi and
vT , respectively. Moreover, the corresponding speeds of them (vi and vT , respectively) are
constants. Their LOS angles are qi and qT , respectively. The flight path angles are θi and θT ,
respectively. The term ri denotes the distance between the vehicle (Mi) and the target (T).
The relative separation between the target and the ith interceptor and the LOS angle are
denoted by ri and θi, respectively:

Figure 1. Planar one-to-one engagement.

In an interception scenario, according to the principles of kinematics, the relative-
motion equation can be deduced as:

.
ri = vT cos(qi − θT)− vi cos(qi − θi) (9)

ri
.
qi = −vT sin(qi − θT) + vi sin(qi − θi) (10)

.
θi =

ai
vi

(11)

.
θT =

aT
vT

(12)

To guarantee a salvo attack of the target by multiple interceptors, it is desirable that
the interceptors achieve agreement on the time-to-go. Furthermore, this paper provides
an encirclement-guidance strategy by utilizing a leader–follower topology. Considering
N interceptors containing one leader and N − 1 followers, the vehicles can exchange
information with communication networks, expressed by the weighted adjacency matrix:
A =

[
aij
]
∈ Rn×n. The guidance geometry is illustrated in Figure 2. Let M1 denote the

leader, and Mi, i ∈ {2, 3, . . . , N} denote the followers. The directed communication link is
described by the blue arrows:

Figure 2. Encirclement salvo attack engagement.
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Note 1. As is shown in Figure 2, the leader and followers play different roles in the
communication topology. The leader can send guidance information to adjacent followers.
Each follower can work as an information transfer station. The mathematical models for
the leader and followers are different, and the guidance laws for the leader and followers
should be designed accordingly.

The derivatives of (9) and (10) can be obtained as:

..
ri = ri

.
q2

i + uri − wri (13)

..
qi = −2

.
ri
ri

.
qi −

uqi

ri
+

wqi

ri
(14)

The motion equations in the LOS direction and its normal are given by (13) and (14),
where uri and wri denote the components of the acceleration of the interceptor and the target
in the LOS direction, respectively. uqi and wqi denote the components of the acceleration of
the interceptor and the target in the normal direction of the LOS, respectively.

In order for multiple vehicles to simultaneously attack the target at preset angles, the
following nonlinear state equation is now established. Define the state variables as x1i = ri,
x1i = ri, x2i =

.
ri, x3i = qi − qdi, x4i =

.
qi −

.
qdi, where qdi denotes the desired terminal

LOS angle.
When i = 1, the interceptor is the leader, and qdi is a predefined constant. There is no

need to design control command in the LOS direction. The cooperative-guidance model
can be described as: .

x31 = x41

.
x41 = − 2x21

x11
x41 −

uq1
x11

+
wq1
x11

(15)

When i 6= 1, the interceptor is the follower. To maintain the encirclement-interception
formation, the qdi is connected with the other interceptors:

qdi = qj − qs (16)

where qs denotes the LOS angle error of the encirclement interception. Then, the cooperative-
guidance model changes as follows:

.
x1i = x2i.
x2i = x1ix2

4i − uri + wri.
x3i = x4i
.
x4i = −2 x2i

x1i
x4i −

uqi
x1i

+
wqi
x1i
− .

qj

(17)

where
.
qj = −2

x2j
x1j

x4i −
uqj
x1j

+
wqj
x1j

.
During the interception process, the time-to-go of the interceptor can be approximated by:

tgoi = −
ri
.
ri

(18)

By taking the derivate of (18), we obtain the following:

.
tgoi = −1 +

x1i
2x4i

2

x2i
2 − x1i

x2i
2 uri +

x1i
x2i

2 wri (19)

A new state-variable flight time (t fi
) is introduced as follows:

t f i = t + tgoi (20)

Define the error of the flight time:

eti = t f i − t f ji, j ∈ N (21)
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Taking the derivative of (21) yields:

.
eti = t f i − t f j = t + tgoi − t + tgoj

=
N
∑

j=1
aij(

x1i
2x4i

2

x2i
2 −

x1j
2x4j

2

x2j
2 )−

N
∑

j=1
aij(

x1i
x2i

2 uri −
x1j
x2j

2 urj)+

N
∑

j=1
aij(

x1i
x2i

2 wri −
x1j
x2j

2 wrj)

