
Citation: Wang, Z.; Li, H.; Yue, X.;

Meng, L. Design and Acceleration of

Field Programmable Gate

Array-Based Deep Learning for

Empty-Dish Recycling Robots. Appl.

Sci. 2022, 12, 7337. https://doi.org/

10.3390/app12147337

Academic Editor: Vincent A. Cicirello

Received: 30 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design and Acceleration of Field Programmable Gate
Array-Based Deep Learning for Empty-Dish Recycling Robots
Zhichen Wang , Hengyi Li, Xuebin Yue and Lin Meng *

College of Science and Engineering, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu 525-8577, Shiga, Japan;
gr0415hp@ed.ritsumei.ac.jp (Z.W.); gr0468kx@ed.ritsumei.ac.jp (H.L.); gr0468xp@ed.ritsumei.ac.jp (X.Y.)
* Correspondence: menglin@fc.ritsumei.ac.jp

Abstract: As the proportion of the working population decreases worldwide, robots with artificial
intelligence have been a good choice to help humans. At the same time, field programmable gate
array (FPGA) is generally used on edge devices including robots, and it greatly accelerates the
inference process of deep learning tasks, including object detection tasks. In this paper, we build
a unique object detection dataset of 16 common kinds of dishes and use this dataset for training a
YOLOv3 object detection model. Then, we propose a formalized process of deploying a YOLOv3
model on the FPGA platform, which consists of training and pruning the model on a software
platform, and deploying the pruned model on a hardware platform (such as FPGA) through Vitis AI.
According to the experimental results, we successfully realize acceleration of the dish detection using
a YOLOv3 model based on FPGA. By applying different sparse training and pruning methods, we
test the pruned model in 18 different situations on the ZCU102 evaluation board. In order to improve
detection speed as much as possible while ensuring detection accuracy, for the pruned model with
the highest comprehensive performance, compared to the original model, the comparison results
are as follows: the model size is reduced from 62 MB to 12 MB, which is only 19% of the origin; the
number of parameters is reduced from 61,657,117 to 9,900,539, which is only 16% of the origin; the
running time is reduced from 14.411 s to 6.828 s, which is only less than half of the origin, while the
detection accuracy is decreased from 97% to 94.1%, which is only less than 3%.

Keywords: empty-dish recycling robot; deep learning; object detection; FPGA; model pruning;
Vitis AI

1. Introduction

In recent years, the phenomenon of population aging has become more and more
apparent all over the world as the society develops. The aging of the population means a
larger proportion of the population aged over 60 years, and also indicates a decrease in the
percentage of the working population. In this situation, robots that can help humans to do
some work will effectively alleviate the problem of labor shortage. This paper proposes the
detection system for empty-dish recycling robots to automatically sort and recycle used
dishes for the subsequent process. It has wide application scenarios, including restaurants,
cafeterias, and other places with many people.

The key for the proposal is the detection of the dishes. In fact, there are many different
types of dishes for each scenario as shown in Figure 1, including bowls, plates, cups of
different colors and sizes, and even chopsticks and spoons. It is hard work to correctly
detect and identify these different types of dishes for recycling. At the same time, in order
to apply the empty-dish recycling robot in real life, the time for detection should not be
too long, otherwise it would seriously affect the subsequent recycling work. Therefore, our
aim is to increase the speed of the detection process as much as possible while ensuring the
accuracy of the detection.

Appl. Sci. 2022, 12, 7337. https://doi.org/10.3390/app12147337 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147337
https://doi.org/10.3390/app12147337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6081-3933
https://orcid.org/0000-0002-4356-9243
https://orcid.org/0000-0003-4351-6923
https://doi.org/10.3390/app12147337
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147337?type=check_update&version=2

Appl. Sci. 2022, 12, 7337 2 of 18

(a) (b)

Figure 1. Examples of dish photos waiting to be detected. (a) first example, (b) second example.

For the detection of dishes, a deep learning based technique is adopted. Nowadays,
the technique has been widely used in various fields of our life, including automatic driv-
ing [1], environmental protection [2], cultural heritage protection [3,4], etc. In addition to
images, deep learning can also be applied to speech recognition [5], machine translation [6],
vulnerability detection [7], and other fields [8,9]. In terms of computer vision, the tasks
could be simply classified into two purposes: image classification and object detection.
Image classification is mainly to associate one or more recognized labels with the given
image. As for object detection, it is to detect the instances of semantic objects in images or
videos. The task requires the neural network to recognize various sub-images and locations
for drawing bounding boxes around each recognized sub-image.

In terms of the hardware platforms for a deep neural network (DNN), although image
classification and object detection could be performed extremely fast using a graphics
processing unit (GPU), the cost of using GPU is high, it is difficult for GPU to be applied to
edge. Thus, we consider deploying a field programmable gate array (FPGA) to dish recy-
cling robots. Compared with GPU, FPGA has the advantages of small size, high portability,
and low energy consumption. In addition, FPGA has similar parallel computing features
to GPU, which makes the performance of FPGA much better than a central processing unit
(CPU). Therefore, in this research, we implement the dish detection system on FPGA.

The three major contributions of this paper are as follows:

• We build a unique object detection dataset of 16 common kinds of dishes, which can
be used in the application of empty-dish recycling robots.

• We propose a formalized process of deploying a YOLOv3 object detection model on the
FPGA platform, which is divided into two parts: software process and hardware process.

• We implement a method to reduce the size of the YOLOv3 model through pruning it
on the software platform, and enable the pruned model to be deployed to the FPGA
evaluation board via Vitis AI, which realizes acceleration of deep learning on the
FPGA platform.

The rest of this paper is organized as follows: Section 2 introduces the research related
to an FPGA-based dish detection system. Section 3 shows the robotics and dish dataset
used in this research. Section 4 describes the formalized process of deploying a YOLOv3
object detection model on the FPGA platform, which is divided into software process and
hardware process. Section 5 lists specific research results on both software and hardware
platforms. Section 6 analyzes the the experimental results and discusses the limitations
and future directions of this research. Section 7 concludes the paper and draws future
research directions.

2. Related Work

This section introduces the key parts of the system, including the application fields
of robotics, the deep learning based object detection, and the FPGA for accelerating deep
neural networks.

Appl. Sci. 2022, 12, 7337 3 of 18

Threat to a validity [10,11]: In this research, to find related work about application
of robotics, we use search strings ‘robot and medical’, ‘robot and agriculture’, and ‘robot
and dish’. To find related work about deep learning based object detection, we use search
strings ‘deep learning’, ‘convolutional neural network’, and ‘object detection’. To find
related work about deep learning based on FPGA, we use search strings ‘deep learning
and FPGA’ and ‘convolutional neural network and FPGA’. We mainly search related work
in the database named IEEE Xplore, and also use other databases such as ACM Digital
Library and SpringerLink.

2.1. Robotics

Robotics is nowadays widely used in various fields to improve the quality of people’s
lives. For example, it can be used in fields related to human life [12], agriculture fields,
and dishwashing.

