
Citation: Zhang, J.; Zhao, X.; Jiang, T.;

Rahaman, M.M.; Yao, Y.; Lin, Y.-H.;

Zhang, J.; Pan, A.; Grzegorzek, M.; Li,

C. An Application of Pixel Interval

Down-Sampling (PID) for Dense Tiny

Microorganism Counting on

Environmental Microorganism

Images. Appl. Sci. 2022, 12, 7314.

https://doi.org/10.3390/

app12147314

Academic Editor: Bart Van

der Bruggen

Received: 12 June 2022

Accepted: 16 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Application of Pixel Interval Down-Sampling (PID)
for Dense Tiny Microorganism Counting on Environmental
Microorganism Images
Jiawei Zhang 1, Xin Zhao 2 , Tao Jiang 3,4,*, Md Mamunur Rahaman 1 , Yudong Yao 5, Yu-Hao Lin 6 ,
Jinghua Zhang 1 , Ao Pan 7, Marcin Grzegorzek 8 and Chen Li 1,*

1 Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information
Engineering, Northeastern University, Shenyang 110819, China; jiaweime111@163.com (J.Z.);
md_mamunur.rahaman@unsw.edu.au (M.M.R.); zjh@nudt.edu.cn (J.Z.)

2 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;
zhaoxin@mail.neu.edu.cn

3 School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, China
4 School of Intelligent Medicine, Chengdu University of TCM, Chengdu 611137, China
5 Stevens Institute of Technology, Hoboken, NJ 07030, USA; yyao@stevens.edu
6 Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Rd.,

Taichung 402, Taiwan; 11844@yahoo.com.tw
7 School of Life Science and Technology, Huazhong University of Science and Technology,

Wuhan 430074, China; u201912638@hust.edu.cn
8 Institute of Medical Informatics, University of Luebeck, 23562 Luebeck, Germany;

marcin.grzegorzek@uni-luebeck.de
* Correspondence: jiang@cuit.edu.cn (T.J.); lichen201096@hotmail.com (C.L.)

Abstract: This paper proposes a novel pixel interval down-sampling network (PID-Net) for dense
tiny object (yeast cells) counting tasks with higher accuracy. The PID-Net is an end-to-end convo-
lutional neural network (CNN) model with an encoder–decoder architecture. The pixel interval
down-sampling operations are concatenated with max-pooling operations to combine the sparse
and dense features. This addresses the limitation of contour conglutination of dense objects while
counting. The evaluation was conducted using classical segmentation metrics (the Dice, Jaccard and
Hausdorff distance) as well as counting metrics. The experimental results show that the proposed
PID-Net had the best performance and potential for dense tiny object counting tasks, which achieved
96.97% counting accuracy on the dataset with 2448 yeast cell images. By comparing with the state-of-
the-art approaches, such as Attention U-Net, Swin U-Net and Trans U-Net, the proposed PID-Net
can segment dense tiny objects with clearer boundaries and fewer incorrect debris, which shows the
great potential of PID-Net in the task of accurate counting.

Keywords: yeast counting; image segmentation; pixel interval down-sampling; tiny objects

1. Introduction

With the development of industrialization, environmental pollution has become a
vital problem to be resolved urgently. Compared with the classical physical and chemical
approaches, the novel biological methods are more efficient and transparent, causing no
secondary pollution, which has become the preference for environmental pollution. The
research of Environmental Microorganisms (EMs) is helpful to focus on the interrelationship
among microorganisms, pollutants and the environment. It is essential to use microorgan-
isms to degrade the increasingly severe and diverse environmental pollutants effectively.

Yeast is a kind of single-celled eukaryotic microorganism that is highly adaptable to
the environment. It is widely applied to produce alcohol, glycerol and organic acids, which
are closely linked to the life and production activity of humanity. Until now, yeast have
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also been used in the treatment of toxic industrial wastewater and solid waste, which plays
an important role in treating environmental pollution [1,2].

In the research of yeast applied in industrial production and environmental pollution
control, biomass is the basic evaluation method and can quantitatively consider the per-
formance of yeast in various tasks [3]. At present, there are mainly two types of counting
methods. The first is manual counting methods, such as plate counting and hemocytometry;
another is semi-automatic counting methods, such as flow cytometry [4,5].

Manual counting is straightforward and stable to use with high accuracy when the
number of cells is limited. However, when the number of cells becomes larger, it will be
time-consuming, and the accuracy will be lowered due to the subjective influence of the
operator. Semi-automatic counting is more accurate and can obtain ideal results in the
case of large biomass; however, it is not portable and requires expensive equipment [6].
Therefore, these classical methods have non-negligible limitations in practice.

Due to the rapid developments of computer vision and deep learning technologies,
computer-assisted image analysis is broadly applied in many research fields, including
histopathological image analysis [7–10], cytopathological image analysis [11–13], object de-
tection [14–16], microorganism classification [17–22], microorganism segmentation [23–26]
and microorganism counting [27,28].