(22)

To realize simultaneous arrival, we introduce the new state variable (et), and the
cooperative-guidance model for the followers (17) can be rewritten as:

.
eti =

N
∑

j=1
aij(

x1i
2x4i

2

x2i
2 −

x1j
2x4j

2

x2j
2 )−

N
∑

j=1
aij(

x1i
x2i

2 uri −
x1j
x2j

2 urj)+

N
∑

j=1
aij(

x1i
x2i

2 wri −
x1j
x2j

2 wrj)

.
x3i = x4i
.
x4i = −2 x2i

x1i
x4i −

uqi
x1i

+
wqi
x1i
− .

qdi

(23)

Remark 1. Our cooperative-guidance law aims to arrange the followers around the leader to
realize the encirclement attack. The separation distance between different vehicles is designed by the
LOS angle error (qs). Unlike the traditional cooperative-guidance law with the static LOS-angle
constraint in [22–25], our guidance law sets the various LOS angle constraints for the followers,
which adaptively adjust to the LOS angle of the leader and the LOS angle error. This cooperative-
encirclement-guidance strategy brings a new differential term:

.
qdi. This term can be obtained by the

communication with the other interceptors.

4. Main Results

In this section, to realize the encirclement-interception-control objective, the cooperative-
guidance problem is divided into two parts: the flight-time control part and the impact-
angle control part. The flight-time control part is designed in the LOS direction. In this part,
only the guidance law of the followers is designed. The main objective is to achieve consis-
tent timing for the leader and followers under the distributed communication structure. In
the normal direction of the LOS, the guidance laws of the leader and followers are designed
accordingly: the guidance law for the leader is designed to attack the target at a specific
angle, and the guidance law for the followers is designed to form the ring of encirclement.

4.1. Flight-Time Control Part

In this part, the guidance law for the followers in the LOS direction is designed to
realize simultaneous arrival. Equation (17) shows that there is an uncertain disturbance
caused by the target maneuver. Designing a disturbance observer to estimate the maneuver
of the target is the first step. In light of [30] and the ESO theory in Lemma 1, a fixed-
time distributed disturbance observer (DDOB) is presented as follows: Let Z1 denote the
estimation of the consensus error of the tgo between multiple vehicles, and let Z2 denote
the estimation of the uncertain disturbance. Then, the observer is designed as follows:

.
Z1i = h1φ1


N
∑

j=1
aij(tgoi−tgoj)−Z1

ε

+
N
∑

j=1
aij

(
x1i

2x4i
2

x2i
2 −

x1j
2x4j

2

x2j
2

)
+

N
∑

j=1
aij

(
− x1i

x2i
2 uri +

x1j
x2j

2 urj

)
+

N
∑

j=1
aij

(
x1i
x2i

2 Z2i −
x1j
x2j

2 Z2j

)
.
Z2i =

h2
ε φ2


N
∑

j=1
aij(tgoi−tgoj)−Z1

ε


(24)
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where h1 and h2 are the design parameters, satisfying h1, h2 > 0 and h1 ≥ 2
√

h2, ε is the
amplification factor satisfying ε ∈ (0, 1), and the concrete form of φ1 and φ2 is:

φ1(x) = sigα(x) + sigβ(x)
φ2(x) = sig2α−1(x) + sig2β−1(x)

(25)

Moreover, α, β satisfies α ∈ (0.5, 1), β ∈ (1, 1.5).

Theorem 1. For system (22), with the fixed-time distributed observer (24), assuming that uri and
urj are known and the disturbance caused by the target satisfies the boundary condition, |wri| ≤ w1,

where w1 is finite and unknown, the observation error of

∣∣∣∣∣ N
∑

j=1
aij(tgoi − tgoj)− Z1

∣∣∣∣∣ and |wri − Z2i|

will converge to a neighborhood of the origin in fixed time. The result of the contrast is shown in
Section 5.