2.1.1. Human Life

In disaster recovery works, Ref. [13] develops a pneumatic humanoid robot arm that
can be mounted on any type of construction machinery, and constructs a control system by
software to realize remote control of construction machinery on the developed system. In
the medical field, Ref. [14] shows that the C-arm system is widely used in fluoroscopic
surgery to instantly monitor the patient’s status during surgery. Ref. [15] delves into
the relationship between humans and robots, analyzes the behavior and characteristics of
various types of robots, then indicates that with the development of artificial intelligence
and robotics; employment in many fields is also increasing due to the high demand for
intelligent machines around the world.

2.1.2. Agriculture

In agriculture, Ref. [16] designs a special gripper for picking apples from trees in
apple orchards. Ref. [17] designs a smartphone-controlled spraying robot for pepper farms,
which can not only help farmers reduce agricultural labor and solve the labor shortage
problem, but also reduce people’s direct contact with traditional chemicals that are very
harmful to their bodies.

2.1.3. Dishwashing

As for tasks dealing with dishes, Ref. [18] has developed a robotic system to perform
the operation of taking out various dishes from a commercial dishwasher. As a matter of
fact, robots provide efficient solutions for various application scenarios.

2.2. Deep Learning Based Objection Detection

The basic theory of deep learning was proposed back in 1980 [19]. Deep learning is the
process of learning the intrinsic laws of sample data, and the information obtained from
this learning process can be of great help in the interpretation of data such as text, images
and sounds. Its final goal is to make machines analyze and learn like humans, and be able
to recognize data such as text, images, and sounds. To achieve this goal, we usually take
the action of building up a convolutional neural network (CNN) model [20–25], training
this model with known data, and eventually making the model be capable of recognizing
unknown data.

2.2.1. Two-Stage Object Detection Algorithms

In the field of object detection, the most popular algorithms can be divided into two
categories, one is the two-stage R-CNN family (R-CNN [26], Fast R-CNN [27], and Faster
R-CNN [28]), which needs to first generate potential bounding boxes in the image and
second run the classifier on these proposed boxes.

Appl. Sci. 2022, 12, 7337 4 of 18

2.2.2. One-Stage Object Detection Algorithms

The other class is one-stage algorithms such as SSD [29] and YOLO [30], which
reframe object detection as a single regression problem, straight from image pixels to
bounding box coordinates and class probabilities. It allows a single neural network to
predict bounding boxes and class probabilities directly from full images in one evaluation.
After that, improved versions of YOLO (YOLOv2 [31], YOLOv3 [32], and YOLOv4 [33])
were proposed to achieve high-performance object detection while ensuring accuracy.

2.3. Deep Learning Based on FPGA

Implementing deep learning using a field programmable gate array (FPGA) [34] can
accelerate deep learning, reduce energy consumption, and deploy CNN on edge platforms
and embedded systems.

2.3.1. Quantization for Acceleration

In order to realize acceleration of deep learning on FPGA, relevant research can be
divided into two general directions: quantization and weight reduction. Quantization in
deep learning usually refers to converting floating-point numbers into shaped data as a
way to reduce memory bandwidth and storage space, improve system throughput, and
reduce system latency [35].

2.3.2. Weight Reduction for Acceleration

Weight reduction refers to removing redundant parameters by methods such as prun-
ing and structural simplification, so as to compress the size of the whole CNN model and
improve the speed of deep learning [36–39].

2.3.3. Energy Consumption

As for the energy consumption of deep learning, Ref. [40] argues that CNN is widely
used in modern AI systems, but also brings challenges in terms of throughput and energy
efficiency to the underlying hardware. In this paper, we deploy the neural network on
FPGA by utilizing the Vitis AI to alleviate these problems.

3. Application and Dataset

In this research, our aim is to develop and accelerate an application of detection
system for empty-dish recycling robots. In order for the empty-dish recycling robot to
work correctly, we need to prepare the dish dataset in advance for training an object
detection model.

3.1. The Empty-Dish Recycling Robot

The working process of empty-dish recycling robot is shown in Figure 2. In addition to
the external robotic arm for grasping, the robot is equipped with an inner camera system for
taking photographs and an object detection system. It also has components of a recycling-
station and body as Figure 2a shows. The object detection system is based on an object
detection network that has been trained to recognize different kinds of dishes. When the
model has been loaded and the camera is going to take a photo, the state of the robot
preparing to grasp the dish is shown in Figure 2a. As the photo is successfully taken, the
system performs object detection based on the photo, detects the positions of different
dishes, and then passes the position information to the grasping system. Figure 2b is the
process of the robot grasping the dish according to the position information. When the
grasping process is finished, the robot arm puts the dish into the recycling platform as
shown in Figure 2c. After repeating the above process several times, the dishes in the photo
are sorted and recycled.

Appl. Sci. 2022, 12, 7337 5 of 18

Figure 2. Working process of the proposed empty-dish recycling robot. (a) preparation stage,
(b) grasping process, (c) recycling process.

3.2. Dataset for Object Detection Training

The object detection model needs to be trained in advance on a dataset. The main
purpose of this research is to detect different kinds of dishes. There are 16 kinds of dishes,
including Fish-dish, Towel-dish, Rice-bowl, Chopsticks-two, Towel, Cup, Spoon, Soup-
bowl, Water-cup, Tea-cup, Waster-paper, Square-bowl, Chopsticks-one, Paper, Chopsticks-
cover, Wine-cup. As Figure 3 shows, the two images contain all 16 kinds of dishes.

(a) (b)

Figure 3. Examples of 16 kinds of dishes in the training dataset. (a) first example, (b) second example.

The training set refers to the dataset used to train the model, and the testing set is the
dataset used to test the accuracy of the trained model. It should be noted that the data in
the two sets must not overlap. For the research, we prepare 343 dish images in total, of
which 275 images are used as the training set and 68 images are used as the testing set. All
images have the same size, which is 640 × 480 pixels. To improve the randomness, each
image contains many different kinds of dishes, and the type, quantity, and locations of the
dishes are not fixed.

In image classification projects, each image corresponds to a single label, but in object
detection projects, each image typically contains labels of multiple different objects, and
the position of each object needs to be recorded. Since this research is an object detection
project, the dataset is created by manually drawing boxes for all the dishes in all images
and recording the coordinates of the four vertices of each box, which mean the location

Appl. Sci. 2022, 12, 7337 6 of 18

of the dish. Finally, each image has a label file, which contains the type of each dish and
its coordinates in the image. These label files are essential in the subsequent training and
testing process. It is important to note that, in order to comply with the CNN model
framework, these coordinates are relative coordinates in the range of 0 to 1, and need to be
multiplied by the width or height of the image to be the actual absolute coordinates.

4. Research Methods

The formalized process of deploying deep learning models such as YOLOv3 on the
FPGA platform is divided into two parts: software process and hardware process. Thus, the
research methods can be roughly divided into two parts: software method and hardware
method. The software method means that the object detection model is trained on the
software platform, and the size of the model is reduced by pruning. After operations on
the software platform, we use Vitis AI to deploy the pruned model to the FPGA, which is
the hardware method.