However, by reviewing the works of microorganism counting from the 1980s until
now [28], we find that, in the process of image segmentation, all existing segmentation
approaches use traditional technologies, such as thresholding [29], edge detection [30] and
watershed [31]. Most of the deep-learning approaches are only applied for microorganism
classification but not for microorganism segmentation in the task of microorganism count-
ing [32]. Here, we propose a novel Pixel Interval Down-sampling Network (PID-Net) for the
yeast counting task with higher accuracy.

The PID-Net is an improved Convolutional Neural Network (CNN) based on an
encoder–decoder architecture, pixel interval down-sampling and concatenate operations.
By comparing with the traditional SegNet [33] and U-Net [34]-based object counting
algorithms, the accuracy of counting is improved. The workflow of the proposed PID-Net
counting method is shown in Figure 1.

Original Images

Ground Truth Images

PID-Net

Segmentation Model

Test Images

Predicted Images

Counting

Evaluation

(a) Original Dataset (b) Data Augmentation (c) Training Process (d) Segmentation Result (e) Counting Result

Figure 1. The workflow diagram of the proposed yeast image counting method using PID-Net.

In Figure 1, (a) Original Dataset: The dataset contains images of yeast cells and
their ground truth (GT). The range is from 1 to 256 yeast cells in each image. (b) Data
Augmentation: Mirror and rotation operations are applied to augment the original dataset.
(c) Training Process: PID-Net is trained for image segmentation and the best model is
generated. (d) Segmentation Result: Test images are processed using the trained PID-Net
model and output the predicted segmentation results. (e) Counting Result: The number of
yeast cells is counted by using connected domain detection.

The main contributions of this paper are as follows:

• We propose PID-Net for dense tiny object counting. MaxPooling and pixel inter-
val down-sampling are concatenated as down-sampling to extract spatial local and
global features.
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• The operation of max-pooling may lose some local features of tiny objects while
segmentation, and the edge lines may not be connected after max-pooling. However,
the PID-Net can cover a more detailed region.

• The proposed PID-Net achieves better counting performance than other models on
the EM (yeast) counting task.

The paper is organized as follows: Section 2 is the related work of existing image
analysis-based microorganism counting methods. Section 3 describes the architecture of
the proposed PID-Net in detail. Section 4 consists of the experimental setting, evaluation
metrics and results. Section 5 is the conclusion of this paper.

2. Related Work

In this section, related approaches to image analysis-based microorganism counting
methods are summarized in Table 1, which consist of classical counting methods and
machine-learning-based counting methods. More detailed research can be referred to in
our survey paper [28].

Table 1. Microorganism image counting methods.

Category Subcategory Related Work

Thresholding-Based Methods [35–37]
Classical Methods Edge Detection-based Methods [38–40]

Watershed-Based Methods [41–44]

Hough Transformation [45–47]
Machine-Learning-Methods Classical Machine-Learning-Based Methods [48–51]

Deep-Learning-Based Methods [52–55]

2.1. Classical Counting Methods

Image segmentation is the most significant part in microorganism-counting task. As
shown in Table 1, the classical methods contain thresholding, edge detection and watershed
methods [56]. For thresholding approaches, the selection of threshold determines the
result of segmentation. The most used approaches are iterative thresholding and Otsu
thresholding at present. Otsu thresholding can achieve satisfactory segmentation results
for most images [57].

Edge detection approaches can extract all boundaries in an image, and then each
close region can be separated [58]. Watershed is one kind of region-based segmentation
approach, which can be calculated by iterative labeling [59]. The satisfactory segmentation
result can be received though in an image with weak edges. Hough transformation was
proposed for line or circle detection tasks in image with strong anti-noise capability and
high accuracy, which can be applied for circular microorgansim counting tasks [60].

In [35–37], various thresholding methods were applied for microorganism counting.
In [35], an adaptive thresholding was used for microorganism segmentation, and after that,
the minima function was applied to locate the center of each colony for counting. The
work [36] applied Otsu thresholding for bacteria segmentation, and the hypothesis testing
was then applied for debris erasing. In [37], the contrast-limited adaptive histogram
equalization was applied to enhance the plate contour first. Then, the Otsu threshold
was applied to detect the plate region and binarize the images automatically. Finally,
the colonies were separated and counted.

The works [38–40] used several edge detection methods for microorganism counting.
In [38], five different combination methods applying for microorganism segmentation
were compared, such as Gaussian Laplacian and Canny filters. Then, the concave surface
between the connected colonies was detected for counting. The works [39,40] used Sobel
and Laplacian filters for the edge detection of bacteria images.

The works [41–44] use watershed-based methods for microorganism counting. In [41],
watershed was applied for separation of clustered colonies of bacteria images. After



Appl. Sci. 2022, 12, 7314 4 of 19

that, the circularity ratio was calculated for colony counting. In [42], marker-controlled
watershed was applied for bacteria segmentation. Then, the number of colonies was
estimated as the ratio of cluster area to an average colony area. In [43], Otsu and adaptive
thresholding were applied for image binarization. Then, the combination method of
distance transform and watershed was applied for bacteria counting. In [44], watershed
was used for image segmentation. After that, the gray level co-occurrence matrix (GLCM)
of the image was extracted and classified using SVM.