Proof of Theorem 1. The proof is provided in Appendix A. �

Remark 2. Because of the special distributed model (23) in the followers’ cooperative-guidance
law, the traditional fixed-time disturbance observer (FxTDO) is no longer effective. To solve this
problem, we proposed the DDOB. As is shown in (24), the state variables that Z1 tracks are

designed as a distributed form (
N
∑

j=1
aij(tgoi − tgoj)) by the communication graph. Compared with

the other single-vehicle disturbance observer methods [23,32], our DDOB is more suitable for
multivehicle-cooperative-combat environments.

Theorem 2. Under the undirected graph, consider a one-order system as follows:

.
x = u; x(t0) = x0 (26)

The system can converge to zero within a finite time by the guidance law as:

ucon = −kr1sigα

(
N

∑
j=1

aij(xi − xj)

)
(27)

where kri > 0 and 0 < α < 1.

Proof of Theorem 2. The proof is provided in Appendix B. �

Theorem 3. If the undirected graph of the multivehicle system is connected, the impact time of all
the missiles will converge to the same value within a finite time with the guidance law:

uri = −
.
r2

i
N
∑

j=1
aijri

− N

∑
j=1

aij(
r2

i
.
q2

i
.
r2

i

−
r2

j
.
q2

j
.
r2

j

) + Z2 − kr1sigγ(
N

∑
j=1

aij(tgoi − tgoj))−
N

∑
j=1

aij
rj
.
r2

j

urj

 (28)

Proof of Theorem 3. By combining (28) with (23), one can obtain:

.
eti = −kr1sigγ

(
N

∑
j=1

aij(tgoi − tgoj)

)
= −kr1sigγ

(
N

∑
j=1

aij(t f i − t f j)

)
(29)

By utilizing Theorem 2, eti can converge to zero in finite time. This indicates that the
total flight time of the followers can remain consistent, and furthermore, that it can be
consistent with that of the leader. �
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Remark 3. In (28), the cooperative-guidance law for the followers does not require precise target-
maneuver information. The uncertain disturbance term (wr) in (23) that is caused by the target
maneuver is compensated for by the DDOB. When the target maneuver is within a certain limit,
our guidance law can realize the control objective.

4.2. Impact-Angle Control Part

In the impact control part, the guidance laws for the leader and followers are designed
accordingly. First, the nonsingular terminal sliding-mode guidance law [33] for the leader
is presented. Consider the sliding-mode surface:

s1 = x31 + k1sigλ(x41) (30)

where k1 > 0, 2 > λ > 1. Based on (30), a finite-time convergence guidance law can be
designed as:

uq1 = x11

(
−2

x21x41

x11
+

1
k1λ

sig2−λ(S1) + k2sigη(S1) + hsign(S1)

)
(31)

where k2 > 0, and h > 0.
Then, in light of the study in [34], a novel predefined-time consensus guidance law is

proposed so that the followers simultaneously attack the target at the desired impact angle.
A time-varying sliding-mode surface is designed as follows:

Si = tgoe

N
∑

j=1
aij(x3i−x3j) N

∑
j=1

aij(x4i − x4j) + n(e

N
∑

j=1
aij(x3i−x3j)

− 1) (32)

where µ > 0. Moreover, a predefined-time guidance law is designed as:

uqi = x1i

−2
x2ix4i

x1i
+

n
t f − t

N

∑
j=1

aij(x4i − x4j) + (
N

∑
j=1

aij(x4i − x4j))

2

+ k3Si + k4sign(Si)

 (33)

Theorem 4. In the second-order nonlinear system (23), if the guidance law is designed as in (33),
then the state variables x3and x4will simultaneously converge to zero at t = t f .

Proof of Theorem 4. The proof is provided in Appendix C. �

Note 2. In (33), the discontinuous control term (k4sign(Si)) is designed to compensate for
the target maneuver in normal LOS directions. However, the discontinuous control term
may cause control-input chattering. In the numerical simulations, we used an approximate
function to obtain continuous guidance commands, as follows:

f (u) =
1− eυu

1 + eυu (34)

where υ > 0 is a constant.