4.1. Software Method

In this research, we employ YOLOv3 [32] as the kernel to perform dish detection. To
extract features, YOLOv3 adopts a convolutional network followed by a fully connected
layer to obtain prediction values. In YOLOv3, the size of the output feature map could be
adjusted by modifying the convolutional step size, hence there is no special restriction on
input image size. Meanwhile, YOLOv3 is inspired by the idea of pyramidal feature maps,
which takes small-size feature maps to detect large-size objects and large-size feature maps
to detect small-size objects.

In the YOLOv3 convolutional network, the time complexity [41] of a single convolu-
tional layer is O(M2K2CinCout), where M2 represents the size of the output feature map of
the convolutional layer, K2 represents the size of the convolution kernel, Cin represents the
number of input channels, and Cout represents the number of output channels. Therefore,
the time complexity of the entire YOLOv3 convolutional network is O(sumN

i=1M2
i K2

i Ci−1Ci),
where N represents the number of layers of the convolutional neural network, i represents
the serial number of the convolutional layer, Ci−1 represents the number of input channels
of the i-th layer, and Ci represents the number of output channels of the i-th layer.

4.1.1. Training Process

For training the model, we need to prepare the cfg file of YOLOv3 in advance, i.e., the
configuration file. The cfg file details the structure of YOLOv3, including the total number
of convolutional layers, the parameters of each convolutional layer, the types of activation
function, the size of the input image, the learning rate, and the settings of anchors. As
the object categories vary with different tasks, the number of classes and filters of some
convolutional layers in the cfg file also needs to be adjusted. Considering that the accuracy
of the detection improves as the input image size increases, we take 608 pixels instead of
using the default 416 pixels.

4.1.2. Pruning Process

After the YOLOv3 is trained, we apply the pruning technique to compress the model
and thus improve the performance of the network. The core idea of pruning comes from [42].
Specifically, the scaling factor γ, i.e., the weights of the layer, of batch normalization (BN)
layer is used as the importance factor. A smaller γ means that the corresponding channel is
less important. Nowadays, many CNN models have a BN layer after the convolutional layer,
and the importance of both the convolutional layer and the BN layer can be determined
based on the scaling factors. By performing threshold filtering on the scores, the less
important channels are screened out and then removed from the network. As a result, we
can reduce the size of the model without affecting the accuracy of the model too much and
achieving the effect of compression. In the specific implementation, it can be divided into
three steps as follows:

Appl. Sci. 2022, 12, 7337 7 of 18

1. Performing sparse training for the YOLOv3 model with darknet framework. Sparse
training in this research means applying the L1 regularization on the weights of BN
layers, which results in sparsity of the weights. In this research, we first performed
the sparse training and then performed pruning (Method A). However, we found
that the model accuracy decreased significantly after pruning. Thus, we adjust some
parameters and then perform sparse training again as Method B to improve the
accuracy. Specifically, we mainly adjust the learning rate by warping up the learning
rate in the first few epochs, and decaying the learning rate in an appropriate proportion
after the training reached 70% of the total epoch. After the adjustment, the model
accuracy of method B improves significantly compared to method A. This indicates
that sparse training plays an important role and can directly affect the accuracy of the
model after pruning.

2. Pruning the model after sparse training. We first set an expected pruning percentage,
i.e., the proportion of channels that are expected to be cut. Then, threshold concerning
the scaling factors is determined and the channels with the scaling factor value smaller
than the threshold are pruned. In detail, we tried a total of three methods: Prune
method, Shortcut method, and Slim method. Prune method is a conservative strategy.
There are five groups of 23 shortcut connections in YOLOv3 corresponding to the
added operation. To ensure that the two input dimensions of the shortcut are the
same after channel pruning, this method does not prune the layers directly connected
to the shortcut. As a result, the prune method avoids the dimension processing. The
shortcut method prunes the convolutional layers involved in the shortcut. It uses the
mask of the first convolutional layer in the shortcut of each group, and a total of five
masks to prune shortcut-related convolutional layers of the five groups. Thus, the
pruning rate is improved compared with Prune Method. Slim method has the highest
channel pruning rate. First, the mask of each convolutional layer is found with a
global threshold. In addition, then for each group of shortcuts, the pruned mask of
each connected convolutional layer is taken as a merge set and pruned, so that each
relevant layer is considered, and the reserved channels of each layer are also limited.

3. Fine-tuning the pruned model. After pruning, the accuracy of the model decreases
inevitably. Thus, a fine-tuning operation, which means retraining the pruned model,
is required to compensate for the accuracy loss. Similar to the sparse training process,
we can also adjust the learning rate in the fine-tuning process to improve the accuracy
of the model. After fine-tuning, we obtain a lightweight YOLOv3 model with a
high accuracy.

4.2. Hardware Method

The Vitis AI [43] is a convenient and efficient tool which can deploy and accelerate
AI inference on Xilinx hardware platforms, including edge devices and Alevo accelerator
cards. In this research, we deploy the pruned YOLOv3 model on the ZCU102 evaluation
board using the Vitis AI. Specifically, as shown in Figure 4, the whole process can be
approximately divided into the following steps:

Train
dataset

Test
dataset

Step0-
Training

(YOLOv3.weights)

Step1-
Conversion

(YOLOv3.h5)

Step2-
Quantization
(YOLOv3.pb)

Step3-Compilation
(YOLOv3.xmodel)

Step4-
Deployment

Figure 4. Flow of deploying the YOLOv3 model on the ZCU102 evaluation board.

Appl. Sci. 2022, 12, 7337 8 of 18

1. Model conversion. With the weights file and the corresponding cfg file, the YOLOv3
model could be converted into a keras.h5 model that will be used for subsequent
operations.

2. Model quantization. Typically, when training a CNN, we use 32-bit floating point
weights and activations on CPU or GPU platforms. The Vitis AI quantizer can convert
32-bit floating point weights and activations to INT8 format, so we can use it to
reduce computational complexity without loss of detection accuracy. In addition, in
this research, 100 unlabeled images are used for quantitative calibration. After this
process, we can obtain a .pb file converted from the .h5 file and then use the .pb file
for next operation.

3. Model compilation. After model quantization, we can use the Vitis AI compiler to
convert the .pb file to a .xmodel file, which can run on the FPGA board.

4. Model deployment. In this process, we need to copy the compiled .xmodel file and
.prototxt configuration file to the SD card that has been prepared; then, we can use
the YOLOv3 model to implement object detection of dishes on FPGA. In addition, we
need to adjust some parameters in the .prototxt file to obtain better results. Generally
speaking, the biases in the .prototxt file are the anchors in the original cfg file, and they
should be arranged in the order of the anchors. However, in fact, in the experiment,
we find that, if the biases are set in the order of the original anchors, there will be
many boxes that are obviously not the correct detection results, so the biases must be
modified. After trying, by swapping the first 6 numbers and the last 6 numbers of the
biases, the test results returned to normal.