The works [45–47] used Hough-transformation-based methods for microorganism
counting. In [45], the iterative local threshold was used for bacteria segmentation, and then
a Hough circle transformation was applied to separate clustered colonies into a single
colony. In [46], a median filter was applied for denoising. Then, the circular area was
detected using the Hough transform to obtain only the inner area of the dish. Afterward,
Gaussian adaptive thresholding was applied for bacteria segmentation. Finally, cross
correlation-based granulometry was used to count the bacteria colonies. In [47], Otsu
thresholding and a Laplacian filter were applied for edge detection. Then, a circular Hough
transform was used to detect circular bacteria colonies.

2.2. Machine-Learning-Based Counting Methods

As shown in Table 1, the machine-learning-based microorganism counting approaches
consist of machine-learning- and deep-learning-based methods. The classical machine-
learning-based approaches contain Principal Component Analysis (PCA) [61] and Support
Vector Machine (SVM) [62]. Deep-learning methods are usually based on CNN [63], Back Prop-
agation Neural Network (BPNN) [64] and Artificial Neural Network (ANN) [65] algorithms.

The works [48–51] used classical machine learning for microorganism counting. In [48],
PCA was applied for separation the bacteria with other debris. After that, the nearest neigh-
bor searching algorithm was applied for clustered colony separation. In [49], the shape
features were extracted for training, then the SVM was applied for microorganism classifi-
cation and counting after Otsu thresholding.

In [50], the histogram local equalization was applied to enhance the contours of pro-
tozoa images. Then, morphological erosion and reconstruction were used to eliminate
the flocs of the protozoa silhouette. Finally, PCA was applied to classify different pro-
tozoa, and the number of the various species of protozoa was counted. In [51], local
auto-correlational masks were used for image enhancement, and PCA was applied for
plankton counting.

The works [52–55] used deep learning for microorganism classification and counting.
In [52], the Marr–Hildreth operator and thresholding were applied for edge detection and
binarization of bacteria images. Then, ANN was designed for classification and counting.
In [53], the contrast-limited adaptive histogram equalization was applied for bacteria image
segmentation, then four convolutional and one fully connected was trained for classification
and counting. In [54], contrast limited adaptive histogram equalization was used for image
enhancement.

Then, CNN was applied for bacteria classification, and the watershed algorithm was
applied for colony separation and counting. In [55], a classification-type convolutional
neural network (cCNN) was proposed for automatic bacteria classification and counting.
First, the original images were segmented with an adaptive binary thresholding method,
and images with individual cells or cell clusters were cropped. Then, the images were
classified using cCNN. The network can output the number of bacteria in given clusters,
and the total count can be calculated.

By reviewing all related works of microorganism counting, we found that deep
learning technologies are widely applied for microorganism classification; however, few
machine-learning-based image segmentation methods are applied. Since the development
of deep learning and computer vision technologies, CNN-based image segmentation ap-
proaches have be applied for accurate microorganism segmentation, such as SegNet [33],
U-Net [34], Attention U-Net [66], Trans U-Net [67] and Swin U-Net [68]. Though the
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methods above have not been applied for microorganism-counting tasks, they have enough
potential to extract the microorganism before counting, which can be inferred with bet-
ter performance.

Since the yeast images in our dataset range from 1 to 256 yeast cells in each image,
and the boundaries of the cells are not clear, it can be inferred that the classical segmentation
methods may show poor performance in this counting task. Therefore, we propose an
encoder–decoder model that concentrates on the dense and tiny object counting task.

3. PID-Net-Based Yeast Counting Method

Although the existing image segmentation models, such as SegNet and U-Net, have
been widely applied in semantic segmentation and biomedical image segmentation, they
still cannot meet the requirements of accurate segmentation in the microorganism-counting
task. To this end, we propose PID-Net, a CNN-based on pixel interval down-sampling,
MaxPooling and concatenate operations to obtain a better performance. The process of
microorganism counting mainly contains two parts, the first is microorganism image
segmentation, whose purpose is to classify the foreground and background at the pixel-
level. The second part is microorganism counting, whose purpose is to count the number
of segmented objects after post-processing.

3.1. Basic Knowledge of SegNet

SegNet is a CNN-based image segmentation network with the structure of an encoder
and decoder. The innovation of SegNet is that the dense feature maps of high resolution
images can be calculated by the encoder, and the up-sampling operation for low-resolution
feature maps can be performed by the decoder network [33]. The structure of SegNet can
be considered as an encoder network and a corresponding decoder network. The last part
is a pixel-level classification layer.

The first 13 convolutional layers of VGG16 [69] is applied in encoder network of
SegNet, which consist of convolutional layers, pooling layers and Batch Normalization
layers. In the encoder network, two sequences, which consist of one 3 × 3 convolution
operation, followed by a Batch Normalization and a ReLU operation, are applied in each
step. After that, the feature maps are down-sampled by using a max-pooling operation
with the size of 2 × 2 and stride of 2 pixels. After pooling, the size of the feature map is
changed into half of the initial.

What is noteworthy is that the Pooling Indices are saved while pooling, which records
the initial position of the maximum value in the input feature maps. In the decoder network,
the up-sampling operation is applied for feature maps, and then the convolution operation
is performed three times to fix the detail loss while pooling. The same operation is replicated
five times to change the feature maps into the initial image size. The saved Pooling Indices
are applied while up-sampling to set the feature points into correct positions. A Softmax
layer is applied finally for feature map classification.