Remark 4. As is shown in (33), the convergence time of the rate of the LOS in the proposed PTCG
is designed as the tgo, which means that the attack angle will converge to the expected value exactly
when the interception impact appears. It is worth noting that the convergence time can be adjusted
by replacing t f − t with the convergence time (tc). The convergence time (tc) can be predetermined
arbitrarily and independently of the system parameters or constants. This is the main superiority of
the predefined-time guidance law.
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Remark 5. The existing study [35] on the predefined-time cooperative-guidance law focuses on
its effectiveness at avoiding collisions between interceptors by the rapid convergence of the LOS.
However, previous guidance laws, such as the finite-time cooperative-guidance law [23] and fixed-
time cooperative-guidance law [20], can guarantee the rapid convergence of the rate of the LOS.
Compared with such methods [20,23], there is no significant advantage with the predefined-time
cooperative-guidance law. In this paper, the superiority of the predefined-time cooperative-guidance
law is applied to reduce the saturation of the control input. A controllable slower convergence rate is
realized without the parameter design. Moreover, PTCG reduces the step of designing the reasonable
convergence time. These factors facilitate the engineering realization.

5. Numerical Simulations

In this section, numerical simulations are given to demonstrate the effectiveness and
superiority of the proposed cooperative-guidance law. Consider the situation in which
five vehicles simultaneously intercept a maneuvering target. The initial conditions of the
multiple vehicles and target are presented in Table 1. Due to the physical constraints of the
vehicles, the maximum accelerations in all directions are limited to 25 g, where g denotes
the gravitational acceleration, and g = 9.8 m/s2. The attack angle of the leader is set as 10◦.
To realize the encirclement interception, the followers are arranged on both sides of the
leader with 15 degrees attack angles apart.

Table 1. The initial conditions of the interceptors.

Vehicle Initial Position (m, m) Initial Heading Angle (◦) Initial Velocity (m/s)

M1 (leader) (3000, 6500) 10 320
M2 (3500, 5500) 6 290
M3 (3700, 8000) −5 300
M4 (3800, 4000) 2 310
M5 (4000, 8500) 5 300

The communication topology of the vehicles is shown in Figure 3.

Figure 3. Communication topology of vehicles.

The initial conditions of the target are shown in Table 2.

Table 2. The initial conditions of the target.

Initial Position Initial Heading Angle (◦) Initial Velocity (m/s) Accelerated Velocity (m/s2)

(10,000, 7000) −170 220 0.8 g cos(t)
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The control parameters are designed as follows:

h1 = 2, h2 = 1.5, α = 0.8, β = 1.2, ε = 0.005
kr1 = 2, γ = 0.7
k1 = 1.3, k2 = 6, h = 1, λ = 1.3, η = 0.8
k3 = 0.015, k4 = 0.03, n = 6

The simulation results with our guidance law are exhibited in Figures 4–9. From
Figure 4, it can be observed that the multiple vehicles can intercept the maneuvering target
along different trajectories. Figure 5 shows the time-to-go of the interceptors. To further
demonstrate the convergence process, the tracking error between the followers and leader is
provided in picture-in-picture. The tgo of each follower converges to the value of the leader
rapidly, which means that the cooperative attack has been completed. Figure 6 shows that
the vehicles attack the target with the different desired angles, and that the predetermined
encirclement tactics can be implemented. Figure 7 gives the control command in the LOS
direction during the engagement. The control command in the LOS direction is used to
adjust the tgo of the multiple vehicles. In Figure 8, owing to the initial attack-angle errors
of the vehicles, the control commands in the normal direction of the LOS are relatively
large at the beginning of the guidance. As is shown in Figure 9, the flight speeds of the five
vehicles are constantly adjusted within a relatively small range. In the initial phase of the
flight, a large overload is applied in the normal direction of the LOS to control the attack
angle, which leads to an increase in the speeds of the multiple vehicles. Meanwhile, the
overload in the direction of the LOS is applied to track the flight time of the leader, as well
as to compensate for the normal overload. With the rapid convergence of the attack angle
and flight time, the control overloads tend to be gentle. The variation in the speeds of the
multiple vehicles tends to be stable.

Figure 4. Trajectories of the vehicles and target.
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Figure 5. Time-to-go of multiple vehicles.

Figure 6. Attack angles of the LOS.

Figure 7. Control commands in LOS direction.
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Figure 8. Control commands in normal direction of LOS.

Figure 9. Velocities of multiple vehicles.

The estimation performance of our fixed-time distributed disturbance observer is
shown in Figures 10 and 11. It can be seen that the disturbance error of the DDOB can
converge to the neighborhood of the origin in time.