On the FPGA platform, there are two ways to verify the accuracy of the model. The
first way is to perform object detection on specific pictures, as shown in Figure 5. The
second way is to infer all 68 test images in batches to obtain a result file similar to the
original label file, including the type and coordinates of each dish in the test image, and the
confidence of each test result. Then, we need to compare the result file with the original
label file to determine accuracy of the model. It should be noted that, unlike the relative
coordinates in the label file, the coordinates in the result file are absolute coordinates, so
accurate test results can only be obtained after some transformation. In addition to accuracy,
we also recorded the time from running the YOLOv3 model on the ZCU102 evaluation
board to obtain the result file, as an evaluation of performance of the model.

(a) (b)

Figure 5. Examples of detection results on FPGA. (a) first example, (b) second example.

5. Experimental Results

In terms of the experimental environment in this research, we adopt NVIDIA GeForce
RTX 3080 Ti for training the model. The CPU is Intel Core i9-10900 2.80 GHz processor, with
64 GB RAM. The operating system is 64-bit Ubuntu 18.04.4 LTS, and the CUDA version is
11.5. As for the FPGA, we adopt the Zynq UltraScale+ MPSoC ZCU102 evaluation board
of Xilinx.

Appl. Sci. 2022, 12, 7337 9 of 18

5.1. Software Results

In this research, we first use the dish dataset to train the YOLOv3 model under darknet.
During the training process, we save the model every 1000 epochs, and we also save the
model with the largest mean average precision (mAP) for subsequent research. Figure 6
shows the results of the trained model from 1000 epochs to 30,000 epochs. Generally
speaking, in object detection, mAP is a comprehensive indicator for evaluating the detection
ability of a model. Therefore, in this research, we call the model with the largest mAP in a
certain training process as the best model of the training process.

���

����

���

����

���

����

�

�����

� 	
� ���

Figure 6. Detection results under darknet.

The evaluation indicators and related definitions in Figure 6 are as follows [44,45]:

TP True Positive means that the samples are classified as positive samples and assigned
correctly;

TN True Negative means that the samples are classified as negative samples and assigned
correctly;

FP False Positive means that the samples are classified as positive but wrongly assigned;
FN False Negative means that the samples are classified as negative samples but wrongly

assigned;
P Precision means the proportion of the number of correctly assigned positive samples

to the total number of all assigned positive samples. The formula is (1);
R Recall means the proportion of the number of correctly assigned positive samples to

the total number of real positive samples, and the formula is (2).
F1 F1 score is the harmonic mean of precision and recall. It is an evaluation indicator that

integrates Precision and Recall. It avoids the single maximum value of Precision or
Recall and is used to comprehensively reflect the overall indicator. The formula is (3):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 × Precision × Recall
Precision + Recall

(3)

The Precision–Recall curve can measure the quality of the object detection model, but
it is not convenient for comparing the models. On the basis of the precision–recall (P–R)
curve, by calculating the average value of the precision value corresponding to each recall
value, an evaluation indicator is obtained: average precision (AP), which is used to measure
the detection capability of trained model on the class of interest. Before calculating AP, in
order to smooth the P–R curve and reduce the influence of curve jitter, the P–R curve is first

Appl. Sci. 2022, 12, 7337 10 of 18

interpolated. Given a Recall value R, the Pinterp used for interpolation is the maximum
Precision value between the current R value and the next Recall value R’. AP calculation
can be defined as the area of the interpolated precision–recall curve and the x-axis, as
shown in Formula (4), where R1, R2,. . . , Rn is the Recall value corresponding to the first
interpolation of the Precision interpolation segment in ascending order. The average value
of each category of AP is denoted as mAP. Suppose there are K detection types in total and
the formula is shown in (5), and mAP measures the detection ability of the trained model
on all types:

AP = sumn−1
i=1 (Ri+1 − Ri)Pinterp(Ri+1) (4)

mAP =
sumK

i=1 APi

K
(5)

For the best model with the largest mAP, we also recorded the specific detection results
of each dishes, as shown in Table 1. At the same time, we use this best model as the base
model for subsequent pruning process and deployment to FPGA.

Table 1. Detection results of base model.

Class P R F1 mAP

all 0.557 0.987 0.686 0.964
Fish-dish 0.5 1 0.667 0.974

Towel-dish 0.755 1 0.86 0.992
Rice-bowl 0.855 1 0.922 0.992

Chopsticks-two 0.411 0.988 0.581 0.958
Towel 0.598 1 0.748 0.974
Cup 0.91 0.987 0.947 0.978

Spoon 0.263 0.952 0.413 0.901
Soup-bowl 0.803 0.984 0.884 0.975
Water-cup 0.375 1 0.545 0.975

Tea-cup 0.918 1 0.957 0.994
Waster-paper 0.358 1 0.527 0.951
Square-bowl 0.553 0.979 0.707 0.944

Chopsticks-one 0.315 0.906 0.468 0.859
Paper 0.389 1 0.56 0.975

Chopsticks-cover 0.679 1 0.809 0.988
Wine-cup 0.234 1 0.379 0.995

5.2. Hardware Results

When evaluating the performance on FPGA, we choose the model with the highest
mAP in each training process, which is called the best model. First, we deploy the original
best model trained under darknet to FPGA for test, then deploy it after additional sparse
training by Method A and Method B to FPGA for testing. The results are shown in
Tables 2 and 3. Among them, Table 2 shows the AP of each type of dishe, and Table 3 shows
the mAP of the model and some other indicators, including the total number of parameters
of the model, the size of the model deployed to FPGA, and the total time required to test all
68 images.

Then, for both the process of sparse training and fine-tuning, we choose and deploy
the best models respectively to FPGA again for test. For sparse training Method A, the
results are shown in Tables 4 and 5. For sparse training Method B, the results are shown in
Tables 6 and 7. When pruning, we use three methods: Prune method, Shortcut method,
and Slim method, respectively. In addition, we set the pruning ratio to 30%, 50%, and
80%, respectively, and record the results. Compared with Table 3, two results are added in
Tables 5 and 7, which are the number of channels actually pruned and the actual pruning
ratio during the pruning process. Due to unknown reasons, after using the sparse training
Method B and the Shortcut pruning method, an error occurred during the compilation

Appl. Sci. 2022, 12, 7337 11 of 18

process of converting the .weight model to the .xmodel model, resulting in a compilation
failure, so that the AP, mAP, and test time of the model can not be obtained.

Table 2. Detection accuracy of model before pruning on FPGA.

Class Origin Sparse Method A Sparse Method B

Chopsticks-two 0.958 0.958 0.936
Cup 0.985 0.987 0.985

Water-cup 0.98 0.986 0.97
Tea-cup 0.999 0.989 0.999

Waster-paper 0.992 0.955 0.965
Chopsticks-one 0.949 0.92 0.912

Wine-cup 1 1 1
Fish-dish 0.979 0.878 0.948

Spoon 0.94 0.932 0.921
Soup-bowl 0.969 0.953 0.969

Square-bowl 0.974 0.972 0.943
Rice-bowl 0.988 0.995 0.99

Towel 0.97 0.953 0.971
Chopsticks-cover 0.947 0.895 0.99

Towel-dish 0.966 0.997 0.936
Paper 0.97 0.96 0.964

Table 3. Performance of the model before pruning on FPGA.