3.2. Basic Knowledge of U-Net

U-Net is an U-shape CNN model based on an encoder–decoder and skip connection.
U-Net is first designed for the segmentation of biomedical images. The max-pooling with
the size of 2 × 2 and stride of 2 pixels is applied for down-sampling. There are two 3 × 3
convolution operations (each followed by a ReLU) between two down-sampling operations.
The down-sampling operation repeats four times, and the number of feature map channels
is modified to 1024.

In the decoder network, the result after up-convolution operation (a 2× 2 up-sampling
and a 2 × 2 convolution operation) is concatenated with the corresponding feature maps
of encoder, which can combine the high-level semantics with the low-level fine-grained
information of the image. After that, two 3 × 3 convolution operations (each followed by a
ReLU) are applied. The size of each feature map is changed into the size of input after four
up-sampling operations. Finally, a Sigmoid function is applied for classification.



Appl. Sci. 2022, 12, 7314 6 of 19

3.3. The Structure of PID-Net

Following the basic idea of SegNet and U-Net for image segmentation, the structure of
the proposed PID-Net is shown in Figure 2, which is an end-to-end CNN structure based
on the encoder and decoder. There are four blocks in the encoder network.

The first parts in each block are two convolution operations with a kernel size of 3 × 3
(each followed by a ReLU operation), and then the max-pooling with the size of 2 × 2
and stride of 2 pixels is applied to reduce the size of feature maps by half, followed by
a convolution and ReLU operation. The channel of feature maps is denoted as C. Pixel
interval down-sampling is applied for down-sampling, which is shown in Figure 2. Each
pixel is sampled with the pixels apart, and the size of each feature map is replaced by half.

The classical down-sampling methods, such as max-pooling (with the kernel size of 2)
will drop 3

4 data of the original image. It can retain the main information but not be fit to the
task of tiny object counting (the edge lines may be lost while max-pooling). Though there
are several learnable pooling layers that have proposed, such as Fractional pooling [70],
Stochastic pooling [71] and learned-norm pooling approaches [72]; however, they still
cannot meet the requirement of accurate segmentation for dense tiny yeast cells.

Thus, a new down-sampling method, pixel interval down-sampling, is proposed here,
which can reduce the size of feature maps without dropping data. Afterward, four pixel
interval down-sampling feature maps and the features after max-pooling are concatenated
to 5C-dimensional features. Finally, a convolutional filter with C channels is applied to
reduce 5C-dimensional features to C-dimensional features. Hereto, the initial feature maps
with size H ×W and channel C are changed to feature maps with size H

2 ×
W
2 and channel

C. The procedure is repeated four times with output resolutions of H
16 ×

W
16 and channel

of 8C.

Encoder Decoder

𝐻×𝑊×𝐶 𝐻×𝑊×𝐶 4×
𝐻
2
×
𝑊
2
×𝐶

𝐻
2
×
𝑊
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Softmax
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Figure 2. The structure of the proposed PID-Net.

In the decoder network, four blocks are applied for up-sampling. Two convolution
operations with a kernel size of 3 × 3 (each followed by a ReLU operation) are applied first.
Then, the transposed convolution operation with a kernel size of 3, a stride of 2 and padding
of 1 is applied for up-sampling. The transposed convolution operation is widely applied
in GANs to expand the size of images [73]. The count of channels after up-sampling of
the bottleneck is 512, which is calculated by using the transposed convolutional filter with
512 channels [74].

The params in the transposed convolution filter can be learned while training. After
that, the high resolution feature maps of encoder network are transformed to low-resolution
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feature maps using 2×, 4× and 8× max-pooling, which is shown in Figure 2. Then,
the feature maps after up-sampling and max-pooling are concatenated with the feature
maps generated by the corresponding layer from the encoder.

For instance, the 8× max-pooling features of the first block, 4× max-pooling of the
second block and 2×max-pooling of the third block in the encoder are concatenated with
the copied features of the fourth encoder block and the features after up-sampling (five
parts of feature maps are concatenated in the first decoder block). In the same way, there
are 4, 3 and 2 parts of features are concatenated in the second, third and fourth level of
the decoder, respectively. After the concatenated operation, two convolutions and ReLU
operations are applied to change the number of channels. The up-sampling operation is
repeated four times with output resolutions of H × W and channel of C, which has the
same size as the encoder’s input features. Finally, a Softmax layer with two output channels
is applied for feature map classification.

3.4. Counting Approach

A post-processing method is applied to eliminate the effect of noises after segmentation.
First, a morphological filter is applied to remove useless debris, which can improve the
performance of counting prominently. Then, the eight neighborhood search algorithm
is applied to count the connected regions of segmented images after denoising [75]. The
process of counting is shown in Figure 3. A binary matrix is traversed in line and a mark
matrix is applied to mark the connected domain [76]. Finally, the number of connected
domain in mark matrix is the number of yeast cells.