Figure 10. Actual and estimated values of disturbance.
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Figure 11. Tracking error of DDOB.

To validate the superiority of the proposed cooperative-guidance law, a series of
contrast experiments were presented as follows. The comparison between our guidance
law and the finite-time consensus-guidance (FTCG) law based on finite-time control [36]
without the DDOB is shown in Figure 12. Owing to the maneuver of the target, the control
commands of the followers in the LOS direction will change rapidly when the interceptors
are closed to the target. The proposed DDOB can significant decrease the effect caused by
the uncertain disturbance. In Figure 13, an estimation simulation with an ESO based on the
disturbance observer in [22] is carried out for comparison. It can obviously be seen that
large saturation shocks are avoided by using the DDOB.

Figure 12. Control-command comparison in LOS direction.

Figure 13. Estimation-performance comparison between DDOB and ESO.
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Figures 14 and 15 show the superiority of the proposed predefined-time guidance law
compared with the terminal sliding-mode guidance (TSMG) law [4]. In Figure 14, the attack
angles of the interceptors under PTCG converge more gently than those under TSMG. To
make the display clearer, we chose to compare Vehicle 2, Vehicle 3, and Vehicle 4 as an
example in Figure 15. This can avoid the large overloads on the interceptors for a long
period of time at the beginning of the guidance.

Figure 14. Attack-angle comparison between PTCG and TSMG.

Figure 15. Control-command comparison in normal direction of LOS.

6. Conclusions

This study is concerned with the cooperative-encirclement-interception problem for
multiple vehicles against a maneuvering target, with consideration to communication
networks. To realize the simultaneous encirclement interception, we divided the guidance
into two parts. In the flight-control part, a distributed disturbance observer is proposed.
Based on the finite-time consistency theory and the fixed-time distributed disturbance
observer, a consensus-guidance law is designed in the LOS direction. Meanwhile, in the
impact-angle control part, a predefined-time guidance law is designed with a time-varying
sliding mode. The effectiveness and superiority of the proposed methods are verified
by simulations. In future works, we will extend our algorithm to the three-dimensional
guidance law.
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Appendix A

Introduce the definitions as follows:

e1 =
N
∑

j=1
aij(tgoi − tgoj)− Z1

e2 =
N
∑

j=1
aij(

x1i
x2i

2 wri − x1i
x2i

2 Z2i −
x1j
x2j

2 wrj +
x1j
x2j

2 Z2j)

ζi ,
ei(εt)
ε2−i , i = 1, 2

(A1)

Define the unknown disturbance as follows:

di =
N

∑
j=1

aij(
x1i
x2i

2 wri −
x1j

x2j
2 wrj) (A2)

By substituting (A1) into (24), one obtains:

.
ζ1 = −h1(sigα(ζ1) + sigβ(ζ1)) + ζ2.
ζ2 = −h2(sig2α−1(ζ1) + sig2β−1(ζ1)) + ε

.
di

(A3)

Let ζ , [ζ1, ζ2]
T,

.
ζ , g(ζ), ∆ = ε

.
di , and |∆|≤ εd1 .

Step 1. Suppose the disturbance of (22) is zero, define:

gγ(ζ) =

[
−h1(1 + τ)sigγ(ζ1) + ζ2
−h2

(
1 + τ2)sig2γ−1(η1)

]
(A4)

If (A4) is in the dominant scope of the low-order power function, then γ = α,
τ = |ζ1|β−α (i.e., |ζ1| ≤ 1). If (A4) is in the dominant scope of the high-order power
function, then γ = β, τ = |ζ1|α−β (i.e., |ζ1| ≥ 1). Thus, no matter what the value of
|ζ1| is, gα(ζ)||ζ1|→1− = gβ(ζ)

∣∣
|ζ1|→1+ and g(η)|∆=0 are continuous. According to the

Definitions (4–6) in [37], the function g(ζ) is homogeneous in both the 0-limit and ∞-limit.
Because α and β satisfy α ∈ (0.5, 1) and β ∈ (1, 1.5), based on the work in [38],

the origins of g0(ζ) and g∞(ζ) are globally asymptotically stable if their polynomials
s2 + h1s + h2 are Hurwitz. Moreover, the origin of the system ( g(ζ)|∆=0) is asymptotically
stable if the polynomials s2 + h1(1 + τ)s + h2(1 + τ2) are Hurwitz. To allow all the roots of
these polynomials in the negative real axis, the value of h1, h2 should be large enough and
should satisfy: {

h1 ∈ R+, h2 ∈ R+

∣∣∣h1 ≥ 2
√

h2

}
(A5)