Class Origin Sparse Method A Sparse Method B

mAP 0.97 0.96 0.964
Parameters 61,657,117 61,657,117 61,657,117

Size 62 MB 62 MB 62 MB
Time 14.411 s 14.453 s 14.544 s

Table 4. Detection accuracy using sparse training Method A on FPGA.

Class Prune30% Prune50% Prune80% Shortcut30% Shortcut50% Shortcut80% Slim30% Slim50% Slim80%

Chopsticks-two 0.869 0.789 0.545 0.872 0.706 0.012 0.748 0.135 0.148
Cup 0.987 0.981 0.982 0.986 0.984 0.549 0.985 0.159 0.138

Water-cup 0.976 0.983 0.963 0.984 0.974 0.255 0.987 0.717 0.427
Tea-cup 0.997 0.983 0.98 0.982 0.987 0.37 0.972 0.573 0.173

Waster-paper 0.891 0.792 0.78 0.845 0.803 0.098 0.684 0373. 0.217
Chopsticks-one 0.831 0.697 0.68 0.814 0.689 0.002 0.736 0.035 0.027

Wine-cup 1 1 1 1 1 0.174 1 0.732 0.316
Fish-dish 0.819 0.814 0.779 0.825 0.811 0.239 0.786 0.25 0.096

Spoon 0.847 0.808 0.682 0.851 0.741 0.06 0.748 0.041 0.041
Soup-bowl 0.961 0.95 0.841 0.979 0.972 0.368 0.97 0.586 0.754

Square-bowl 0.906 0.874 0.902 0.942 0.903 0.086 0.908 0.52 0.277
Rice-bowl 0.979 0.984 0.789 0.996 0.987 0.041 0.968 0.511 0.742

Towel 0.949 0.879 0.765 0.881 0.821 0.176 0.672 0.5 0.134
Chopsticks-cover 0.895 0.793 0.532 0.889 0.851 0.005 0.772 0.065 0.028

Towel-dish 0.917 0.543 0.568 0.81 0.713 0.053 0.747 0.344 0.019
Paper 0.931 0.827 0.357 0.618 0.884 0.453 0.726 0.667 0.237

Table 5. Performance using sparse training Method A on FPGA.

Class Prune30% Prune50% Prune80% Shortcut30% Shortcut50% Shortcut80% Slim30% Slim50% Slim80%

mAP 0.922 0.856 0.759 0.892 0.864 0.18 0.838 0.388 0.236
Prune channels 4012 6688 10,700 4618 7692 16,250 7777 12,877 20,633

Prune ratio 0.153 0.254 0.407 0.176 0.292 0.618 0.296 0.49 0.784
Parameters 40,257,085 26,227,273 9,942,629 37,017,469 21,481,070 6,684,490 21,124,184 6,788,468 6,246,822

Size 42 MB 28 MB 12 MB 39 MB 23 MB 8936 KB 23 MB 9044 KB 8460 KB
Time 10.948 s 8.780 s 6.686 s 10.430 s 8.260 s 6.487 s 8.128 s 7.853 s 8.438 s

Appl. Sci. 2022, 12, 7337 12 of 18

Table 6. Detection accuracy using sparse training Method B on FPGA.

Class Prune30% Prune50% Prune80% Shortcut30% Shortcut50% Shortcut80% Slim30% Slim50% Slim80%

Chopsticks-two 0.882 0.887 0.867 0.906 0.907 / 0.944 0.906 0.602
Cup 0.983 0.977 0.948 0.99 0.988 / 0.969 0.833 0.816

Water-cup 0.978 0.975 0.975 0.963 0.979 / 0.972 0.978 0.977
Tea-cup 1 0.988 0.985 0.999 0.999 / 1 0.988 0.906

Waster-paper 0.923 0.961 0.945 0.974 0.989 / 0.992 0.971 0.872
Chopsticks-one 0.943 0.924 0.918 0.951 0.922 / 0.879 0.878 0.718

Wine-cup 1 0.998 1 1 0.998 / 0.998 0.991 0.998
Fish-dish 0.886 0.8 0.837 0.859 0.889 / 0.86 0.434 0.882

Spoon 0.917 0.914 0.882 0.899 0.898 / 0.928 0.915 0.815
Soup-bowl 0.969 0.963 0.967 0.971 0.969 / 0.967 0.971 0.957

Square-bowl 0.966 0.941 0.931 0.953 0.94 / 0.944 0.869 0.651
Rice-bowl 0.986 0.997 0.989 0.987 0.986 / 0.986 0.994 0.818

Towel 0.963 0.913 0.968 0.945 0.938 / 0.965 0.982 0.962
Chopsticks-cover 0.942 0.919 0.972 0.892 0.925 / 0.892 0.895 0.839

Towel-dish 0.998 0.999 0.983 0.999 0.994 / 0.992 0.962 0.912
Paper 0.925 0.931 0.891 0.916 0.951 / 0.929 0.974 0.901

Table 7. Performance using sparse training Method B on FPGA.

Class Prune30% Prune50% Prune80% Shortcut30% Shortcut50% Shortcut80% Slim30% Slim50% Slim80%

mAP 0.954 0.943 0.941 0.95 0.955 / 0.951 0.909 0.852
Prune channels 4012 6688 10,700 5643 9555 19,725 7777 12,957 20,698

Prune ratio 0.153 0.254 0.407 0.215 0.363 0.75 0.296 0.493 0.787
Parameters 40,534,434 26,372,586 9,900,539 35,527,894 18,907,404 2,095,122 23,217,395 9,604,954 5,709,836

Size 42 MB 28 MB 12 MB 37 MB 20 MB 3481 KB 25 MB 12 MB 7793 KB
Time 10.687 s 8.892 s 6.828 s 9.614 s 7.208 s / 8.440 s 6.692 s 5.925 s

In this research, we mainly evaluate the results on FPGA, which are shown from
Tables 2–7. Among these tables, Tables 2, 4 and 6 indicate detection accuracy of 16 different
kinds of dishes, respectively. Tables 3, 5 and 7 indicate performance of testing all 68 testing
images on FPGA. Many metrics are used for comparison of performance: mAP, prune
channels, prune ratio, parameters, size, and time. Our aim is to achieve acceleration of
the model as much as possible, while maintaining the detection accuracy, so it is ideal to
obtain the minimum of time, while maintaining the maximum of mAP. We use the method
of pruning for acceleration, so when prune channels and prune ratio are larger, parameters
and size are smaller, the time will be smaller. However, since there is no linear relationship
between these metrics, we record them all in the research process, so as to find the pruned
model with the highest comprehensive performance.