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

Mark the first connected domain

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

Binary Matrix

Binary Matrix

Mark Matrix

If the pixel has
not been marked

If the pixel has
not been marked

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1

Mark the second connected domain

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 2 1
0 0 1 1 1

1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
0 0 0 2 2
0 0 2 2 2

Binary Matrix

Mark Matrix

!!!If the pixel has
not been marked

Figure 3. An example of the counting process based on the eight neighborhood search.

4. Experiments
4.1. Experimental Setting
4.1.1. Image Dataset

In our work, we use a yeast image dataset proposed in [77], containing 306 different
images of yeast cells and their corresponding ground truth (GT) images. All images are
resized to the resolution of 256 × 256 pixels, which are shown in Figure 4. Then, the
original 306 images are rotated (0, 90, 180 and 270 degrees) and flipped (mirror), and thus
the number of images in this dataset is augmented to eight times (2448 images).
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(a) Original images

(b) Ground Truth images

Figure 4. The images in yeast cell dataset. (a) The original yeast image and (b) the corresponding
ground truth images.

4.1.2. Training, Validation and Test Data Setting

The original yeast image dataset was randomly divided into training, validation and
test dataset with the ratio of 3:1:1, and then, each dataset was augmented eight times.
Therefore, there 1470 images with their GT were applied as the training dataset, 489 images
with their corresponding GT were applied for validation, and 489 original images were
applied for testing.

4.1.3. Experimental Environment

The experiment was conducted by Python 3.8.10 in Windows 10 operating system.
The experimental environment was based on Torch 1.9.0. The workstation was equipped
with Intel(R) Core(TM) i7-8700 CPU with 3.20 GHz, 16 GB RAM and NVIDIA GEFORCE
RTX 2080 8 GB.

4.1.4. Hyper Parameters

In the experiment of yeast cell counting, the purpose of image segmentation is to
determine whether a pixel is a foreground (yeast cell) or background. The last part in
the proposed PID-Net before the output is Softmax, which is applied to calculate the
classification result of feature maps. The definition of Softmax is shown as Equation (1).

Softmax(zi) =
ezi

∑C
c=1 ezc

. (1)

In Equation (1), zi is the output in the ith node, and C is the number of output nodes,
representing the number of classified categories. The classification prediction can be
converted into the probabilities by using the Softmax function, which distributes in the
range of [0, 1], and the sum of probability is 1. As the image segmentation for yeast counting
is to distinguish the foreground and the background. Hence, it is a binary classification,
Equation (1) can be rewritten as Equation (2).

Softmax(z1) =
ez1

ez1 + ez2
=

1
1 + e−(z1−z2)

= Sigmoid(β). (2)

In Equation (2), β is (z1− z2), which means the Softmax function and the Sigmoid func-
tion are the same for binary classification (a little difference between them is, the number
of the fully connected (FC) layer of Softmax is two to distinguish two different categories;
however, the number of FC layer of Sigmoid is one, only to judge whether the single pixel
is the object to be segmented).

The probability of the pixel to be classified as 1 is:

ŷ = P(y = 1|x). (3)
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Apparently, the probability of the pixel to be classified as 0 is:

1− ŷ = P(y = 0|x). (4)

According to the maximum likelihood formula, the joint probability can be expressed as:

P(y|x) = ŷy · (1− ŷ)1−y. (5)

After that, log function is applied to remain the monotonicity invariance of the function:

logP(y|x) = log(ŷy · (1− ŷ)1−y) = ylogŷ + (1− y)log(1− ŷ). (6)

Hereto, the loss can be expressed as −logP(y|x), and the loss function for multiple
samples can be defined as the cross-entropy loss (N is the number of categories):

Loss = −[
N

∑
i=1

y(i)logŷ(i) + (1− y(i))log(1− ŷ(i))]. (7)

In order to guarantee the stable and fast convergence of the proposed network, we
deploy preliminary experiments to determine the choices of hyper parameters. Adaptive
moment estimation (Adam) is compared with stochastic gradient descent (SGD) and natural
gradient descent (NGD). Adam optimizer has the smoothest loss curves and stablest
convergence, which performs best in microorganism-counting task. Adam optimizer is
applied to minimize the loss function, which can adjust the learning rate automatically by
considering the gradient momentum of the previous time steps [78].

The initial learning rate is set from 0.0001 to 0.01 in preliminary experiments. By
observing the loss curves while training, the learning rate of 0.001 can balance the speed
and stability of convergence. The batch size is set as 8 due to the limited memory size
(8 GB). The selection of the hyper parameters above are optimal in preliminary experiments,
and thus they are applied in our formal microorganism counting experiment. The epoch is
set as 100 by considering the converge speed of experimental models, the example of loss
and intersection over union (IoU) curves of models is shown in Figure 5.

Though there are 92,319,298 params to be trained in PID-Net; however, it can converge
rapidly and smoothly without over fitting. There is a jump in loss and IoU plots for all
three tested networks from 20 to 80 epochs, which is caused by the small batch size. Small
batch size may lead to huge difference between each batch, and the loss and IoU curves
may jump with convergence.