Let the real numbers dv0 and dv∞ satisfy:

dV0 = 2α ≥ max{1, α}
dV∞ = 2β ≥ max{1, β} (A6)

It is known that g0(ζ), g∞(ζ), and g(ζ)|∆=0 are globally asymptotically stable, accord-
ing to Definition 5 in [30]. There exists a continuously differentiable, positive definite,
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and radially unbounded Lyapunov function (V(ζ) : R2 → R+ ∪ {0} of g(ζ)|∆=0), which
is homogeneous in the bilimit with associated triples:

(
r0, dV0 , V0(ζ)

)
and (r∞, dV∞ , V∞(ζ)).

In addition,
.

V(ζ) is negative definite and homogeneous in the bilimit with associated
triples:

(
r0, dV0 , V0(ζ)

)
and (r∞, dV∞ , V∞(ζ)).

Define the following functions:

φ(ζ) , V(ζ)(dv0+d0)/dv0 + V(ζ)(dv∞+d∞)/dv∞

ς(ζ) , −V(ζ) = − ∂V(ζ)
∂ζ g(ζ)

∣∣∣
∆=0

(A7)

where φ(ζ) is homogeneous in the bilimit with associated triples:(
r0, dV0 + d0, V(ζ)(dV0+d0)/dV0

)
and

(
r∞, dV∞ + d∞, V(ζ)(dV0+d0)/dV0

)
. ς(ζ) is homoge-

neous in the bilimit with the weights r0 and r∞, and the degrees dV0 + d0 and dV∞ + d∞. On
the basis of Lemma 1 in [30], for c > 0, there exists:

φ(ζ) ≤ 1
c

ς(ζ) (A8)

Then, we can obtain:

∂V(ζ)

∂ζ
g(ζ)

∣∣∣∣
∆=0
≤ −c

(
V(ζ)(dV0+d0)/dV0 + V(ζ)(dV∞+d∞)/dV∞

)
(A9)

because:
d0 = α− 1 < 0
d∞ = β− 1 > 0

(A10)

Function (A9) can be reduced as:

∂V(ζ)

∂ζ
g(ζ)

∣∣∣∣
∆=0
≤
{
−cV(ζ)(dV∞+d∞)/dV∞ , V(ζ) ≥ 1

−cV(ζ)(dV0+d0)/dV0 , V(ζ) ≤ 1
(A11)

According to Lemma 3, it can be deduced that:

T ≤ 1
c

(
2α

1− α
+

2β

β− 1

)
(A12)

Step 2. Suppose the disturbance of (A3) is not zero, according to the Lyapunov function
provided in [36], the differential of V(ζ) can be obtained as follows, along (A3):

.
V(ζ) =

∂V(ζ)

∂ζ
g(ζ) =

∂V(ζ)

∂ζ
g(ζ)

∣∣∣∣
∆=0

+
∂V(ζ)

∂ζ2
∆ (A13)

where ∂V(ζ)/∂ζ2 is homogeneous in the bilimit with associated triples:(
r0, dV0 − r0,2, ∂V0(ζ)/∂ζ2

)
and (r∞, dV∞ − r∞,2, ∂V∞(ζ)/∂ζ2), and r0,2 = α, r∞,2 = β.