6. Analysis and Discussion

In this section, we analyze the experimental results, and discuss the limitations and
future directions of this research.

For the original model trained under darknet, we test it under CPU, and it takes a
total of 1242.554 s to test all 68 images. However, it takes only 14.411 s to test all 68 images
under FPGA, as shown in Table 3, which is 86 times faster than CPU. This result shows that
FPGA can greatly improve the speed of deep learning compared to CPU.

6.1. Analysis on Sparsity Training

By making comparisons on the results in general, the performance of sparse training
Method B is better than sparse training Method A. In terms of the mAP for both methods:

• If we use sparse training Method A, then no matter which pruning method is used,
the final mAP will drop significantly as the pruning ratio rises—especially when the
Slim pruning method is used, only when the pruning ratio is set to 30%, it can achieve
mAP of more than 80%, and when the pruning ratio is 50% or 80%, the mAP cannot
even reach 40%, indicating that the model accuracy has been significantly affected.

Appl. Sci. 2022, 12, 7337 13 of 18

• If we use sparse training Method B, we can find that the decrease of mAP is not
obvious; even when the Slim method is used and the pruning ratio is set to 80%, which
has the largest decrease of accuracy, its mAP only decreases about 11% and is much
better compared with sparse training Method A.

It can be seen that sparse training is very critical, and different parameter setting
during sparse training affects the effect of pruning greatly. In fact, sparse training means
the balance of accuracy and sparsity, and it is worth studying how to find a good strategy
to make the sparse model achieve high accuracy as well as high sparsity.

According to the experience, for the coefficient s multiplied on the scaling factor γ, the
large s generally sparse trains the model faster but the accuracy drops fast, and the small
s generally sparsely trains the model slower, but the accuracy drops slowly. In addition,
with the large learning rate, the model will be sparse trained fast, and the small learning
rate in later stage will help the accuracy to rebound. In this research, we only adjusted
the learning rate but did not optimize s. Better pruning results should be obtained if s
is adjusted appropriately, for example, by setting a dynamic s so that it changes during
different training process.

6.2. Analysis on Pruning Methods

For the results of the sparse training Method B, it can be found that different pruning
methods also influence on the mAP obviously.

Pruning method is the most conservative method and can not reduce the size of the
model as much as the latter two methods, but the actual comprehensive result is very
outstanding. When we use the Pruning method, even if the pruning ratio is set to 80%,
the mAP only decreases by less than 3% compared with the original unpruned model,
which means the accuracy of the model is basically maintained, while the model size is
reduced to 19% of the original model, the number of parameters is reduced to 16% of the
original model, and the running time is less than half of the original model. Therefore,
in this research, we set Prune80% model to the model with the highest comprehensive
performance after pruning.

As for the Shortcut method, although there is an error when the prune ratio is set
to 80%, after analyzing the results when the prune ratio is 30% and 50%, the Shortcut
method has more pruning intensity and higher performance compared to the Prune method.
However, the detection accuracy of these two methods is not so much different, and there
are compilation errors that are temporarily unexplained. As a result, the Shortcut method
is not as stable as the Prune method.

As for the Slim method, we can find that, with the increase of the pruning ratio, the
pruning intensity increases significantly, the model size and the number of parameters
decrease obviously, but the model accuracy also drops gradually. In fact, after the fine-tune
processing on the software platform, the final detection accuracy of the pruned model
returns to the same level as the original model even the slim method is used. However,
after deploying the model to FPGA, the detection accuracy decreases significantly.

The Vitis AI quantizer could reduce the computational complexity without losing
prediction accuracy; this is only right in the case of unpruned models. After pruning, the
model loses some information, and quantization in this case will cause more information
loss, leading to the condition that, when the percentage of pruning is too large, the accuracy
of the model will not return to the level of the original model, even after fine-tuning.

In order to observe the effect of the reduced accuracy on FPGA more clearly, we use the
original model and Prune80% model to detect dishes on each of the 68 testing images, then
select two representative images for analysis. As shown in Figure 7, (a) and (b) represent
the detection results of testing image A, while (c) and (d) represent the detection results
of testing image B. In these four pictures, (a) and (c) show the detection results using the
original model, while (b) and (d) show the detection results using the Prune80% model.
From Figure 7, we can find that, after pruning, most of the dishes can be detected correctly,
but there are still some dishes near the corners that can not be detected correctly, such as

Appl. Sci. 2022, 12, 7337 14 of 18

Chopsticks-cover in the upper right corner of (b), and Paper at the top of (d). In addition,
there are cases about repeated detection, such as the results of Chopsticks-two near the
bottom of (d). In general, even though the Prune80% model has the highest comprehensive
performance after pruning, it still has a little lower detection accuracy than the original
model. Therefore, in our future research, we will improve the pruning method, so as to
enhance the detection accuracy after pruning.

Figure 7. Examples about the effect of the reduced accuracy after pruning. (a) detection results of
testing image A using original model, (b) detection results of testing image A using pruned model,
(c) detection results of testing image B using original model, (d) detection results of testing image B
using pruned model.

6.3. Analysis Based on AP

By observing the changes of AP for each kind of dishes after pruning, it can be found
that the detection result of each kind of dishes differs.

When the sparse training Method A is used, regardless of which pruning method is
used, the detection accuracy of some dishes decreases much more slowly than other kinds
of dishes as the pruning ratio increases, such as Cup, Water-cup, Tea-cup, and Wine-cup. In
contrast, the detection accuracy of Chopsticks-two, Chopsticks-one, and Chopsticks-cover
decreases much more obviously than other kinds of dishes when the pruning ratio increases.
A similar pattern is also found when the sparse training Method B is used. The reason for
this result is that the number of different kinds of dishes is different in the dataset used
this time. The number of each kind of dishes in the training dataset and testing dataset is
shown in Table 8, which shows that the number of various cups is significantly larger. This
indicates that, during the training process, these kinds of dishes provide more information
and the model can learn the features of them better, which makes them to be detected more
easily during test process.

The reason for the low detection accuracy of several kinds of dishes related to chop-
sticks is not only due to the insufficient learning caused by the small quantity, but also
the characteristics of these kinds of dishes themselves. For example, Chopsticks-two and
Chopsticks-one are both chopsticks, and they are quite similar in appearance, which makes
it more difficult for the model to distinguish them during the test process. In addition, as
shown in Figure 8, in both images of the training dataset, the items marked by red boxes

Appl. Sci. 2022, 12, 7337 15 of 18

are all labeled as Chopsticks-two, but they actually have some obvious differences, partly
just chopsticks and partly a combination of chopsticks and cover. In addition, in Figure 3b,
Towel-dish is placed below the Towel in the upper right corner, but Towel-dish is not
marked during the labeling process, which also affects the learning effect of the model to a
certain extent. These labeling problems, which affect the accuracy of the pruned model,
will be improved in the future work.