(a) U-Net (b) Swin-UNet (c) PID-Net

Figure 5. The IoU (top row) and loss (bottom row) curves in the training process.
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4.2. Evaluation Metrics

In the task of dense tiny object counting, the evaluation of image segmentation is
the most significant part. Hence, the widely applied segmentation evaluation metrics
Accuracy, Dice, Jaccard and Precision are employed here to evaluate the performance of
microorganism segmentation. Furthermore, the Hausdorff distance is applied to evaluate
the shape similarity between the predicted image and GT. Finally, the counting accuracy is
calculated to quantify the counting performance of the models.

Accuracy is applied to calculate the proportion of pixels that are correctly classified.
The Dice coefficient [79] is applied to measure the similarity of the predicted image and GT.
The similarity can be quantified range from 0 to 1 (1 means the predicted result coincides
exactly with the GT). Jaccard [80], also named the intersection over union (IoU), is applied
to compare the similarity and differences between the predicted image and GT image,
focusing on whether the samples’ common characteristics are consistent. Precision is
defined as the proportion of positive pixels in the pixels, which are classified as positive.

The Hausdorff distance [81] is applied to measure the Euclidean distance between the
predicted and GT images with the unit of pixels in per image. In contrast with Dice, the
Hausdorff distance focuses on the boundary distance of two objects to measure the shape
similarity; however, the Dice majors in the inner similarity. An example of the Hausdorff
distance between GT and predicted image is shown in Figure 6. The Hausdorff is the
maximum of the shortest distance between a pixel in a image and another image [82].

In the task of microorganism counting, the Hausdorff distance can be applied to
measure the shape similarity between the GT and segmentation result, showing the perfor-
mance of segmentation models. Finally, the performance of counting is measured using
counting accuracy, which is defined as the proportion of the predicted number and GT
number of yeast cell images.

False Positive

True Positive
True Negative

False Negative

Hausdorff Distance

Figure 6. The visualization result of the Hausdorff distance between the GT and predicted image.

The definitions of the proposed evaluation metrics are summarized in Table 2. The TP
(True Positive), TN (True Negative), FP (False Positive) and FN (False Negative) are basic
evaluation metrics, which can be applied to measure the performance of segmentation
in general. An example of a yeast cell image with its TP, TN, FP and FN is illustrated in
Figure 7 for intuitive understanding. Vpred is the foreground after segmentation by using
the model, VGT is the foreground of the GT image. Furthermore, Npred means the number of
connected regions in the predicted image, NGT means the number of connected regions in
the GT image, which indicates the number of yeast cells. In the definition of the Hausdorff
distance, sup is the supremum, and in f is the infimum.
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Table 2. The definitions of evaluation metrics. CA and HD are abbreviations of the Counting
Accuracy and Hausdorff Distance, respectively.

Metric Definition Metric Definition

Accuracy TP+TN
TP+TN+FP+FN Dice

2×|Vpred
⋂

VGT |
|Vpred |+|VGT |

Jaccard
|Vpred

⋂
VGT |

|Vpred
⋃

VGT |
Precision TP

TP+FP

CA 1− |Npred−NGT |
NGT

HD dH(X, Y) = max(supx∈X in fy∈Yd(x, y), supy∈Y in fx∈Xd(x, y))

(a) Mask (b) Predicted Image (c) True Positive (d) False Positive (e) True Negative (f) False Negative(a) GT (b) Predicted Image (c) TP (d) FP (e) TN (f) FN

Figure 7. The illustration of TP, TN, FP and FN between the predicted image and GT image.

The proposed evaluation metrics, containing the Accuracy, Dice, Jaccard and Precision,
are proportional to the segmentation performance of models. The Hausdorff distance has
an inverse correlation with the segmentation performance. Counting accuracy can evaluate
the final counting results of different models.

4.3. Evaluation of Segmentation and Counting Performance

To prove the satisfactory segmentation performance of the proposed PID-Net for
dense tiny object counting, we compare different down-sampling methods to show the
advancement of our proposed method. Furthermore, several state-of-the-art approaches
are applied for comparative experiments. All of the experimental setting and evaluation
indices are same for comparative experiment. Furthermore, the same dataset is applied for
all comparative experiments, which is proposed in Section 4.1.1. The models are trained
from scratch without pre-training and fine-tuning.

4.3.1. Comparison of Different Down-Sampling Methods

In this part, we compare the effect of different down-sampling and skip connection
approaches for segmentation. In our proposed PID-Net, pixel interval down-sampling
and max-pooling operations are concatenated to combine the dense and sparse feature
maps after convolution operations. Then, in the process of hierarchy skip connection, max-
pooling is applied to combine the high-level features and low-level features directly, which
is beneficial to reduce the effect of resolution loss while up-sampling and help rebuild the
segmentation result.

To show the effectiveness and reasonability of the proposed method, we change the
approaches of down-sampling and hierarchy skip connection as PID-Net Modified-1 (PID-
Net-M1) and PID-Net Modified-2 (PID-Net-M2). In PID-Net-M1, max-pooling operations
are only applied in the process of hierarchy skip connection and not in down-sampling.
The down-sampling block of PID-Net-M1 is illustrated in Figure 8. In PID-Net-M2, all
down-sampling operations are realized using pixel interval down-sampling without max-
pooling. The segmentation evaluations and counting performance of those approaches are
shown in Table 3.