Define the functions:

φ∆(ζ) =
∣∣∣ ∂V(ζ)

∂ζ2

∣∣∣
ς∆(ζ) = V(ζ)(dv0−r0,2)/dV0 + V(ζ)(dv∞−r∞ ,2)/dV∞

(A14)

where φ∆(ζ) is homogeneous in the bilimit with associated triples:(
r0, dV0 − r0,2, |∂V0(ζ)/∂ζ2|

)
and (r∞, dV∞ − r∞,2, |∂V∞(ζ)/∂ζ2|). ς∆(ζ) is homogeneous in

the bilimit with associated triples:
(

r0, dV0 − r0,2, V(ζ)(dV0−r0,2)/dV0

)
and(

r∞, dV∞ − r∞,2, V(ζ)(dV∞−r∞,2)/dV∞
)

.
On the basis of Lemma 1 in [30], for c∆ > 0, there exists:

φ∆(ζ) ≤ c∆ς∆(ζ) (A15)
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By substituting (A15) into (A14), one can obtain:∣∣∣∣∂V(ζ)

∂ζ2

∣∣∣∣ ≤ c∆

(
V(ζ)(dV0−r0,2)/dV0 + V(ζ)(dV∞−r∞,2)/dV∞

)
(A16)

where dV0 = 2α, dV∞ = 2β, r0,2 = α, and r∞,2 = β. Then, (A16) can be simplified into:∣∣∣∣∂V(ζ)

∂ζ2

∣∣∣∣ ≤ 2c∆V(ζ)1/2 (A17)

By substituting (A9) and (A17) into (A13), we can obtain:

V(ζ) ≤ −c
(

V(ζ)(3a−1)2a + V(ζ)(3β−1)/2p
)
+ 2c∆V(ζ)1/2

∣∣∣∆∣∣∣ (A18)

Rewrite (A18) as follows:

.
V(ζ) ≤ −cV(ζ)(3β−1)2β −

(
cV(ζ)(3a−1)2α − 2c∆V(ζ)1/2

∣∣∣∆∣∣∣) (A19)

.
V(ζ) ≤ −cV(ζ)(3α−1)2α −

(
cV(ζ)(3β−1)2β − 2c∆V(ζ)1/2

∣∣∣∆∣∣∣) (A20)

where (A19) represents the Lyapunov inequality if the high-order power term is dom-
inant, and (A20) represents the Lyapunov inequality if the low-order power term is
dominant. Considering:

cV(ζ)(3α−1)/2α − 2c∆V(ζ)1/2
∣∣∣∆∣∣∣≥ 0

cV(ζ)(3β−1)/2β − 2c∆V(ζ)1/2
∣∣∣∆∣∣∣≥ 0

(A21)

one can deduce that:

V(ζ) ≥
(

2c∆ |∆|
c

)2α/(2α−1)

V(ζ) ≥
(

2c∆ |∆|
c

)2β/(2β−1) (A22)

Because of |∆|≤ εd1 , (A22) can be rewritten as follows:

V(ζ) ≥
(

2c∆εd1
c

)2a/(2a−1)
, V1

V(ζ) ≥
(

2c∆εd1
c

)2β/(2β−1)
, V2

(A23)

When 2c∆∆/c ≥ 1, we can obtain the following from (A19):

.
V(ζ) 6 −cV(ζ)

3β−1
2β (A24)

Then, the convergence time (T1) from V0 , V(ζ(t0)) to V1 is:

T1 6
1
c ·

2β
β−1

(
V
− β−1

2β

1 −V
− β−1

2β

0

)
6

1
c ·

2β
β−1 V

− β−1
2β

1 = Tmax,1

(A25)

In other words, ζ is the finite-time (T1) convergent to the neighborhood (E1) of the
origin, where:

E1 =
{

ζ ∈ R2
∣∣∣V(ζ) ≤ V1

}
(A26)

and T1 ≤ Tmax,1.
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When 2c∆∆/c ≤ 1, we can obtain the following from (A20):

.
V(ζ) 6

 −cV(ζ)
3β−1

2β , V(η) > 1

−cV(ζ)
3α−1

2α , 1 > V(η) > V2

(A27)

Then, the convergence time (T2) from V0 , V(ζ(t0)) to V2 is:

T2 6 1
c ·

2β
β−1

(
1−V

− β−1
2β

0

)
+ 1

c ·
2α

1−α

(
1−V

1−α
2α

2

)
6

1
c ·
(

2α
1−α + 2β

β−1

)
= Tmax,2

(A28)

In other words, ζ is the finite-time (T2) convergent to the neighborhood (E2) of the
origin, where:

E2 =
{

ζ ∈ R2
∣∣∣V(ζ) ≤ V2

}
(A29)

and T2 ≤ Tmax,2.
Hence, ζ is the fixed-time convergent to a neighborhood of the origin. The convergence

time is presented in (A25) and (A28), and the convergence domain is presented in (A26) and

(A29). By ζi , ei(εt)/ε2−i, i = 1, 2, the observation error of

∣∣∣∣∣ N
∑

j=1
aij(tgoi − tgoj)− Z1

∣∣∣∣∣ and

|wri − Z2i| will converge to a neighborhood of the origin in a fixed time. This completes the
proof of Theorem 1.