Table 8. Number of each kind of dish in the dataset

Class Training Dataset Test Dataset

Fish-dish 224 50
Towel-dish 137 37
Rice-bowl 256 59

Chopsticks-two 346 82
Towel 277 58
Cup 602 153

Spoon 269 62
Soup-bowl 259 62
Water-cup 426 103

Tea-cup 476 112
Waster-paper 287 63
Square-bowl 163 48

Chopsticks-one 138 32
Paper 85 28

Chopsticks-cover 82 19
Wine-cup 516 130

(a) (b)

Figure 8. Examples of Chopsticks-two in the training dataset. (a) first example, (b) second example.

6.4. Limitations and Future Directions

In this research, there are mainly three aspects of limitations which can be improved,
and these are future directions of our work.

6.4.1. Improvement of Detection Accuracy

Although pruning and quantization finally led to an inevitable decrease of detection
accuracy, due to time reasons, we still did not find the optimal parameters of sparse training
and pruning for our dish dataset. For future research, we plan to adjust the parameters
during sparse training and improve the pruning method to alleviate the accuracy decrease.

At the same time, the dish dataset also needs to be improved due to some insufficient
consideration when we built the dataset. The improvement of the dataset can also increase
the detection accuracy.

6.4.2. Addition of Evaluation Criteria

In this research, we only used our own unique dataset for testing, which leads to a
lack of public datasets for testing. Due to this reason, we are currently unable to provide a

Appl. Sci. 2022, 12, 7337 16 of 18

statistical test to compare our method with other methods or state-of-the-art. In our future
work, we will do some additional experiments on public datasets and compare the results
of our method with other methods.

Since we used Vitis AI in this research, we still did not find a way to see quantitative
details on the FPGA resource utilization, such as clock speed, number of gates utilized,
available resources, and percentage usage. Thus, we will continue to look for ways to
see these quantitative hardware metrics when using Vitis AI, and this is one of our future
research directions.

6.4.3. Formalizing a Process Flow for Implementing CNN on FPGA

Although we proposed a formalized process of deploying the YOLOv3 model on the
FPGA platform, which consists of the software process and hardware process, there are
still many CNN models that are able to be accelerated on FPGA. The method is similar to
this research: training CNN models and pruning them on the software platform to reduce
the amount of parameters firstly, and then deploying them to the FPGA platform through
Vitis AI. For a specific model, it is necessary to adjust the methods of sparse training and
pruning, to keep the accuracy of the model as high as possible. This is also one of our future
research directions.

In addition, since under some conditions, the pruned model can not be successfully
deployed to the FPGA platform due to compilation errors, we will solve this problem in
our future research.

In addition, considering that 3D coordinate [46] is very important for the application
of empty-dish recycling robot, we plan to build a system that can be applied to FPGA,
in which the robot can confirm the position of dishes more accurately and recycle them
through 3D coordinates. Specifically, we can combine YOLO with other neural network
algorithms. First, we use YOLO to detect the 2D coordinates of each dish. Then, we use
other neural network algorithms to detect the distance from the robot to the dish, so that
we can obtain the 3D position of the dish.

7. Conclusions

In this research, we propose a formalized process of deploying the YOLOv3 object
detection model on FPGA, which can detect dishes with acceleration and high accuracy
for empty-dish recycling robots. In order to implement the YOLOv3 model on FPGA,
we first build up a unique dataset containing 16 types of dishes for model training and
testing. Then, we use our unique dataset to train the YOLOv3 model on software platforms,
improve the accuracy of the model, and reduce the size of the model through pruning.
After the software process, we deploy the pruned model to FPGA through Vitis AI as the
hardware process. Compared to the original model, the pruned model with the highest
comprehensive performance has the following features: the model size is reduced from
62 MB to 12 MB, which is only 19% of origin; the number of parameters is reduced from
61,657,117 to 9,900,539, which is only 16% of origin; the running time is reduced from
14.411 s to 6.828 s, which is only less than half of origin, while the detection accuracy is
decreased from 97% to 94.1%, which is only less than 3%. For future research, we will
improve detection accuracy by adjusting the pruning method to alleviate the accuracy
decrease, and improve the dish dataset to increase the detection accuracy. We will also
add evaluation criteria such as results compared with the ground truth on public datasets,
and quantitative details on the FPGA resource utilization. In addition, we will formalize a
process flow for implementing CNN on FPGA, and use 3D coordinates to achieve more
accurate detection for empty-dish recycling robots.

Author Contributions: Data curation, X.Y.; Investigation, Z.W.; Methodology, H.L.; Project adminis-
tration, L.M.; Software, Z.W.; Supervision, L.M.; Writing—original draft, Z.W.; Writing—review and
editing, H.L. All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2022, 12, 7337 17 of 18

Funding: This work was supported by JST, the establishment of university fellowships towards the
creation of science technology innovation, Grant No. JPMJFS2146.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and analysed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Sharman, M.; Murdoch, D.; Cao, D.; Lv, C.; Zweiri, Y.; Rayside, D.; Melek, W. A sensorless state estimation for a safety-oriented

cyber-physical system in urban driving: Deep learning approach. IEEE/CAA J. Autom. Sin. 2020, 8, 169–178. [CrossRef]
2. Meng, L.; Hirayama, T.; Oyanagi, S. Underwater-drone with panoramic camera for automatic fish recognition based on deep

learning. IEEE Access 2018, 6, 17880–17886. [CrossRef]
3. Lyu, B.; Tomiyama, H.; Meng, L. Frame Detection and Text Line Segmentation for Early Japanese Books Understanding. In

Proceedings of the ICPRAM, Valletta, Malta, 22–24 February 2020; pp. 600–606.
4. Yue, X.; Li, H.; Fujikawa, Y.M.L. Dynamic Dataset Augmentation for Deep Learning-based Oracle Bone Inscriptions Recognition.

ACM J. Comput. Cult. Herit. 2022, in press.
5. Abdelaziz, A.H. Comparing fusion models for DNN-based audiovisual continuous speech recognition. IEEE/ACM Trans. Audio

Speech Lang. Process. 2017, 26, 475–484. [CrossRef]
6. Cai, J. A Design of Interactive Online English Translation System Based on Deep Learning. In Proceedings of the 2021 International

Conference of Social Computing and Digital Economy (ICSCDE), Chongqing, China, 28–29 August 2021; pp. 8–11.
7. Lin, G.; Wen, S.; Han, Q.L.; Zhang, J.; Xiang, Y. Software vulnerability detection using deep neural networks: A survey. Proc. IEEE

2020, 108, 1825–1848. [CrossRef]
8. Shaukat, K.; Alam, T.M.; Hameed, I.A.; Khan, W.A.; Abbas, N.; Luo, S. A review on security challenges in internet of things

(IoT). In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK,
2–4 September 2021; pp. 1–6.