From Table 3, we find that the proposed PID-Net achieves the best counting perfor-
mance. By comparing with the PID-Net-M1 and PID-Net-M2, the average accuracy is
increased by 0.1% to 0.6%; the improvement of average Dice value is 0.1% to 1.1%; the
average Jaccard is improved by around 0.3% to 1.6%. Furthermore, the mean Hausdorff
distance of PID-Net is the shortest, which indicates the similarity between the predicted
images and GT images is the highest. Finally, the counting accuracy achieved 96.97%, which
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shows the satisfactory counting performance of the PID-Net. Hence, the segmentation and
counting performance of PID-Net is the best by referring to all evaluation metrics.

Conv+ReLU

MaxPooling

Pixel Interval Down-sampling

Concat

(a) Down-sampling block in PID-Net (b) Down-sampling block in PID-Net-M1

Figure 8. The down-sampling block of PID-Net and PID-Net-M1.

Table 3. The average segmentation evaluation indices of predicted images. A, D, J, P, C and H are
abbreviations of the Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff
Distance (in pixels/per image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
PID-Net-M1 96.90 94.71 90.05 94.71 67.84 5.0110
PID-Net-M2 97.42 95.75 91.89 95.68 96.88 4.7204

4.3.2. Comparison with Other Methods

In this part, some comparative experiments are applied for the yeast cell counting task.
Some classical methods proposed in Section 2 and deep-learning-based methods proposed
in Section 3 are compared, consisting Hough transformation [83], Otsu thresholding, Water-
shed, SegNet and U-Net-based segmentation approaches. Furthermore, we conduct some
extra experiments using state-of-the-art approaches, containing Attention U-Net [66], Trans
U-Net [67] and Swin U-Net [68].

Due to the determination of k in clustering methods, such as k-means, is still an insolu-
ble problem while counting; therefore, the clustering-based approaches cannot be applied
here for dense tiny object counting. All comparative experiments have the same experi-
mental setting, which can be referred to Section 4.1 for details. After image segmentation
and object counting, the average evaluation indices are summarized in Table 4, and the
example images of segmentation are shown in Figure 9.

Table 4. The average segmentation evaluation indices of predicted images. A, D, J, P, C and H are
abbreviations of the Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff
Distance (in pixels/per image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
SegNet 94.69 90.34 84.02 88.50 68.82 6.3604

YeaZ (in [77]) - 94.00 - - - -
U-Net 97.47 95.71 91.84 95.62 91.33 4.6666

Attention U-Net 96.62 93.36 88.96 92.67 83.44 5.1184
Trans U-Net 96.84 93.60 88.99 93.25 91.32 5.0715
Swin U-Net 96.47 92.99 88.32 92.43 91.95 5.3140

Hough 82.12 61.12 44.74 88.26 73.66 9.2486
Otsu 84.23 65.71 49.90 87.66 74.34 8.9165

Watershed 78.67 50.15 34.88 78.61 63.34 9.6873
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(a) Original (b) GT (c) PID-Net (d) PID-Net-M1 (e) PID-Net-M2 (f) SegNet (g) U-Net (h) Attention U-Net (i) Trans U-Net (j) Swin U-Net (k) Hough (l) Otsu + Hough (m) Watershed + Hough

Figure 9. An example of segmentation images predicted by different models.

From the evaluation indices summarized in Table 4, we can find that the PID-Net
has the highest Accuracy, Dice, Jaccard, Precision and Counting Accuracy and the lowest
Hausdorff distance, which means the proposed model performs best in the task of dense
tiny object counting by comparing with other models. Even more, the Jaccard of PID-Net
is higher than the YeaZ who proposed this yeast cell dataset. In general, the approaches
based on deep learning perform better than the classical approaches.

We find that the Counting Accuracy of several methods are very low abnormally,
which may caused by the enormous difference between the GT and the predicted image.
For instance, the single yeast cell image in Figure 9 performs unsatisfactory when the
segmentation is not accurate. The segmentation results of SegNet and Attention-UNet
have a large number of False Positive pixels, and the counting approach is based on the

connected domain detection; hence, the value of
|Npred−NGT |

NGT
is much higher than normal.

From the best performance of the proposed PID-Net in the task of dense tiny object
counting, we can infer that the down-sampling and skip connection part of PID-Net, which
combines max-pooling and pixel interval down-sampling can obtain the feature maps of
dense tiny objects and reconstruct the images better.

4.4. Repeatability Tests

Five additional experiments were repeated based on the original PID-Net model for
repeatability tests. The evaluation indices are given in Table 5. From Table 5, we find that
all evaluation indices of repeated PID-Nets are approximate, which shows satisfactory and
stable counting performance for the dense tiny object counting task.