Appendix B

Consider the following Lyapunov function:

V =
1
4

N

∑
i=2

N

∑
j=1

aij(xi − xj)
2 (A30)

Take the derivative of (A30), and then:

.
V =

N
∑

i=2

∂V
∂xi

.
xi =−

N
∑

i=2

(
N
∑

j=1
aij(xi − xj)kr1sigα(

N
∑

j=1
aij(xi − xj))

)

= − kr1
N
∑

i=2

(
N
∑

j=1
aij(xi − xj)sign(

N
∑

j=1
aij(xi − xj))

∣∣∣∣∣ N
∑

j=1
aij(xi − xj)

∣∣∣∣∣
α)

= −kr1
N
∑

i=2

∣∣∣∣∣ N
∑

j=1
aij(xi − xj)

∣∣∣∣∣
α+1


= −kr1

(
N
∑

i=2

(
N
∑

j=1
aij(xi − xj)

2
)) α+1

2

= −4kr1(V)
α+1

2

(A31)

because:
0 <

α + 1
2

< 1 (A32)

According to Lemma 2, the system (26) will converge to zero in finite time. Then,
we have:

lim
t→T

∣∣xi(t)− xj(t)
∣∣ = 0 (A33)

This completes the proof of Theorem 2.
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Appendix C

Consider the following Lyapunov function:

V =
1
2

Si
2 (A34)

By taking the derivative of (32), one can obtain:

.
Si = (t f − t)

e

N
∑

j=1
aij(x3i−x3j)

(
N
∑

j=1
aij(x4i − x4j))

2

+ e

N
∑

j=1
aij(x3i−x3j) N

∑
j=1

aij(
.
x4i −

.
x4j)

+
ne

N
∑

j=1
aij(x3i−x3j) N

∑
j=1

aij(x4i − x4j)

(A35)

By taking the derivative of (A34), then:

.
V = Si

.
Si

= (t f − t)e

N
∑

j=1
aij(x3i−x3j)

Si(−k3S− k4sign(Si) +
wqi
x1i
− .

qj)

(A36)

Define
wqi
x1i
− .

qj as the uncertain disturbance (d). Then, (A36) comes to:

.
V = (t f − t)e

N
∑

j=1
aij(x3i−x3j)

Si(−k3Si − k4sign(Si) + d)

= −k3(t f − t)e

N
∑

j=1
aij(x3i−x3j)

Si
2 − (t f − t)e

N
∑

j=1
aij(x3i−x3j)

(k4 − ‖d‖∞)
≤ 0

(A37)

Therefore, the sliding surface (Si) can converge to zero. When Si = 0 is achieved, we
can deduce that:

tgoe

N
∑

j=1
aij(x3i−x3j) N

∑
j=1

aij(x4i − x4j) + µ(e

N
∑

j=1
aij(x3i−x3j)

− 1) = 0 (A38)

To simplify the calculation, define e

N
∑

j=1
aij(x3i−x3j)

= I, and then:

tgo
.
I + µ(I − 1) = 0 (A39)

It can be observed that the solution to (A39) is given as:

I = C(t f − t)µ + 1 (A40)

where:

C =
I(t0)− 1(
t f − t0

)µ (A41)

From (A40), one can obtain:

N

∑
j=1

aij(x3i − x3j) = ln
(

C
(

t f − t
)n

+ 1
)

(A42)
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Taking the derivative of (A42), we can obtain:

N

∑
j=1

aij(x4i − x4j) =
Cn
(

t f − t
)n−1

C
(

t f − t
)n

+ 1
(A43)

From (A42) and (A43), one can further obtain:

lim
t→t f

N
∑

j=1
aij(x3i − x3j) = 0

lim
t→t f

N
∑

j=1
aij(x4i − x4j) = 0

(A44)

This completes the proof of Theorem 4.
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