9. Alam, T.M.; Shaukat, K.; Hameed, I.A.; Khan, W.A.; Sarwar, M.U.; Iqbal, F.; Luo, S. A novel framework for prognostic factors
identification of malignant mesothelioma through association rule mining. Biomed. Signal Process. Control 2021, 68, 102726.
[CrossRef]

10. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Chen, S.; Liu, D.; Li, J. Performance comparison and current challenges of
using machine learning techniques in cybersecurity. Energies 2020, 13, 2509. [CrossRef]

11. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A survey on machine learning techniques for cyber security in the
last decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

12. Duan, X.; Wang, Y.; Kong, X.; Li, M.; Yang, Y. Mechanical design and kinematic analysis of a medical robot assisted maxillofacial
surgery. In Proceedings of the 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 25–28 May
2013; pp. 596–601.

13. Kawashima, K.; Sasaki, T.; Ohkubo, A.; Miyata, T.; Kagawa, T. Application of robot arm using fiber knitted type pneumatic artificial
rubber muscles. In Proceedings of the IEEE International Conference on Robotics and Automation—ICRA’04, New Orleans, LA,
USA, 26 April–1 May 2004; Volume 5, pp. 4937–4942.

14. Kim, D.; Lee, K.H.; Ji, S.H.; Shon, W.H.; Kim, Y.S. Development of a medical robot system for pedicle screw surgery assisted by
fluoroscopic X-ray image. In Proceedings of the Advanced Robotics and its Social Impacts, Menlo Park, CA, USA, 2–4 October
2011; pp. 62–65.

15. Shaukat, K.; Iqbal, F.; Alam, T.M.; Aujla, G.K.; Devnath, L.; Khan, A.G.; Iqbal, R.; Shahzadi, I.; Rubab, A. The impact of artificial
intelligence and robotics on the future employment opportunities. Trends Comput. Sci. Inf. Technol. 2020, 5, 50–54.

16. Setiawan, A.I.; Furukawa, T.; Preston, A. A low-cost gripper for an apple picking robot. In Proceedings of the IEEE International
Conference on Robotics and Automation—ICRA’04, New Orleans, LA, USA, 26 April 2004–1 May 2004; Volume 5, pp. 4448–4453.

17. Khuantham, C.; Sonthitham, A. Spraying robot controlled by application smartphone for pepper farm. In Proceedings of the 2020
International Conference on Power, Energy and Innovations (ICPEI), Chiangmai, Thailand, 14–16 October 2020; pp. 225–228.

18. Fukuzawa, Y.; Wang, Z.; Mori, Y.; Kawamura, S. A Robotic System Capable of Recognition, Grasping, and Suction for Dishwashing
Automation. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP),
Shanghai, China, 26–28 November 2021; pp. 369–374.

19. Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.
In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285.

20. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

http://doi.org/10.1109/JAS.2020.1003474
http://dx.doi.org/10.1109/ACCESS.2018.2820326
http://dx.doi.org/10.1109/TASLP.2017.2783545
http://dx.doi.org/10.1109/JPROC.2020.2993293
http://dx.doi.org/10.1016/j.bspc.2021.102726
http://dx.doi.org/10.3390/en13102509
http://dx.doi.org/10.1109/ACCESS.2020.3041951
http://dx.doi.org/10.1109/5.726791

Appl. Sci. 2022, 12, 7337 18 of 18

22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, arXiv:1409.1556.
23. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

26. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

27. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

28. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28.

29. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 21–37.

30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

31. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

32. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv, 2018, arXiv:1804.02767.
33. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv, 2020, arXiv:2004.10934.
34. Farabet, C.; Poulet, C.; Han, J.Y.; LeCun, Y. Cnp: An fpga-based processor for convolutional networks. In Proceedings of the 2009

International Conference on Field Programmable Logic and Applications, Prague, Czech Republic, 31 August 2009–2 September
2009; pp. 32–37.

35. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded fpga platform
for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

36. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

37. Fujii, T.; Sato, S.; Nakahara, H.; Motomura, M. An FPGA realization of a deep convolutional neural network using a threshold
neuron pruning. In Proceedings of the International Symposium on Applied Reconfigurable Computing, Delft, The Netherlands,
3–7 April 2017; Springer: Cham, Switzerland, 2017; pp. 268–280.

38. Li, H.; Wang, Z.; Yue, X.; Wang, W.; Tomiyama, H.; Meng, L. A Comprehensive Analysis of Low-Impact Computations in Deep
Learning Workloads. In Proceedings of the Great Lakes Symposium on VLSI 2021 (the 31st GLSVLSI), Virtual, 22–25 June 2021.

39. Li, H.; Yue, X.; Wang, Z.; Wang, W.; Chai, Z.; Tomiyama, H.; Meng, L. Optimizing the deep neural networks by layer-wise refined
pruning and the acceleration on FPGA. Comput. Intell. Neurosci. 2022, 2022, 8039281. [CrossRef] [PubMed]

40. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

41. Shaukat, K.; Luo, S.; Chen, S.; Liu, D. Cyber threat detection using machine learning techniques: A performance evaluation
perspective. In Proceedings of the 2020 International Conference on Cyber Warfare and Security (ICCWS), Islamabad, Pakistan,
20–21 October 2020; pp. 1–6.

42. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.

43. Xilinx Inc. 2021. Available online: https://docs.xilinx.com/r/1.3-English/ug1414-vitis-ai (accessed on 1 April 2021).
44. Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A Deep Learning-Based Object Detection Algorithm for

Empty-Dish Recycling Robots. Machines 2022, 10, 294. [CrossRef]
45. Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. Deep Learning-based Real-time Object Detection for Empty-Dish Recycling

Robot. In Proceedings of the 13th Asian Control Conference, Jeju Island, Korea, 4–7 May 2022.
46. Yin, X.; Sasaki, Y.; Wang, W.; Shimizu, K. 3D Object Detection Method Based on YOLO and K-Means for Image and Point Clouds.

arXiv, 2020, arXiv:2005.02132.

http://dx.doi.org/10.1145/3007787.3001163
http://dx.doi.org/10.1155/2022/8039281
http://www.ncbi.nlm.nih.gov/pubmed/35694575
http://dx.doi.org/10.1109/JSSC.2016.2616357
https://docs.xilinx.com/r/1.3-English/ug1414-vitis-ai
http://dx.doi.org/10.3390/machines10050294

	Introduction
	Related Work
	Robotics
	Human Life
	Agriculture
	Dishwashing

	Deep Learning Based Objection Detection
	Two-Stage Object Detection Algorithms
	One-Stage Object Detection Algorithms

	Deep Learning Based on FPGA
	Quantization for Acceleration
	Weight Reduction for Acceleration
	Energy Consumption

	Application and Dataset
	The Empty-Dish Recycling Robot
	Dataset for Object Detection Training

	Research Methods
	Software Method
	Training Process
	Pruning Process

	Hardware Method

	Experimental Results
	Software Results
	Hardware Results

	Analysis and Discussion
	Analysis on Sparsity Training
	Analysis on Pruning Methods
	Analysis Based on AP
	Limitations and Future Directions
	Improvement of Detection Accuracy
	Addition of Evaluation Criteria
	Formalizing a Process Flow for Implementing CNN on FPGA

	Conclusions
	References