Table 5. The evaluation indices of Repeatability Tests. A, D, J, P, C and H are abbreviations of the
Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff Distance (in pixels/per
image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
PID-Net (Re 1) 97.51 95.79 91.97 95.91 95.26 4.5865
PID-Net (Re 2) 97.33 95.59 91.62 95.70 96.25 4.7290
PID-Net (Re 3) 97.54 95.91 92.18 96.21 96.82 4.6023
PID-Net (Re 4) 97.37 95.64 91.70 95.70 95.51 4.7471
PID-Net (Re 5) 97.43 95.66 91.73 92.24 96.26 4.6395
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4.5. Computational Time

The training time, mean training time, test time and mean test time are listed in Table 6.
There are 1470 images in the training dataset and 489 images in the test dataset. The mean
training time of PID-Net model is approximately 2.9 seconds higher than the time of U-Net,
and the test time is about 0.4 seconds higher than U-Net. The memory cost of PID-Net is
about 20MB, which is about 6 MB more than the cost of U-Net model, meanwhile, the PID-
Net has better counting performance and lower memory cost than Swin-UNet (41 MB).
The counting accuracy is increased about 6%; hence, the PID-Net has satisfactory counting
performance and a tolerable computational time, which can be widely applied in accurate
dense tiny object counting tasks.

Table 6. The summary of computational time (in seconds).

Model Training Time Mean Training Time Test Time Mean Test Time

PID-Net 10,438.86 7.10 454.68 0.93
U-Net 6198.00 4.21 257.64 0.53

Swin-UNet 7884.36 5.36 319.50 0.65
Att-UNet 6983.58 4.75 296.64 0.61

4.6. Discussion

Deep learning is essentially to build a probability distribution model driven by data.
Therefore, as the deep-learning-network architecture becomes deeper, the quantity and
quality of training data will have a greater impact on the performance of the model.
However, in the imaging process of microorganism images, the amount of satisfactory data
is relatively small due to some objective reasons, such as the impurities in the acquisition
environment, uneven natural light and other adverse factors, which leads to insufficient
training and poor performance in various tasks. Though the proposed PID-Net has excellent
segmentation and counting performance for images with dense tiny objects, there still
exists some mis-segmentation, causing the decrease of counting accuracy. Several incorrect
segmentation results are shown in Figure 10.

There are three main problems for segmentation and counting, which are illustrated in
Figure 10. The blue circle refers to the situation of under segmentation—that is, the neighbor
yeast cells cannot be segmented, and the edges cannot be detected. Due to the counting
method is based on the eight neighborhood search algorithm, the situation leads to under
estimation of the real count of yeast cells. The green circle refers to a part of background is
classified as yeast cells. As shown in Figure 10, most of the images are full of dense tiny
yeast cells with irregular shapes, and the limitation of small dataset leads to inadequate
training.

Therefore, the background between yeast cells with irregular shape is easily classified
as a yeast cell, which results in over estimation of the real count of yeast cells. On the
contrary, the red circle represents the part of yeast cell is classified as background. There
are 1 to 256 yeast cells with different sizes in a single image in this dataset, and thus the
shape and size of yeast cells have a great difference. Therefore, the tiny yeast cell between
the larger cells has a great similarity with the background, which is difficult for models to
discriminate especially in a small dataset. The situation leads to under estimation of the
real count of yeast cells.
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Background is classified as yeastUnder segmentation

(a) Original image (b) Ground Truth image (c) Predicted image
Yeast is classified as background

Figure 10. An example of incorrect segmentation results using the proposed PID-Net.

The situations of adherent yeast cells and mis-segmentation lead to counting error.
Moreover, the training data is limited due to the small dataset; therefore, the models cannot
be trained perfectly. The small dataset is a limitation of the yeast counting task. However,
despite some cases of mis-segmentation, most of the yeast cells in the test dataset could be
detected and segmented with other cells. The segmented region might be small but has little
effect on the counting results calculated using the eight neighborhood search algorithm.

5. Conclusions and Future Work

In this paper, a CNN-based PID-Net was proposed for dense tiny objects (yeast)
counting task. The PID-Net is an end-to-end model based on an encoder–decoder structure,
and we proposed a new down-sampling model consisting of pixel interval down-sampling
and max-pooling, which can serve to extract the dense and sparse features in the task
of dense tiny object counting. By comparing with the proposed PID-Net and classical
U-Net-based yeast counting results, the evaluation indices of Accuracy, Dice, Jaccard,
Precision, Counting Accuracy and Hausdorff Distance of PID-Net were 97.51%, 95.86%,
92.10%, 96.02%, 96.97% and 4.6272, which are improved by 0.04%, 0.15%, 0.26%, 0.4% and
5.7%, respectively, and the Hausdorff Distance decreased by 0.0394.

Although the small image dataset resulted in some cases of mis-segmentation, the
proposed PID-Net showed a more satisfactory segmentation performance than the other
models in the task of dense tiny object counting on a small dataset.
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In the future, we plan to apply PID-Net for more dense tiny object counting tasks, such
as the streptococcus counting task and blood-cell-counting task. We will further optimize
the PID-Net for better counting performance. For instance, object separation is one of the
most significant parts in object counting; therefore, the Contour Loss [84] can be used by
referring to our work to distinguish inner texture and contour boundaries for more accurate
counting. We also consider using Knowledge Distillation [85] to reduce the memory cost of
PID-Net, which can help to deploy the model on portable equipment.
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SGD stochastic gradient descent
NGD natural gradient descent
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FC fully connected
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